aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h
blob: 5f6bb82898b2d30b700f1e12a2f349afd1f34022 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H
#define EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H

#include "./Tridiagonalization.h"

namespace Eigen { 

/** \eigenvalues_module \ingroup Eigenvalues_Module
  *
  *
  * \class GeneralizedSelfAdjointEigenSolver
  *
  * \brief Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the
  * eigendecomposition; this is expected to be an instantiation of the Matrix
  * class template.
  *
  * This class solves the generalized eigenvalue problem
  * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be
  * selfadjoint and the matrix \f$ B \f$ should be positive definite.
  *
  * Only the \b lower \b triangular \b part of the input matrix is referenced.
  *
  * Call the function compute() to compute the eigenvalues and eigenvectors of
  * a given matrix. Alternatively, you can use the
  * GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
  * constructor which computes the eigenvalues and eigenvectors at construction time.
  * Once the eigenvalue and eigenvectors are computed, they can be retrieved with the eigenvalues()
  * and eigenvectors() functions.
  *
  * The documentation for GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
  * contains an example of the typical use of this class.
  *
  * \sa class SelfAdjointEigenSolver, class EigenSolver, class ComplexEigenSolver
  */
template<typename _MatrixType>
class GeneralizedSelfAdjointEigenSolver : public SelfAdjointEigenSolver<_MatrixType>
{
    typedef SelfAdjointEigenSolver<_MatrixType> Base;
  public:

    typedef _MatrixType MatrixType;

    /** \brief Default constructor for fixed-size matrices.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via compute(). This constructor
      * can only be used if \p _MatrixType is a fixed-size matrix; use
      * GeneralizedSelfAdjointEigenSolver(Index) for dynamic-size matrices.
      */
    GeneralizedSelfAdjointEigenSolver() : Base() {}

    /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
      *
      * \param [in]  size  Positive integer, size of the matrix whose
      * eigenvalues and eigenvectors will be computed.
      *
      * This constructor is useful for dynamic-size matrices, when the user
      * intends to perform decompositions via compute(). The \p size
      * parameter is only used as a hint. It is not an error to give a wrong
      * \p size, but it may impair performance.
      *
      * \sa compute() for an example
      */
    explicit GeneralizedSelfAdjointEigenSolver(Index size)
        : Base(size)
    {}

    /** \brief Constructor; computes generalized eigendecomposition of given matrix pencil.
      *
      * \param[in]  matA  Selfadjoint matrix in matrix pencil.
      *                   Only the lower triangular part of the matrix is referenced.
      * \param[in]  matB  Positive-definite matrix in matrix pencil.
      *                   Only the lower triangular part of the matrix is referenced.
      * \param[in]  options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
      *                     Default is #ComputeEigenvectors|#Ax_lBx.
      *
      * This constructor calls compute(const MatrixType&, const MatrixType&, int)
      * to compute the eigenvalues and (if requested) the eigenvectors of the
      * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the
      * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix
      * \f$ B \f$. Each eigenvector \f$ x \f$ satisfies the property
      * \f$ x^* B x = 1 \f$. The eigenvectors are computed if
      * \a options contains ComputeEigenvectors.
      *
      * In addition, the two following variants can be solved via \p options:
      * - \c ABx_lx: \f$ ABx = \lambda x \f$
      * - \c BAx_lx: \f$ BAx = \lambda x \f$
      *
      * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out
      *
      * \sa compute(const MatrixType&, const MatrixType&, int)
      */
    GeneralizedSelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB,
                                      int options = ComputeEigenvectors|Ax_lBx)
      : Base(matA.cols())
    {
      compute(matA, matB, options);
    }

    /** \brief Computes generalized eigendecomposition of given matrix pencil.
      *
      * \param[in]  matA  Selfadjoint matrix in matrix pencil.
      *                   Only the lower triangular part of the matrix is referenced.
      * \param[in]  matB  Positive-definite matrix in matrix pencil.
      *                   Only the lower triangular part of the matrix is referenced.
      * \param[in]  options A or-ed set of flags {#ComputeEigenvectors,#EigenvaluesOnly} | {#Ax_lBx,#ABx_lx,#BAx_lx}.
      *                     Default is #ComputeEigenvectors|#Ax_lBx.
      *
      * \returns    Reference to \c *this
      *
      * Accoring to \p options, this function computes eigenvalues and (if requested)
      * the eigenvectors of one of the following three generalized eigenproblems:
      * - \c Ax_lBx: \f$ Ax = \lambda B x \f$
      * - \c ABx_lx: \f$ ABx = \lambda x \f$
      * - \c BAx_lx: \f$ BAx = \lambda x \f$
      * with \a matA the selfadjoint matrix \f$ A \f$ and \a matB the positive definite
      * matrix \f$ B \f$.
      * In addition, each eigenvector \f$ x \f$ satisfies the property \f$ x^* B x = 1 \f$.
      *
      * The eigenvalues() function can be used to retrieve
      * the eigenvalues. If \p options contains ComputeEigenvectors, then the
      * eigenvectors are also computed and can be retrieved by calling
      * eigenvectors().
      *
      * The implementation uses LLT to compute the Cholesky decomposition
      * \f$ B = LL^* \f$ and computes the classical eigendecomposition
      * of the selfadjoint matrix \f$ L^{-1} A (L^*)^{-1} \f$ if \p options contains Ax_lBx
      * and of \f$ L^{*} A L \f$ otherwise. This solves the
      * generalized eigenproblem, because any solution of the generalized
      * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution
      * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the
      * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. Similar statements
      * can be made for the two other variants.
      *
      * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp
      * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out
      *
      * \sa GeneralizedSelfAdjointEigenSolver(const MatrixType&, const MatrixType&, int)
      */
    GeneralizedSelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB,
                                               int options = ComputeEigenvectors|Ax_lBx);

  protected:

};


template<typename MatrixType>
GeneralizedSelfAdjointEigenSolver<MatrixType>& GeneralizedSelfAdjointEigenSolver<MatrixType>::
compute(const MatrixType& matA, const MatrixType& matB, int options)
{
  eigen_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
  eigen_assert((options&~(EigVecMask|GenEigMask))==0
          && (options&EigVecMask)!=EigVecMask
          && ((options&GenEigMask)==0 || (options&GenEigMask)==Ax_lBx
           || (options&GenEigMask)==ABx_lx || (options&GenEigMask)==BAx_lx)
          && "invalid option parameter");

  bool computeEigVecs = ((options&EigVecMask)==0) || ((options&EigVecMask)==ComputeEigenvectors);

  // Compute the cholesky decomposition of matB = L L' = U'U
  LLT<MatrixType> cholB(matB);

  int type = (options&GenEigMask);
  if(type==0)
    type = Ax_lBx;

  if(type==Ax_lBx)
  {
    // compute C = inv(L) A inv(L')
    MatrixType matC = matA.template selfadjointView<Lower>();
    cholB.matrixL().template solveInPlace<OnTheLeft>(matC);
    cholB.matrixU().template solveInPlace<OnTheRight>(matC);

    Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly );

    // transform back the eigen vectors: evecs = inv(U) * evecs
    if(computeEigVecs)
      cholB.matrixU().solveInPlace(Base::m_eivec);
  }
  else if(type==ABx_lx)
  {
    // compute C = L' A L
    MatrixType matC = matA.template selfadjointView<Lower>();
    matC = matC * cholB.matrixL();
    matC = cholB.matrixU() * matC;

    Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);

    // transform back the eigen vectors: evecs = inv(U) * evecs
    if(computeEigVecs)
      cholB.matrixU().solveInPlace(Base::m_eivec);
  }
  else if(type==BAx_lx)
  {
    // compute C = L' A L
    MatrixType matC = matA.template selfadjointView<Lower>();
    matC = matC * cholB.matrixL();
    matC = cholB.matrixU() * matC;

    Base::compute(matC, computeEigVecs ? ComputeEigenvectors : EigenvaluesOnly);

    // transform back the eigen vectors: evecs = L * evecs
    if(computeEigVecs)
      Base::m_eivec = cholB.matrixL() * Base::m_eivec;
  }

  return *this;
}

} // end namespace Eigen

#endif // EIGEN_GENERALIZEDSELFADJOINTEIGENSOLVER_H