aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Eigenvalues/RealQZ.h
blob: fba6f1d772cd5abac9698ae1d91f146d2aa01112 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_REAL_QZ_H
#define EIGEN_REAL_QZ_H

namespace Eigen {

  /** \eigenvalues_module \ingroup Eigenvalues_Module
   *
   *
   * \class RealQZ
   *
   * \brief Performs a real QZ decomposition of a pair of square matrices
   *
   * \tparam _MatrixType the type of the matrix of which we are computing the
   * real QZ decomposition; this is expected to be an instantiation of the
   * Matrix class template.
   *
   * Given a real square matrices A and B, this class computes the real QZ
   * decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are
   * real orthogonal matrixes, T is upper-triangular matrix, and S is upper
   * quasi-triangular matrix. An orthogonal matrix is a matrix whose
   * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
   * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
   * blocks and 2-by-2 blocks where further reduction is impossible due to
   * complex eigenvalues. 
   *
   * The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from
   * 1x1 and 2x2 blocks on the diagonals of S and T.
   *
   * Call the function compute() to compute the real QZ decomposition of a
   * given pair of matrices. Alternatively, you can use the 
   * RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ)
   * constructor which computes the real QZ decomposition at construction
   * time. Once the decomposition is computed, you can use the matrixS(),
   * matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices
   * S, T, Q and Z in the decomposition. If computeQZ==false, some time
   * is saved by not computing matrices Q and Z.
   *
   * Example: \include RealQZ_compute.cpp
   * Output: \include RealQZ_compute.out
   *
   * \note The implementation is based on the algorithm in "Matrix Computations"
   * by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for
   * generalized eigenvalue problems" by C.B.Moler and G.W.Stewart.
   *
   * \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
   */

  template<typename _MatrixType> class RealQZ
  {
    public:
      typedef _MatrixType MatrixType;
      enum {
        RowsAtCompileTime = MatrixType::RowsAtCompileTime,
        ColsAtCompileTime = MatrixType::ColsAtCompileTime,
        Options = MatrixType::Options,
        MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
        MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
      };
      typedef typename MatrixType::Scalar Scalar;
      typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
      typedef typename MatrixType::Index Index;

      typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
      typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;

      /** \brief Default constructor.
       *
       * \param [in] size  Positive integer, size of the matrix whose QZ decomposition will be computed.
       *
       * The default constructor is useful in cases in which the user intends to
       * perform decompositions via compute().  The \p size parameter is only
       * used as a hint. It is not an error to give a wrong \p size, but it may
       * impair performance.
       *
       * \sa compute() for an example.
       */
      RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) : 
        m_S(size, size),
        m_T(size, size),
        m_Q(size, size),
        m_Z(size, size),
        m_workspace(size*2),
        m_maxIters(400),
        m_isInitialized(false)
        { }

      /** \brief Constructor; computes real QZ decomposition of given matrices
       * 
       * \param[in]  A          Matrix A.
       * \param[in]  B          Matrix B.
       * \param[in]  computeQZ  If false, A and Z are not computed.
       *
       * This constructor calls compute() to compute the QZ decomposition.
       */
      RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) :
        m_S(A.rows(),A.cols()),
        m_T(A.rows(),A.cols()),
        m_Q(A.rows(),A.cols()),
        m_Z(A.rows(),A.cols()),
        m_workspace(A.rows()*2),
        m_maxIters(400),
        m_isInitialized(false) {
          compute(A, B, computeQZ);
        }

      /** \brief Returns matrix Q in the QZ decomposition. 
       *
       * \returns A const reference to the matrix Q.
       */
      const MatrixType& matrixQ() const {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
        return m_Q;
      }

      /** \brief Returns matrix Z in the QZ decomposition. 
       *
       * \returns A const reference to the matrix Z.
       */
      const MatrixType& matrixZ() const {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
        return m_Z;
      }

      /** \brief Returns matrix S in the QZ decomposition. 
       *
       * \returns A const reference to the matrix S.
       */
      const MatrixType& matrixS() const {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        return m_S;
      }

      /** \brief Returns matrix S in the QZ decomposition. 
       *
       * \returns A const reference to the matrix S.
       */
      const MatrixType& matrixT() const {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        return m_T;
      }

      /** \brief Computes QZ decomposition of given matrix. 
       * 
       * \param[in]  A          Matrix A.
       * \param[in]  B          Matrix B.
       * \param[in]  computeQZ  If false, A and Z are not computed.
       * \returns    Reference to \c *this
       */
      RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true);

      /** \brief Reports whether previous computation was successful.
       *
       * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
       */
      ComputationInfo info() const
      {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        return m_info;
      }

      /** \brief Returns number of performed QR-like iterations.
      */
      Index iterations() const
      {
        eigen_assert(m_isInitialized && "RealQZ is not initialized.");
        return m_global_iter;
      }

      /** Sets the maximal number of iterations allowed to converge to one eigenvalue
       * or decouple the problem.
      */
      RealQZ& setMaxIterations(Index maxIters)
      {
        m_maxIters = maxIters;
        return *this;
      }

    private:

      MatrixType m_S, m_T, m_Q, m_Z;
      Matrix<Scalar,Dynamic,1> m_workspace;
      ComputationInfo m_info;
      Index m_maxIters;
      bool m_isInitialized;
      bool m_computeQZ;
      Scalar m_normOfT, m_normOfS;
      Index m_global_iter;

      typedef Matrix<Scalar,3,1> Vector3s;
      typedef Matrix<Scalar,2,1> Vector2s;
      typedef Matrix<Scalar,2,2> Matrix2s;
      typedef JacobiRotation<Scalar> JRs;

      void hessenbergTriangular();
      void computeNorms();
      Index findSmallSubdiagEntry(Index iu);
      Index findSmallDiagEntry(Index f, Index l);
      void splitOffTwoRows(Index i);
      void pushDownZero(Index z, Index f, Index l);
      void step(Index f, Index l, Index iter);

  }; // RealQZ

  /** \internal Reduces S and T to upper Hessenberg - triangular form */
  template<typename MatrixType>
    void RealQZ<MatrixType>::hessenbergTriangular()
    {

      const Index dim = m_S.cols();

      // perform QR decomposition of T, overwrite T with R, save Q
      HouseholderQR<MatrixType> qrT(m_T);
      m_T = qrT.matrixQR();
      m_T.template triangularView<StrictlyLower>().setZero();
      m_Q = qrT.householderQ();
      // overwrite S with Q* S
      m_S.applyOnTheLeft(m_Q.adjoint());
      // init Z as Identity
      if (m_computeQZ)
        m_Z = MatrixType::Identity(dim,dim);
      // reduce S to upper Hessenberg with Givens rotations
      for (Index j=0; j<=dim-3; j++) {
        for (Index i=dim-1; i>=j+2; i--) {
          JRs G;
          // kill S(i,j)
          if(m_S.coeff(i,j) != 0)
          {
            G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
            m_S.coeffRef(i,j) = Scalar(0.0);
            m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
            m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
            // update Q
            if (m_computeQZ)
              m_Q.applyOnTheRight(i-1,i,G);
          }
          // update Q
          if(m_T.coeff(i,i-1)!=Scalar(0))
          {
            G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
            m_T.coeffRef(i,i-1) = Scalar(0.0);
            m_S.applyOnTheRight(i,i-1,G);
            m_T.topRows(i).applyOnTheRight(i,i-1,G);
            // update Z
            if (m_computeQZ)
              m_Z.applyOnTheLeft(i,i-1,G.adjoint());
          }
        }
      }
    }

  /** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
  template<typename MatrixType>
    inline void RealQZ<MatrixType>::computeNorms()
    {
      const Index size = m_S.cols();
      m_normOfS = Scalar(0.0);
      m_normOfT = Scalar(0.0);
      for (Index j = 0; j < size; ++j)
      {
        m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
        m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
      }
    }


  /** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
  template<typename MatrixType>
    inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
    {
      using std::abs;
      Index res = iu;
      while (res > 0)
      {
        Scalar s = abs(m_S.coeff(res-1,res-1)) + abs(m_S.coeff(res,res));
        if (s == Scalar(0.0))
          s = m_normOfS;
        if (abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
          break;
        res--;
      }
      return res;
    }

  /** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1)  */
  template<typename MatrixType>
    inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
    {
      using std::abs;
      Index res = l;
      while (res >= f) {
        if (abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
          break;
        res--;
      }
      return res;
    }

  /** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
  template<typename MatrixType>
    inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
    {
      using std::abs;
      using std::sqrt;
      const Index dim=m_S.cols();
      if (abs(m_S.coeff(i+1,i))==Scalar(0))
        return;
      Index z = findSmallDiagEntry(i,i+1);
      if (z==i-1)
      {
        // block of (S T^{-1})
        Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
          template solve<OnTheRight>(m_S.template block<2,2>(i,i));
        Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1));
        Scalar q = p*p + STi(1,0)*STi(0,1);
        if (q>=0) {
          Scalar z = sqrt(q);
          // one QR-like iteration for ABi - lambda I
          // is enough - when we know exact eigenvalue in advance,
          // convergence is immediate
          JRs G;
          if (p>=0)
            G.makeGivens(p + z, STi(1,0));
          else
            G.makeGivens(p - z, STi(1,0));
          m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
          m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
          // update Q
          if (m_computeQZ)
            m_Q.applyOnTheRight(i,i+1,G);

          G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i));
          m_S.topRows(i+2).applyOnTheRight(i+1,i,G);
          m_T.topRows(i+2).applyOnTheRight(i+1,i,G);
          // update Z
          if (m_computeQZ)
            m_Z.applyOnTheLeft(i+1,i,G.adjoint());

          m_S.coeffRef(i+1,i) = Scalar(0.0);
          m_T.coeffRef(i+1,i) = Scalar(0.0);
        }
      }
      else
      {
        pushDownZero(z,i,i+1);
      }
    }

  /** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
  template<typename MatrixType>
    inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
    {
      JRs G;
      const Index dim = m_S.cols();
      for (Index zz=z; zz<l; zz++)
      {
        // push 0 down
        Index firstColS = zz>f ? (zz-1) : zz;
        G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
        m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint());
        m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint());
        m_T.coeffRef(zz+1,zz+1) = Scalar(0.0);
        // update Q
        if (m_computeQZ)
          m_Q.applyOnTheRight(zz,zz+1,G);
        // kill S(zz+1, zz-1)
        if (zz>f)
        {
          G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
          m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
          m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
          m_S.coeffRef(zz+1,zz-1) = Scalar(0.0);
          // update Z
          if (m_computeQZ)
            m_Z.applyOnTheLeft(zz,zz-1,G.adjoint());
        }
      }
      // finally kill S(l,l-1)
      G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1));
      m_S.applyOnTheRight(l,l-1,G);
      m_T.applyOnTheRight(l,l-1,G);
      m_S.coeffRef(l,l-1)=Scalar(0.0);
      // update Z
      if (m_computeQZ)
        m_Z.applyOnTheLeft(l,l-1,G.adjoint());
    }

  /** \internal QR-like iterative step for block f..l */
  template<typename MatrixType>
    inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter)
    {
      using std::abs;
      const Index dim = m_S.cols();

      // x, y, z
      Scalar x, y, z;
      if (iter==10)
      {
        // Wilkinson ad hoc shift
        const Scalar
          a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
          a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1),
          b12=m_T.coeff(f+0,f+1),
          b11i=Scalar(1.0)/m_T.coeff(f+0,f+0),
          b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
          a87=m_S.coeff(l-1,l-2),
          a98=m_S.coeff(l-0,l-1),
          b77i=Scalar(1.0)/m_T.coeff(l-2,l-2),
          b88i=Scalar(1.0)/m_T.coeff(l-1,l-1);
        Scalar ss = abs(a87*b77i) + abs(a98*b88i),
               lpl = Scalar(1.5)*ss,
               ll = ss*ss;
        x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i
          - a11*a21*b12*b11i*b11i*b22i;
        y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i 
          - a21*a21*b12*b11i*b11i*b22i;
        z = a21*a32*b11i*b22i;
      }
      else if (iter==16)
      {
        // another exceptional shift
        x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
          (m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
        y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
        z = 0;
      }
      else if (iter>23 && !(iter%8))
      {
        // extremely exceptional shift
        x = internal::random<Scalar>(-1.0,1.0);
        y = internal::random<Scalar>(-1.0,1.0);
        z = internal::random<Scalar>(-1.0,1.0);
      }
      else
      {
        // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
        // where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where
        // U and V are 2x2 bottom right sub matrices of A and B. Thus:
        //  = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
        //  = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
        // Since we are only interested in having x, y, z with a correct ratio, we have:
        const Scalar
          a11 = m_S.coeff(f,f),     a12 = m_S.coeff(f,f+1),
          a21 = m_S.coeff(f+1,f),   a22 = m_S.coeff(f+1,f+1),
                                    a32 = m_S.coeff(f+2,f+1),

          a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
          a98 = m_S.coeff(l,l-1),   a99 = m_S.coeff(l,l),

          b11 = m_T.coeff(f,f),     b12 = m_T.coeff(f,f+1),
                                    b22 = m_T.coeff(f+1,f+1),

          b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
                                    b99 = m_T.coeff(l,l);

        x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
          + a12/b22 - (a11/b11)*(b12/b22);
        y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
        z = a32/b22;
      }

      JRs G;

      for (Index k=f; k<=l-2; k++)
      {
        // variables for Householder reflections
        Vector2s essential2;
        Scalar tau, beta;

        Vector3s hr(x,y,z);

        // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
        hr.makeHouseholderInPlace(tau, beta);
        essential2 = hr.template bottomRows<2>();
        Index fc=(std::max)(k-1,Index(0));  // first col to update
        m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
        m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
        if (m_computeQZ)
          m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
        if (k>f)
          m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);

        // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
        hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
        hr.makeHouseholderInPlace(tau, beta);
        essential2 = hr.template bottomRows<2>();
        {
          Index lr = (std::min)(k+4,dim); // last row to update
          Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr);
          // S
          tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
          tmp += m_S.col(k+2).head(lr);
          m_S.col(k+2).head(lr) -= tau*tmp;
          m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
          // T
          tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
          tmp += m_T.col(k+2).head(lr);
          m_T.col(k+2).head(lr) -= tau*tmp;
          m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
        }
        if (m_computeQZ)
        {
          // Z
          Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
          tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
          tmp += m_Z.row(k+2);
          m_Z.row(k+2) -= tau*tmp;
          m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
        }
        m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);

        // Z_{k2} to annihilate T(k+1,k)
        G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
        m_S.applyOnTheRight(k+1,k,G);
        m_T.applyOnTheRight(k+1,k,G);
        // update Z
        if (m_computeQZ)
          m_Z.applyOnTheLeft(k+1,k,G.adjoint());
        m_T.coeffRef(k+1,k) = Scalar(0.0);

        // update x,y,z
        x = m_S.coeff(k+1,k);
        y = m_S.coeff(k+2,k);
        if (k < l-2)
          z = m_S.coeff(k+3,k);
      } // loop over k

      // Q_{n-1} to annihilate y = S(l,l-2)
      G.makeGivens(x,y);
      m_S.applyOnTheLeft(l-1,l,G.adjoint());
      m_T.applyOnTheLeft(l-1,l,G.adjoint());
      if (m_computeQZ)
        m_Q.applyOnTheRight(l-1,l,G);
      m_S.coeffRef(l,l-2) = Scalar(0.0);

      // Z_{n-1} to annihilate T(l,l-1)
      G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
      m_S.applyOnTheRight(l,l-1,G);
      m_T.applyOnTheRight(l,l-1,G);
      if (m_computeQZ)
        m_Z.applyOnTheLeft(l,l-1,G.adjoint());
      m_T.coeffRef(l,l-1) = Scalar(0.0);
    }


  template<typename MatrixType>
    RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
    {

      const Index dim = A_in.cols();

      eigen_assert (A_in.rows()==dim && A_in.cols()==dim 
          && B_in.rows()==dim && B_in.cols()==dim 
          && "Need square matrices of the same dimension");

      m_isInitialized = true;
      m_computeQZ = computeQZ;
      m_S = A_in; m_T = B_in;
      m_workspace.resize(dim*2);
      m_global_iter = 0;

      // entrance point: hessenberg triangular decomposition
      hessenbergTriangular();
      // compute L1 vector norms of T, S into m_normOfS, m_normOfT
      computeNorms();

      Index l = dim-1, 
            f, 
            local_iter = 0;

      while (l>0 && local_iter<m_maxIters)
      {
        f = findSmallSubdiagEntry(l);
        // now rows and columns f..l (including) decouple from the rest of the problem
        if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
        if (f == l) // One root found
        {
          l--;
          local_iter = 0;
        }
        else if (f == l-1) // Two roots found
        {
          splitOffTwoRows(f);
          l -= 2;
          local_iter = 0;
        }
        else // No convergence yet
        {
          // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations
          Index z = findSmallDiagEntry(f,l);
          if (z>=f)
          {
            // zero found
            pushDownZero(z,f,l);
          }
          else
          {
            // We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg 
            // and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to
            // apply a QR-like iteration to rows and columns f..l.
            step(f,l, local_iter);
            local_iter++;
            m_global_iter++;
          }
        }
      }
      // check if we converged before reaching iterations limit
      m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
      return *this;
    } // end compute

} // end namespace Eigen

#endif //EIGEN_REAL_QZ