aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Geometry/Hyperplane.h
blob: 05929b2994103b8b37b6c32ef6b78bd4f2f6d4b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_HYPERPLANE_H
#define EIGEN_HYPERPLANE_H

namespace Eigen { 

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Hyperplane
  *
  * \brief A hyperplane
  *
  * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
  * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
  *
  * \tparam _Scalar the scalar type, i.e., the type of the coefficients
  * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
  *             Notice that the dimension of the hyperplane is _AmbientDim-1.
  *
  * This class represents an hyperplane as the zero set of the implicit equation
  * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
  * and \f$ d \f$ is the distance (offset) to the origin.
  */
template <typename _Scalar, int _AmbientDim, int _Options>
class Hyperplane
{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
  enum {
    AmbientDimAtCompileTime = _AmbientDim,
    Options = _Options
  };
  typedef _Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
  typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
  typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic
                        ? Dynamic
                        : Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients;
  typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
  typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType;

  /** Default constructor without initialization */
  EIGEN_DEVICE_FUNC inline Hyperplane() {}
  
  template<int OtherOptions>
  EIGEN_DEVICE_FUNC Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
   : m_coeffs(other.coeffs())
  {}

  /** Constructs a dynamic-size hyperplane with \a _dim the dimension
    * of the ambient space */
  EIGEN_DEVICE_FUNC inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}

  /** Construct a plane from its normal \a n and a point \a e onto the plane.
    * \warning the vector normal is assumed to be normalized.
    */
  EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const VectorType& e)
    : m_coeffs(n.size()+1)
  {
    normal() = n;
    offset() = -n.dot(e);
  }

  /** Constructs a plane from its normal \a n and distance to the origin \a d
    * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
    * \warning the vector normal is assumed to be normalized.
    */
  EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const Scalar& d)
    : m_coeffs(n.size()+1)
  {
    normal() = n;
    offset() = d;
  }

  /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
    * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
    */
  EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
  {
    Hyperplane result(p0.size());
    result.normal() = (p1 - p0).unitOrthogonal();
    result.offset() = -p0.dot(result.normal());
    return result;
  }

  /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
    * is required to be exactly 3.
    */
  EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
  {
    EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
    Hyperplane result(p0.size());
    VectorType v0(p2 - p0), v1(p1 - p0);
    result.normal() = v0.cross(v1);
    RealScalar norm = result.normal().norm();
    if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon())
    {
      Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
      JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
      result.normal() = svd.matrixV().col(2);
    }
    else
      result.normal() /= norm;
    result.offset() = -p0.dot(result.normal());
    return result;
  }

  /** Constructs a hyperplane passing through the parametrized line \a parametrized.
    * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
    * so an arbitrary choice is made.
    */
  // FIXME to be consitent with the rest this could be implemented as a static Through function ??
  EIGEN_DEVICE_FUNC explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
  {
    normal() = parametrized.direction().unitOrthogonal();
    offset() = -parametrized.origin().dot(normal());
  }

  EIGEN_DEVICE_FUNC ~Hyperplane() {}

  /** \returns the dimension in which the plane holds */
  EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }

  /** normalizes \c *this */
  EIGEN_DEVICE_FUNC void normalize(void)
  {
    m_coeffs /= normal().norm();
  }

  /** \returns the signed distance between the plane \c *this and a point \a p.
    * \sa absDistance()
    */
  EIGEN_DEVICE_FUNC inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }

  /** \returns the absolute distance between the plane \c *this and a point \a p.
    * \sa signedDistance()
    */
  EIGEN_DEVICE_FUNC inline Scalar absDistance(const VectorType& p) const { return numext::abs(signedDistance(p)); }

  /** \returns the projection of a point \a p onto the plane \c *this.
    */
  EIGEN_DEVICE_FUNC inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }

  /** \returns a constant reference to the unit normal vector of the plane, which corresponds
    * to the linear part of the implicit equation.
    */
  EIGEN_DEVICE_FUNC inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }

  /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
    * to the linear part of the implicit equation.
    */
  EIGEN_DEVICE_FUNC inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }

  /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
    * \warning the vector normal is assumed to be normalized.
    */
  EIGEN_DEVICE_FUNC inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }

  /** \returns a non-constant reference to the distance to the origin, which is also the constant part
    * of the implicit equation */
  EIGEN_DEVICE_FUNC inline Scalar& offset() { return m_coeffs(dim()); }

  /** \returns a constant reference to the coefficients c_i of the plane equation:
    * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
    */
  EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }

  /** \returns a non-constant reference to the coefficients c_i of the plane equation:
    * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
    */
  EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }

  /** \returns the intersection of *this with \a other.
    *
    * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
    *
    * \note If \a other is approximately parallel to *this, this method will return any point on *this.
    */
  EIGEN_DEVICE_FUNC VectorType intersection(const Hyperplane& other) const
  {
    EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
    Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
    // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
    // whether the two lines are approximately parallel.
    if(internal::isMuchSmallerThan(det, Scalar(1)))
    {   // special case where the two lines are approximately parallel. Pick any point on the first line.
        if(numext::abs(coeffs().coeff(1))>numext::abs(coeffs().coeff(0)))
            return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
        else
            return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
    }
    else
    {   // general case
        Scalar invdet = Scalar(1) / det;
        return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
                          invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
    }
  }

  /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
    *
    * \param mat the Dim x Dim transformation matrix
    * \param traits specifies whether the matrix \a mat represents an #Isometry
    *               or a more generic #Affine transformation. The default is #Affine.
    */
  template<typename XprType>
  EIGEN_DEVICE_FUNC inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
  {
    if (traits==Affine)
    {
      normal() = mat.inverse().transpose() * normal();
      m_coeffs /= normal().norm();
    }
    else if (traits==Isometry)
      normal() = mat * normal();
    else
    {
      eigen_assert(0 && "invalid traits value in Hyperplane::transform()");
    }
    return *this;
  }

  /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
    *
    * \param t the transformation of dimension Dim
    * \param traits specifies whether the transformation \a t represents an #Isometry
    *               or a more generic #Affine transformation. The default is #Affine.
    *               Other kind of transformations are not supported.
    */
  template<int TrOptions>
  EIGEN_DEVICE_FUNC inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
                                TransformTraits traits = Affine)
  {
    transform(t.linear(), traits);
    offset() -= normal().dot(t.translation());
    return *this;
  }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
  EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Hyperplane,
           Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
  {
    return typename internal::cast_return_type<Hyperplane,
                    Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this);
  }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType,int OtherOptions>
  EIGEN_DEVICE_FUNC inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
  { m_coeffs = other.coeffs().template cast<Scalar>(); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
  template<int OtherOptions>
  EIGEN_DEVICE_FUNC bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
  { return m_coeffs.isApprox(other.m_coeffs, prec); }

protected:

  Coefficients m_coeffs;
};

} // end namespace Eigen

#endif // EIGEN_HYPERPLANE_H