aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h
blob: 2036922d69c2b8768ced4a37ff0ae7931b3212a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_ITERATIVE_SOLVER_BASE_H
#define EIGEN_ITERATIVE_SOLVER_BASE_H

namespace Eigen { 

/** \ingroup IterativeLinearSolvers_Module
  * \brief Base class for linear iterative solvers
  *
  * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
  */
template< typename Derived>
class IterativeSolverBase : internal::noncopyable
{
public:
  typedef typename internal::traits<Derived>::MatrixType MatrixType;
  typedef typename internal::traits<Derived>::Preconditioner Preconditioner;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::RealScalar RealScalar;

public:

  Derived& derived() { return *static_cast<Derived*>(this); }
  const Derived& derived() const { return *static_cast<const Derived*>(this); }

  /** Default constructor. */
  IterativeSolverBase()
    : mp_matrix(0)
  {
    init();
  }

  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    * 
    * This constructor is a shortcut for the default constructor followed
    * by a call to compute().
    * 
    * \warning this class stores a reference to the matrix A as well as some
    * precomputed values that depend on it. Therefore, if \a A is changed
    * this class becomes invalid. Call compute() to update it with the new
    * matrix A, or modify a copy of A.
    */
  IterativeSolverBase(const MatrixType& A)
  {
    init();
    compute(A);
  }

  ~IterativeSolverBase() {}
  
  /** Initializes the iterative solver for the sparcity pattern of the matrix \a A for further solving \c Ax=b problems.
    *
    * Currently, this function mostly call analyzePattern on the preconditioner. In the future
    * we might, for instance, implement column reodering for faster matrix vector products.
    */
  Derived& analyzePattern(const MatrixType& A)
  {
    m_preconditioner.analyzePattern(A);
    m_isInitialized = true;
    m_analysisIsOk = true;
    m_info = Success;
    return derived();
  }
  
  /** Initializes the iterative solver with the numerical values of the matrix \a A for further solving \c Ax=b problems.
    *
    * Currently, this function mostly call factorize on the preconditioner.
    *
    * \warning this class stores a reference to the matrix A as well as some
    * precomputed values that depend on it. Therefore, if \a A is changed
    * this class becomes invalid. Call compute() to update it with the new
    * matrix A, or modify a copy of A.
    */
  Derived& factorize(const MatrixType& A)
  {
    eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); 
    mp_matrix = &A;
    m_preconditioner.factorize(A);
    m_factorizationIsOk = true;
    m_info = Success;
    return derived();
  }

  /** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
    *
    * Currently, this function mostly initialized/compute the preconditioner. In the future
    * we might, for instance, implement column reodering for faster matrix vector products.
    *
    * \warning this class stores a reference to the matrix A as well as some
    * precomputed values that depend on it. Therefore, if \a A is changed
    * this class becomes invalid. Call compute() to update it with the new
    * matrix A, or modify a copy of A.
    */
  Derived& compute(const MatrixType& A)
  {
    mp_matrix = &A;
    m_preconditioner.compute(A);
    m_isInitialized = true;
    m_analysisIsOk = true;
    m_factorizationIsOk = true;
    m_info = Success;
    return derived();
  }

  /** \internal */
  Index rows() const { return mp_matrix ? mp_matrix->rows() : 0; }
  /** \internal */
  Index cols() const { return mp_matrix ? mp_matrix->cols() : 0; }

  /** \returns the tolerance threshold used by the stopping criteria */
  RealScalar tolerance() const { return m_tolerance; }
  
  /** Sets the tolerance threshold used by the stopping criteria */
  Derived& setTolerance(const RealScalar& tolerance)
  {
    m_tolerance = tolerance;
    return derived();
  }

  /** \returns a read-write reference to the preconditioner for custom configuration. */
  Preconditioner& preconditioner() { return m_preconditioner; }
  
  /** \returns a read-only reference to the preconditioner. */
  const Preconditioner& preconditioner() const { return m_preconditioner; }

  /** \returns the max number of iterations */
  int maxIterations() const
  {
    return (mp_matrix && m_maxIterations<0) ? mp_matrix->cols() : m_maxIterations;
  }
  
  /** Sets the max number of iterations */
  Derived& setMaxIterations(int maxIters)
  {
    m_maxIterations = maxIters;
    return derived();
  }

  /** \returns the number of iterations performed during the last solve */
  int iterations() const
  {
    eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
    return m_iterations;
  }

  /** \returns the tolerance error reached during the last solve */
  RealScalar error() const
  {
    eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
    return m_error;
  }

  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
    *
    * \sa compute()
    */
  template<typename Rhs> inline const internal::solve_retval<Derived, Rhs>
  solve(const MatrixBase<Rhs>& b) const
  {
    eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
    eigen_assert(rows()==b.rows()
              && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
    return internal::solve_retval<Derived, Rhs>(derived(), b.derived());
  }
  
  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
    *
    * \sa compute()
    */
  template<typename Rhs>
  inline const internal::sparse_solve_retval<IterativeSolverBase, Rhs>
  solve(const SparseMatrixBase<Rhs>& b) const
  {
    eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
    eigen_assert(rows()==b.rows()
              && "IterativeSolverBase::solve(): invalid number of rows of the right hand side matrix b");
    return internal::sparse_solve_retval<IterativeSolverBase, Rhs>(*this, b.derived());
  }

  /** \returns Success if the iterations converged, and NoConvergence otherwise. */
  ComputationInfo info() const
  {
    eigen_assert(m_isInitialized && "IterativeSolverBase is not initialized.");
    return m_info;
  }
  
  /** \internal */
  template<typename Rhs, typename DestScalar, int DestOptions, typename DestIndex>
  void _solve_sparse(const Rhs& b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
  {
    eigen_assert(rows()==b.rows());
    
    int rhsCols = b.cols();
    int size = b.rows();
    Eigen::Matrix<DestScalar,Dynamic,1> tb(size);
    Eigen::Matrix<DestScalar,Dynamic,1> tx(size);
    for(int k=0; k<rhsCols; ++k)
    {
      tb = b.col(k);
      tx = derived().solve(tb);
      dest.col(k) = tx.sparseView(0);
    }
  }

protected:
  void init()
  {
    m_isInitialized = false;
    m_analysisIsOk = false;
    m_factorizationIsOk = false;
    m_maxIterations = -1;
    m_tolerance = NumTraits<Scalar>::epsilon();
  }
  const MatrixType* mp_matrix;
  Preconditioner m_preconditioner;

  int m_maxIterations;
  RealScalar m_tolerance;
  
  mutable RealScalar m_error;
  mutable int m_iterations;
  mutable ComputationInfo m_info;
  mutable bool m_isInitialized, m_analysisIsOk, m_factorizationIsOk;
};

namespace internal {
 
template<typename Derived, typename Rhs>
struct sparse_solve_retval<IterativeSolverBase<Derived>, Rhs>
  : sparse_solve_retval_base<IterativeSolverBase<Derived>, Rhs>
{
  typedef IterativeSolverBase<Derived> Dec;
  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec().derived()._solve_sparse(rhs(),dst);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_ITERATIVE_SOLVER_BASE_H