aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/OrderingMethods/Eigen_Colamd.h
blob: da85b4d6ea23cb4dedfa0f502e288a89fd79b01b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
// // This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

// This file is modified from the colamd/symamd library. The copyright is below

//   The authors of the code itself are Stefan I. Larimore and Timothy A.
//   Davis (davis@cise.ufl.edu), University of Florida.  The algorithm was
//   developed in collaboration with John Gilbert, Xerox PARC, and Esmond
//   Ng, Oak Ridge National Laboratory.
// 
//     Date:
// 
//   September 8, 2003.  Version 2.3.
// 
//     Acknowledgements:
// 
//   This work was supported by the National Science Foundation, under
//   grants DMS-9504974 and DMS-9803599.
// 
//     Notice:
// 
//   Copyright (c) 1998-2003 by the University of Florida.
//   All Rights Reserved.
// 
//   THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
//   EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
// 
//   Permission is hereby granted to use, copy, modify, and/or distribute
//   this program, provided that the Copyright, this License, and the
//   Availability of the original version is retained on all copies and made
//   accessible to the end-user of any code or package that includes COLAMD
//   or any modified version of COLAMD. 
// 
//     Availability:
// 
//   The colamd/symamd library is available at
// 
//       http://www.suitesparse.com

  
#ifndef EIGEN_COLAMD_H
#define EIGEN_COLAMD_H

namespace internal {
/* Ensure that debugging is turned off: */
#ifndef COLAMD_NDEBUG
#define COLAMD_NDEBUG
#endif /* NDEBUG */
/* ========================================================================== */
/* === Knob and statistics definitions ====================================== */
/* ========================================================================== */

/* size of the knobs [ ] array.  Only knobs [0..1] are currently used. */
#define COLAMD_KNOBS 20

/* number of output statistics.  Only stats [0..6] are currently used. */
#define COLAMD_STATS 20 

/* knobs [0] and stats [0]: dense row knob and output statistic. */
#define COLAMD_DENSE_ROW 0

/* knobs [1] and stats [1]: dense column knob and output statistic. */
#define COLAMD_DENSE_COL 1

/* stats [2]: memory defragmentation count output statistic */
#define COLAMD_DEFRAG_COUNT 2

/* stats [3]: colamd status:  zero OK, > 0 warning or notice, < 0 error */
#define COLAMD_STATUS 3

/* stats [4..6]: error info, or info on jumbled columns */ 
#define COLAMD_INFO1 4
#define COLAMD_INFO2 5
#define COLAMD_INFO3 6

/* error codes returned in stats [3]: */
#define COLAMD_OK       (0)
#define COLAMD_OK_BUT_JUMBLED     (1)
#define COLAMD_ERROR_A_not_present    (-1)
#define COLAMD_ERROR_p_not_present    (-2)
#define COLAMD_ERROR_nrow_negative    (-3)
#define COLAMD_ERROR_ncol_negative    (-4)
#define COLAMD_ERROR_nnz_negative   (-5)
#define COLAMD_ERROR_p0_nonzero     (-6)
#define COLAMD_ERROR_A_too_small    (-7)
#define COLAMD_ERROR_col_length_negative  (-8)
#define COLAMD_ERROR_row_index_out_of_bounds  (-9)
#define COLAMD_ERROR_out_of_memory    (-10)
#define COLAMD_ERROR_internal_error   (-999)

/* ========================================================================== */
/* === Definitions ========================================================== */
/* ========================================================================== */

#define ONES_COMPLEMENT(r) (-(r)-1)

/* -------------------------------------------------------------------------- */

#define COLAMD_EMPTY (-1)

/* Row and column status */
#define ALIVE (0)
#define DEAD  (-1)

/* Column status */
#define DEAD_PRINCIPAL    (-1)
#define DEAD_NON_PRINCIPAL  (-2)

/* Macros for row and column status update and checking. */
#define ROW_IS_DEAD(r)      ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
#define ROW_IS_MARKED_DEAD(row_mark)  (row_mark < ALIVE)
#define ROW_IS_ALIVE(r)     (Row [r].shared2.mark >= ALIVE)
#define COL_IS_DEAD(c)      (Col [c].start < ALIVE)
#define COL_IS_ALIVE(c)     (Col [c].start >= ALIVE)
#define COL_IS_DEAD_PRINCIPAL(c)  (Col [c].start == DEAD_PRINCIPAL)
#define KILL_ROW(r)     { Row [r].shared2.mark = DEAD ; }
#define KILL_PRINCIPAL_COL(c)   { Col [c].start = DEAD_PRINCIPAL ; }
#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }

/* ========================================================================== */
/* === Colamd reporting mechanism =========================================== */
/* ========================================================================== */

// == Row and Column structures ==
template <typename IndexType>
struct colamd_col
{
  IndexType start ;   /* index for A of first row in this column, or DEAD */
  /* if column is dead */
  IndexType length ;  /* number of rows in this column */
  union
  {
    IndexType thickness ; /* number of original columns represented by this */
    /* col, if the column is alive */
    IndexType parent ;  /* parent in parent tree super-column structure, if */
    /* the column is dead */
  } shared1 ;
  union
  {
    IndexType score ; /* the score used to maintain heap, if col is alive */
    IndexType order ; /* pivot ordering of this column, if col is dead */
  } shared2 ;
  union
  {
    IndexType headhash ;  /* head of a hash bucket, if col is at the head of */
    /* a degree list */
    IndexType hash ;  /* hash value, if col is not in a degree list */
    IndexType prev ;  /* previous column in degree list, if col is in a */
    /* degree list (but not at the head of a degree list) */
  } shared3 ;
  union
  {
    IndexType degree_next ; /* next column, if col is in a degree list */
    IndexType hash_next ;   /* next column, if col is in a hash list */
  } shared4 ;
  
};
 
template <typename IndexType>
struct Colamd_Row
{
  IndexType start ;   /* index for A of first col in this row */
  IndexType length ;  /* number of principal columns in this row */
  union
  {
    IndexType degree ;  /* number of principal & non-principal columns in row */
    IndexType p ;   /* used as a row pointer in init_rows_cols () */
  } shared1 ;
  union
  {
    IndexType mark ;  /* for computing set differences and marking dead rows*/
    IndexType first_column ;/* first column in row (used in garbage collection) */
  } shared2 ;
  
};
 
/* ========================================================================== */
/* === Colamd recommended memory size ======================================= */
/* ========================================================================== */
 
/*
  The recommended length Alen of the array A passed to colamd is given by
  the COLAMD_RECOMMENDED (nnz, n_row, n_col) macro.  It returns -1 if any
  argument is negative.  2*nnz space is required for the row and column
  indices of the matrix. colamd_c (n_col) + colamd_r (n_row) space is
  required for the Col and Row arrays, respectively, which are internal to
  colamd.  An additional n_col space is the minimal amount of "elbow room",
  and nnz/5 more space is recommended for run time efficiency.
  
  This macro is not needed when using symamd.
  
  Explicit typecast to IndexType added Sept. 23, 2002, COLAMD version 2.2, to avoid
  gcc -pedantic warning messages.
*/
template <typename IndexType>
inline IndexType colamd_c(IndexType n_col) 
{ return IndexType( ((n_col) + 1) * sizeof (colamd_col<IndexType>) / sizeof (IndexType) ) ; }

template <typename IndexType>
inline IndexType  colamd_r(IndexType n_row)
{ return IndexType(((n_row) + 1) * sizeof (Colamd_Row<IndexType>) / sizeof (IndexType)); }

// Prototypes of non-user callable routines
template <typename IndexType>
static IndexType init_rows_cols (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> col [], IndexType A [], IndexType p [], IndexType stats[COLAMD_STATS] ); 

template <typename IndexType>
static void init_scoring (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType head [], double knobs[COLAMD_KNOBS], IndexType *p_n_row2, IndexType *p_n_col2, IndexType *p_max_deg);

template <typename IndexType>
static IndexType find_ordering (IndexType n_row, IndexType n_col, IndexType Alen, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType head [], IndexType n_col2, IndexType max_deg, IndexType pfree);

template <typename IndexType>
static void order_children (IndexType n_col, colamd_col<IndexType> Col [], IndexType p []);

template <typename IndexType>
static void detect_super_cols (colamd_col<IndexType> Col [], IndexType A [], IndexType head [], IndexType row_start, IndexType row_length ) ;

template <typename IndexType>
static IndexType garbage_collection (IndexType n_row, IndexType n_col, Colamd_Row<IndexType> Row [], colamd_col<IndexType> Col [], IndexType A [], IndexType *pfree) ;

template <typename IndexType>
static inline  IndexType clear_mark (IndexType n_row, Colamd_Row<IndexType> Row [] ) ;

/* === No debugging ========================================================= */

#define COLAMD_DEBUG0(params) ;
#define COLAMD_DEBUG1(params) ;
#define COLAMD_DEBUG2(params) ;
#define COLAMD_DEBUG3(params) ;
#define COLAMD_DEBUG4(params) ;

#define COLAMD_ASSERT(expression) ((void) 0)


/**
 * \brief Returns the recommended value of Alen 
 * 
 * Returns recommended value of Alen for use by colamd.  
 * Returns -1 if any input argument is negative.  
 * The use of this routine or macro is optional.  
 * Note that the macro uses its arguments   more than once, 
 * so be careful for side effects, if you pass expressions as arguments to COLAMD_RECOMMENDED.  
 * 
 * \param nnz nonzeros in A
 * \param n_row number of rows in A
 * \param n_col number of columns in A
 * \return recommended value of Alen for use by colamd
 */
template <typename IndexType>
inline IndexType colamd_recommended ( IndexType nnz, IndexType n_row, IndexType n_col)
{
  if ((nnz) < 0 || (n_row) < 0 || (n_col) < 0)
    return (-1);
  else
    return (2 * (nnz) + colamd_c (n_col) + colamd_r (n_row) + (n_col) + ((nnz) / 5)); 
}

/**
 * \brief set default parameters  The use of this routine is optional.
 * 
 * Colamd: rows with more than (knobs [COLAMD_DENSE_ROW] * n_col)
 * entries are removed prior to ordering.  Columns with more than
 * (knobs [COLAMD_DENSE_COL] * n_row) entries are removed prior to
 * ordering, and placed last in the output column ordering. 
 *
 * COLAMD_DENSE_ROW and COLAMD_DENSE_COL are defined as 0 and 1,
 * respectively, in colamd.h.  Default values of these two knobs
 * are both 0.5.  Currently, only knobs [0] and knobs [1] are
 * used, but future versions may use more knobs.  If so, they will
 * be properly set to their defaults by the future version of
 * colamd_set_defaults, so that the code that calls colamd will
 * not need to change, assuming that you either use
 * colamd_set_defaults, or pass a (double *) NULL pointer as the
 * knobs array to colamd or symamd.
 * 
 * \param knobs parameter settings for colamd
 */

static inline void colamd_set_defaults(double knobs[COLAMD_KNOBS])
{
  /* === Local variables ================================================== */
  
  int i ;

  if (!knobs)
  {
    return ;      /* no knobs to initialize */
  }
  for (i = 0 ; i < COLAMD_KNOBS ; i++)
  {
    knobs [i] = 0 ;
  }
  knobs [COLAMD_DENSE_ROW] = 0.5 ;  /* ignore rows over 50% dense */
  knobs [COLAMD_DENSE_COL] = 0.5 ;  /* ignore columns over 50% dense */
}

/** 
 * \brief  Computes a column ordering using the column approximate minimum degree ordering
 * 
 * Computes a column ordering (Q) of A such that P(AQ)=LU or
 * (AQ)'AQ=LL' have less fill-in and require fewer floating point
 * operations than factorizing the unpermuted matrix A or A'A,
 * respectively.
 * 
 * 
 * \param n_row number of rows in A
 * \param n_col number of columns in A
 * \param Alen, size of the array A
 * \param A row indices of the matrix, of size ALen
 * \param p column pointers of A, of size n_col+1
 * \param knobs parameter settings for colamd
 * \param stats colamd output statistics and error codes
 */
template <typename IndexType>
static bool colamd(IndexType n_row, IndexType n_col, IndexType Alen, IndexType *A, IndexType *p, double knobs[COLAMD_KNOBS], IndexType stats[COLAMD_STATS])
{
  /* === Local variables ================================================== */
  
  IndexType i ;     /* loop index */
  IndexType nnz ;     /* nonzeros in A */
  IndexType Row_size ;    /* size of Row [], in integers */
  IndexType Col_size ;    /* size of Col [], in integers */
  IndexType need ;      /* minimum required length of A */
  Colamd_Row<IndexType> *Row ;   /* pointer into A of Row [0..n_row] array */
  colamd_col<IndexType> *Col ;   /* pointer into A of Col [0..n_col] array */
  IndexType n_col2 ;    /* number of non-dense, non-empty columns */
  IndexType n_row2 ;    /* number of non-dense, non-empty rows */
  IndexType ngarbage ;    /* number of garbage collections performed */
  IndexType max_deg ;   /* maximum row degree */
  double default_knobs [COLAMD_KNOBS] ; /* default knobs array */
  
  
  /* === Check the input arguments ======================================== */
  
  if (!stats)
  {
    COLAMD_DEBUG0 (("colamd: stats not present\n")) ;
    return (false) ;
  }
  for (i = 0 ; i < COLAMD_STATS ; i++)
  {
    stats [i] = 0 ;
  }
  stats [COLAMD_STATUS] = COLAMD_OK ;
  stats [COLAMD_INFO1] = -1 ;
  stats [COLAMD_INFO2] = -1 ;
  
  if (!A)   /* A is not present */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_A_not_present ;
    COLAMD_DEBUG0 (("colamd: A not present\n")) ;
    return (false) ;
  }
  
  if (!p)   /* p is not present */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_p_not_present ;
    COLAMD_DEBUG0 (("colamd: p not present\n")) ;
    return (false) ;
  }
  
  if (n_row < 0)  /* n_row must be >= 0 */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_nrow_negative ;
    stats [COLAMD_INFO1] = n_row ;
    COLAMD_DEBUG0 (("colamd: nrow negative %d\n", n_row)) ;
    return (false) ;
  }
  
  if (n_col < 0)  /* n_col must be >= 0 */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_ncol_negative ;
    stats [COLAMD_INFO1] = n_col ;
    COLAMD_DEBUG0 (("colamd: ncol negative %d\n", n_col)) ;
    return (false) ;
  }
  
  nnz = p [n_col] ;
  if (nnz < 0)  /* nnz must be >= 0 */
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_nnz_negative ;
    stats [COLAMD_INFO1] = nnz ;
    COLAMD_DEBUG0 (("colamd: number of entries negative %d\n", nnz)) ;
    return (false) ;
  }
  
  if (p [0] != 0)
  {
    stats [COLAMD_STATUS] = COLAMD_ERROR_p0_nonzero ;
    stats [COLAMD_INFO1] = p [0] ;
    COLAMD_DEBUG0 (("colamd: p[0] not zero %d\n", p [0])) ;
    return (false) ;
  }
  
  /* === If no knobs, set default knobs =================================== */
  
  if (!knobs)
  {
    colamd_set_defaults (default_knobs) ;
    knobs = default_knobs ;
  }
  
  /* === Allocate the Row and Col arrays from array A ===================== */
  
  Col_size = colamd_c (n_col) ;
  Row_size = colamd_r (n_row) ;
  need = 2*nnz + n_col + Col_size + Row_size ;
  
  if (need > Alen)
  {
    /* not enough space in array A to perform the ordering */
    stats [COLAMD_STATUS] = COLAMD_ERROR_A_too_small ;
    stats [COLAMD_INFO1] = need ;
    stats [COLAMD_INFO2] = Alen ;
    COLAMD_DEBUG0 (("colamd: Need Alen >= %d, given only Alen = %d\n", need,Alen));
    return (false) ;
  }
  
  Alen -= Col_size + Row_size ;
  Col = (colamd_col<IndexType> *) &A [Alen] ;
  Row = (Colamd_Row<IndexType> *) &A [Alen + Col_size] ;

  /* === Construct the row and column data structures ===================== */
  
  if (!Eigen::internal::init_rows_cols (n_row, n_col, Row, Col, A, p, stats))
  {
    /* input matrix is invalid */
    COLAMD_DEBUG0 (("colamd: Matrix invalid\n")) ;
    return (false) ;
  }
  
  /* === Initialize scores, kill dense rows/columns ======================= */

  Eigen::internal::init_scoring (n_row, n_col, Row, Col, A, p, knobs,
		&n_row2, &n_col2, &max_deg) ;
  
  /* === Order the supercolumns =========================================== */
  
  ngarbage = Eigen::internal::find_ordering (n_row, n_col, Alen, Row, Col, A, p,
			    n_col2, max_deg, 2*nnz) ;
  
  /* === Order the non-principal columns ================================== */
  
  Eigen::internal::order_children (n_col, Col, p) ;
  
  /* === Return statistics in stats ======================================= */
  
  stats [COLAMD_DENSE_ROW] = n_row - n_row2 ;
  stats [COLAMD_DENSE_COL] = n_col - n_col2 ;
  stats [COLAMD_DEFRAG_COUNT] = ngarbage ;
  COLAMD_DEBUG0 (("colamd: done.\n")) ; 
  return (true) ;
}

/* ========================================================================== */
/* === NON-USER-CALLABLE ROUTINES: ========================================== */
/* ========================================================================== */

/* There are no user-callable routines beyond this point in the file */


/* ========================================================================== */
/* === init_rows_cols ======================================================= */
/* ========================================================================== */

/*
  Takes the column form of the matrix in A and creates the row form of the
  matrix.  Also, row and column attributes are stored in the Col and Row
  structs.  If the columns are un-sorted or contain duplicate row indices,
  this routine will also sort and remove duplicate row indices from the
  column form of the matrix.  Returns false if the matrix is invalid,
  true otherwise.  Not user-callable.
*/
template <typename IndexType>
static IndexType init_rows_cols  /* returns true if OK, or false otherwise */
  (
    /* === Parameters ======================================================= */

    IndexType n_row,      /* number of rows of A */
    IndexType n_col,      /* number of columns of A */
    Colamd_Row<IndexType> Row [],    /* of size n_row+1 */
    colamd_col<IndexType> Col [],    /* of size n_col+1 */
    IndexType A [],     /* row indices of A, of size Alen */
    IndexType p [],     /* pointers to columns in A, of size n_col+1 */
    IndexType stats [COLAMD_STATS]  /* colamd statistics */ 
    )
{
  /* === Local variables ================================================== */

  IndexType col ;     /* a column index */
  IndexType row ;     /* a row index */
  IndexType *cp ;     /* a column pointer */
  IndexType *cp_end ;   /* a pointer to the end of a column */
  IndexType *rp ;     /* a row pointer */
  IndexType *rp_end ;   /* a pointer to the end of a row */
  IndexType last_row ;    /* previous row */

  /* === Initialize columns, and check column pointers ==================== */

  for (col = 0 ; col < n_col ; col++)
  {
    Col [col].start = p [col] ;
    Col [col].length = p [col+1] - p [col] ;

    if ((Col [col].length) < 0) // extra parentheses to work-around gcc bug 10200
    {
      /* column pointers must be non-decreasing */
      stats [COLAMD_STATUS] = COLAMD_ERROR_col_length_negative ;
      stats [COLAMD_INFO1] = col ;
      stats [COLAMD_INFO2] = Col [col].length ;
      COLAMD_DEBUG0 (("colamd: col %d length %d < 0\n", col, Col [col].length)) ;
      return (false) ;
    }

    Col [col].shared1.thickness = 1 ;
    Col [col].shared2.score = 0 ;
    Col [col].shared3.prev = COLAMD_EMPTY ;
    Col [col].shared4.degree_next = COLAMD_EMPTY ;
  }

  /* p [0..n_col] no longer needed, used as "head" in subsequent routines */

  /* === Scan columns, compute row degrees, and check row indices ========= */

  stats [COLAMD_INFO3] = 0 ;  /* number of duplicate or unsorted row indices*/

  for (row = 0 ; row < n_row ; row++)
  {
    Row [row].length = 0 ;
    Row [row].shared2.mark = -1 ;
  }

  for (col = 0 ; col < n_col ; col++)
  {
    last_row = -1 ;

    cp = &A [p [col]] ;
    cp_end = &A [p [col+1]] ;

    while (cp < cp_end)
    {
      row = *cp++ ;

      /* make sure row indices within range */
      if (row < 0 || row >= n_row)
      {
	stats [COLAMD_STATUS] = COLAMD_ERROR_row_index_out_of_bounds ;
	stats [COLAMD_INFO1] = col ;
	stats [COLAMD_INFO2] = row ;
	stats [COLAMD_INFO3] = n_row ;
	COLAMD_DEBUG0 (("colamd: row %d col %d out of bounds\n", row, col)) ;
	return (false) ;
      }

      if (row <= last_row || Row [row].shared2.mark == col)
      {
	/* row index are unsorted or repeated (or both), thus col */
	/* is jumbled.  This is a notice, not an error condition. */
	stats [COLAMD_STATUS] = COLAMD_OK_BUT_JUMBLED ;
	stats [COLAMD_INFO1] = col ;
	stats [COLAMD_INFO2] = row ;
	(stats [COLAMD_INFO3]) ++ ;
	COLAMD_DEBUG1 (("colamd: row %d col %d unsorted/duplicate\n",row,col));
      }

      if (Row [row].shared2.mark != col)
      {
	Row [row].length++ ;
      }
      else
      {
	/* this is a repeated entry in the column, */
	/* it will be removed */
	Col [col].length-- ;
      }

      /* mark the row as having been seen in this column */
      Row [row].shared2.mark = col ;

      last_row = row ;
    }
  }

  /* === Compute row pointers ============================================= */

  /* row form of the matrix starts directly after the column */
  /* form of matrix in A */
  Row [0].start = p [n_col] ;
  Row [0].shared1.p = Row [0].start ;
  Row [0].shared2.mark = -1 ;
  for (row = 1 ; row < n_row ; row++)
  {
    Row [row].start = Row [row-1].start + Row [row-1].length ;
    Row [row].shared1.p = Row [row].start ;
    Row [row].shared2.mark = -1 ;
  }

  /* === Create row form ================================================== */

  if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
  {
    /* if cols jumbled, watch for repeated row indices */
    for (col = 0 ; col < n_col ; col++)
    {
      cp = &A [p [col]] ;
      cp_end = &A [p [col+1]] ;
      while (cp < cp_end)
      {
	row = *cp++ ;
	if (Row [row].shared2.mark != col)
	{
	  A [(Row [row].shared1.p)++] = col ;
	  Row [row].shared2.mark = col ;
	}
      }
    }
  }
  else
  {
    /* if cols not jumbled, we don't need the mark (this is faster) */
    for (col = 0 ; col < n_col ; col++)
    {
      cp = &A [p [col]] ;
      cp_end = &A [p [col+1]] ;
      while (cp < cp_end)
      {
	A [(Row [*cp++].shared1.p)++] = col ;
      }
    }
  }

  /* === Clear the row marks and set row degrees ========================== */

  for (row = 0 ; row < n_row ; row++)
  {
    Row [row].shared2.mark = 0 ;
    Row [row].shared1.degree = Row [row].length ;
  }

  /* === See if we need to re-create columns ============================== */

  if (stats [COLAMD_STATUS] == COLAMD_OK_BUT_JUMBLED)
  {
    COLAMD_DEBUG0 (("colamd: reconstructing column form, matrix jumbled\n")) ;


    /* === Compute col pointers ========================================= */

    /* col form of the matrix starts at A [0]. */
    /* Note, we may have a gap between the col form and the row */
    /* form if there were duplicate entries, if so, it will be */
    /* removed upon the first garbage collection */
    Col [0].start = 0 ;
    p [0] = Col [0].start ;
    for (col = 1 ; col < n_col ; col++)
    {
      /* note that the lengths here are for pruned columns, i.e. */
      /* no duplicate row indices will exist for these columns */
      Col [col].start = Col [col-1].start + Col [col-1].length ;
      p [col] = Col [col].start ;
    }

    /* === Re-create col form =========================================== */

    for (row = 0 ; row < n_row ; row++)
    {
      rp = &A [Row [row].start] ;
      rp_end = rp + Row [row].length ;
      while (rp < rp_end)
      {
	A [(p [*rp++])++] = row ;
      }
    }
  }

  /* === Done.  Matrix is not (or no longer) jumbled ====================== */

  return (true) ;
}


/* ========================================================================== */
/* === init_scoring ========================================================= */
/* ========================================================================== */

/*
  Kills dense or empty columns and rows, calculates an initial score for
  each column, and places all columns in the degree lists.  Not user-callable.
*/
template <typename IndexType>
static void init_scoring
  (
    /* === Parameters ======================================================= */

    IndexType n_row,      /* number of rows of A */
    IndexType n_col,      /* number of columns of A */
    Colamd_Row<IndexType> Row [],    /* of size n_row+1 */
    colamd_col<IndexType> Col [],    /* of size n_col+1 */
    IndexType A [],     /* column form and row form of A */
    IndexType head [],    /* of size n_col+1 */
    double knobs [COLAMD_KNOBS],/* parameters */
    IndexType *p_n_row2,    /* number of non-dense, non-empty rows */
    IndexType *p_n_col2,    /* number of non-dense, non-empty columns */
    IndexType *p_max_deg    /* maximum row degree */
    )
{
  /* === Local variables ================================================== */

  IndexType c ;     /* a column index */
  IndexType r, row ;    /* a row index */
  IndexType *cp ;     /* a column pointer */
  IndexType deg ;     /* degree of a row or column */
  IndexType *cp_end ;   /* a pointer to the end of a column */
  IndexType *new_cp ;   /* new column pointer */
  IndexType col_length ;    /* length of pruned column */
  IndexType score ;     /* current column score */
  IndexType n_col2 ;    /* number of non-dense, non-empty columns */
  IndexType n_row2 ;    /* number of non-dense, non-empty rows */
  IndexType dense_row_count ; /* remove rows with more entries than this */
  IndexType dense_col_count ; /* remove cols with more entries than this */
  IndexType min_score ;   /* smallest column score */
  IndexType max_deg ;   /* maximum row degree */
  IndexType next_col ;    /* Used to add to degree list.*/


  /* === Extract knobs ==================================================== */

  dense_row_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [COLAMD_DENSE_ROW] * n_col), n_col)) ;
  dense_col_count = numext::maxi(IndexType(0), numext::mini(IndexType(knobs [COLAMD_DENSE_COL] * n_row), n_row)) ;
  COLAMD_DEBUG1 (("colamd: densecount: %d %d\n", dense_row_count, dense_col_count)) ;
  max_deg = 0 ;
  n_col2 = n_col ;
  n_row2 = n_row ;

  /* === Kill empty columns =============================================== */

  /* Put the empty columns at the end in their natural order, so that LU */
  /* factorization can proceed as far as possible. */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    deg = Col [c].length ;
    if (deg == 0)
    {
      /* this is a empty column, kill and order it last */
      Col [c].shared2.order = --n_col2 ;
      KILL_PRINCIPAL_COL (c) ;
    }
  }
  COLAMD_DEBUG1 (("colamd: null columns killed: %d\n", n_col - n_col2)) ;

  /* === Kill dense columns =============================================== */

  /* Put the dense columns at the end, in their natural order */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    /* skip any dead columns */
    if (COL_IS_DEAD (c))
    {
      continue ;
    }
    deg = Col [c].length ;
    if (deg > dense_col_count)
    {
      /* this is a dense column, kill and order it last */
      Col [c].shared2.order = --n_col2 ;
      /* decrement the row degrees */
      cp = &A [Col [c].start] ;
      cp_end = cp + Col [c].length ;
      while (cp < cp_end)
      {
	Row [*cp++].shared1.degree-- ;
      }
      KILL_PRINCIPAL_COL (c) ;
    }
  }
  COLAMD_DEBUG1 (("colamd: Dense and null columns killed: %d\n", n_col - n_col2)) ;

  /* === Kill dense and empty rows ======================================== */

  for (r = 0 ; r < n_row ; r++)
  {
    deg = Row [r].shared1.degree ;
    COLAMD_ASSERT (deg >= 0 && deg <= n_col) ;
    if (deg > dense_row_count || deg == 0)
    {
      /* kill a dense or empty row */
      KILL_ROW (r) ;
      --n_row2 ;
    }
    else
    {
      /* keep track of max degree of remaining rows */
      max_deg = numext::maxi(max_deg, deg) ;
    }
  }
  COLAMD_DEBUG1 (("colamd: Dense and null rows killed: %d\n", n_row - n_row2)) ;

  /* === Compute initial column scores ==================================== */

  /* At this point the row degrees are accurate.  They reflect the number */
  /* of "live" (non-dense) columns in each row.  No empty rows exist. */
  /* Some "live" columns may contain only dead rows, however.  These are */
  /* pruned in the code below. */

  /* now find the initial matlab score for each column */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    /* skip dead column */
    if (COL_IS_DEAD (c))
    {
      continue ;
    }
    score = 0 ;
    cp = &A [Col [c].start] ;
    new_cp = cp ;
    cp_end = cp + Col [c].length ;
    while (cp < cp_end)
    {
      /* get a row */
      row = *cp++ ;
      /* skip if dead */
      if (ROW_IS_DEAD (row))
      {
	continue ;
      }
      /* compact the column */
      *new_cp++ = row ;
      /* add row's external degree */
      score += Row [row].shared1.degree - 1 ;
      /* guard against integer overflow */
      score = numext::mini(score, n_col) ;
    }
    /* determine pruned column length */
    col_length = (IndexType) (new_cp - &A [Col [c].start]) ;
    if (col_length == 0)
    {
      /* a newly-made null column (all rows in this col are "dense" */
      /* and have already been killed) */
      COLAMD_DEBUG2 (("Newly null killed: %d\n", c)) ;
      Col [c].shared2.order = --n_col2 ;
      KILL_PRINCIPAL_COL (c) ;
    }
    else
    {
      /* set column length and set score */
      COLAMD_ASSERT (score >= 0) ;
      COLAMD_ASSERT (score <= n_col) ;
      Col [c].length = col_length ;
      Col [c].shared2.score = score ;
    }
  }
  COLAMD_DEBUG1 (("colamd: Dense, null, and newly-null columns killed: %d\n",
		  n_col-n_col2)) ;

  /* At this point, all empty rows and columns are dead.  All live columns */
  /* are "clean" (containing no dead rows) and simplicial (no supercolumns */
  /* yet).  Rows may contain dead columns, but all live rows contain at */
  /* least one live column. */

  /* === Initialize degree lists ========================================== */


  /* clear the hash buckets */
  for (c = 0 ; c <= n_col ; c++)
  {
    head [c] = COLAMD_EMPTY ;
  }
  min_score = n_col ;
  /* place in reverse order, so low column indices are at the front */
  /* of the lists.  This is to encourage natural tie-breaking */
  for (c = n_col-1 ; c >= 0 ; c--)
  {
    /* only add principal columns to degree lists */
    if (COL_IS_ALIVE (c))
    {
      COLAMD_DEBUG4 (("place %d score %d minscore %d ncol %d\n",
		      c, Col [c].shared2.score, min_score, n_col)) ;

      /* === Add columns score to DList =============================== */

      score = Col [c].shared2.score ;

      COLAMD_ASSERT (min_score >= 0) ;
      COLAMD_ASSERT (min_score <= n_col) ;
      COLAMD_ASSERT (score >= 0) ;
      COLAMD_ASSERT (score <= n_col) ;
      COLAMD_ASSERT (head [score] >= COLAMD_EMPTY) ;

      /* now add this column to dList at proper score location */
      next_col = head [score] ;
      Col [c].shared3.prev = COLAMD_EMPTY ;
      Col [c].shared4.degree_next = next_col ;

      /* if there already was a column with the same score, set its */
      /* previous pointer to this new column */
      if (next_col != COLAMD_EMPTY)
      {
	Col [next_col].shared3.prev = c ;
      }
      head [score] = c ;

      /* see if this score is less than current min */
      min_score = numext::mini(min_score, score) ;


    }
  }


  /* === Return number of remaining columns, and max row degree =========== */

  *p_n_col2 = n_col2 ;
  *p_n_row2 = n_row2 ;
  *p_max_deg = max_deg ;
}


/* ========================================================================== */
/* === find_ordering ======================================================== */
/* ========================================================================== */

/*
  Order the principal columns of the supercolumn form of the matrix
  (no supercolumns on input).  Uses a minimum approximate column minimum
  degree ordering method.  Not user-callable.
*/
template <typename IndexType>
static IndexType find_ordering /* return the number of garbage collections */
  (
    /* === Parameters ======================================================= */

    IndexType n_row,      /* number of rows of A */
    IndexType n_col,      /* number of columns of A */
    IndexType Alen,     /* size of A, 2*nnz + n_col or larger */
    Colamd_Row<IndexType> Row [],    /* of size n_row+1 */
    colamd_col<IndexType> Col [],    /* of size n_col+1 */
    IndexType A [],     /* column form and row form of A */
    IndexType head [],    /* of size n_col+1 */
    IndexType n_col2,     /* Remaining columns to order */
    IndexType max_deg,    /* Maximum row degree */
    IndexType pfree     /* index of first free slot (2*nnz on entry) */
    )
{
  /* === Local variables ================================================== */

  IndexType k ;     /* current pivot ordering step */
  IndexType pivot_col ;   /* current pivot column */
  IndexType *cp ;     /* a column pointer */
  IndexType *rp ;     /* a row pointer */
  IndexType pivot_row ;   /* current pivot row */
  IndexType *new_cp ;   /* modified column pointer */
  IndexType *new_rp ;   /* modified row pointer */
  IndexType pivot_row_start ; /* pointer to start of pivot row */
  IndexType pivot_row_degree ;  /* number of columns in pivot row */
  IndexType pivot_row_length ;  /* number of supercolumns in pivot row */
  IndexType pivot_col_score ; /* score of pivot column */
  IndexType needed_memory ;   /* free space needed for pivot row */
  IndexType *cp_end ;   /* pointer to the end of a column */
  IndexType *rp_end ;   /* pointer to the end of a row */
  IndexType row ;     /* a row index */
  IndexType col ;     /* a column index */
  IndexType max_score ;   /* maximum possible score */
  IndexType cur_score ;   /* score of current column */
  unsigned int hash ;   /* hash value for supernode detection */
  IndexType head_column ;   /* head of hash bucket */
  IndexType first_col ;   /* first column in hash bucket */
  IndexType tag_mark ;    /* marker value for mark array */
  IndexType row_mark ;    /* Row [row].shared2.mark */
  IndexType set_difference ;  /* set difference size of row with pivot row */
  IndexType min_score ;   /* smallest column score */
  IndexType col_thickness ;   /* "thickness" (no. of columns in a supercol) */
  IndexType max_mark ;    /* maximum value of tag_mark */
  IndexType pivot_col_thickness ; /* number of columns represented by pivot col */
  IndexType prev_col ;    /* Used by Dlist operations. */
  IndexType next_col ;    /* Used by Dlist operations. */
  IndexType ngarbage ;    /* number of garbage collections performed */


  /* === Initialization and clear mark ==================================== */

  max_mark = INT_MAX - n_col ;  /* INT_MAX defined in <limits.h> */
  tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
  min_score = 0 ;
  ngarbage = 0 ;
  COLAMD_DEBUG1 (("colamd: Ordering, n_col2=%d\n", n_col2)) ;

  /* === Order the columns ================================================ */

  for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
  {

    /* === Select pivot column, and order it ============================ */

    /* make sure degree list isn't empty */
    COLAMD_ASSERT (min_score >= 0) ;
    COLAMD_ASSERT (min_score <= n_col) ;
    COLAMD_ASSERT (head [min_score] >= COLAMD_EMPTY) ;

    /* get pivot column from head of minimum degree list */
    while (min_score < n_col && head [min_score] == COLAMD_EMPTY)
    {
      min_score++ ;
    }
    pivot_col = head [min_score] ;
    COLAMD_ASSERT (pivot_col >= 0 && pivot_col <= n_col) ;
    next_col = Col [pivot_col].shared4.degree_next ;
    head [min_score] = next_col ;
    if (next_col != COLAMD_EMPTY)
    {
      Col [next_col].shared3.prev = COLAMD_EMPTY ;
    }

    COLAMD_ASSERT (COL_IS_ALIVE (pivot_col)) ;
    COLAMD_DEBUG3 (("Pivot col: %d\n", pivot_col)) ;

    /* remember score for defrag check */
    pivot_col_score = Col [pivot_col].shared2.score ;

    /* the pivot column is the kth column in the pivot order */
    Col [pivot_col].shared2.order = k ;

    /* increment order count by column thickness */
    pivot_col_thickness = Col [pivot_col].shared1.thickness ;
    k += pivot_col_thickness ;
    COLAMD_ASSERT (pivot_col_thickness > 0) ;

    /* === Garbage_collection, if necessary ============================= */

    needed_memory = numext::mini(pivot_col_score, n_col - k) ;
    if (pfree + needed_memory >= Alen)
    {
      pfree = Eigen::internal::garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
      ngarbage++ ;
      /* after garbage collection we will have enough */
      COLAMD_ASSERT (pfree + needed_memory < Alen) ;
      /* garbage collection has wiped out the Row[].shared2.mark array */
      tag_mark = Eigen::internal::clear_mark (n_row, Row) ;

    }

    /* === Compute pivot row pattern ==================================== */

    /* get starting location for this new merged row */
    pivot_row_start = pfree ;

    /* initialize new row counts to zero */
    pivot_row_degree = 0 ;

    /* tag pivot column as having been visited so it isn't included */
    /* in merged pivot row */
    Col [pivot_col].shared1.thickness = -pivot_col_thickness ;

    /* pivot row is the union of all rows in the pivot column pattern */
    cp = &A [Col [pivot_col].start] ;
    cp_end = cp + Col [pivot_col].length ;
    while (cp < cp_end)
    {
      /* get a row */
      row = *cp++ ;
      COLAMD_DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
      /* skip if row is dead */
      if (ROW_IS_DEAD (row))
      {
	continue ;
      }
      rp = &A [Row [row].start] ;
      rp_end = rp + Row [row].length ;
      while (rp < rp_end)
      {
	/* get a column */
	col = *rp++ ;
	/* add the column, if alive and untagged */
	col_thickness = Col [col].shared1.thickness ;
	if (col_thickness > 0 && COL_IS_ALIVE (col))
	{
	  /* tag column in pivot row */
	  Col [col].shared1.thickness = -col_thickness ;
	  COLAMD_ASSERT (pfree < Alen) ;
	  /* place column in pivot row */
	  A [pfree++] = col ;
	  pivot_row_degree += col_thickness ;
	}
      }
    }

    /* clear tag on pivot column */
    Col [pivot_col].shared1.thickness = pivot_col_thickness ;
    max_deg = numext::maxi(max_deg, pivot_row_degree) ;


    /* === Kill all rows used to construct pivot row ==================== */

    /* also kill pivot row, temporarily */
    cp = &A [Col [pivot_col].start] ;
    cp_end = cp + Col [pivot_col].length ;
    while (cp < cp_end)
    {
      /* may be killing an already dead row */
      row = *cp++ ;
      COLAMD_DEBUG3 (("Kill row in pivot col: %d\n", row)) ;
      KILL_ROW (row) ;
    }

    /* === Select a row index to use as the new pivot row =============== */

    pivot_row_length = pfree - pivot_row_start ;
    if (pivot_row_length > 0)
    {
      /* pick the "pivot" row arbitrarily (first row in col) */
      pivot_row = A [Col [pivot_col].start] ;
      COLAMD_DEBUG3 (("Pivotal row is %d\n", pivot_row)) ;
    }
    else
    {
      /* there is no pivot row, since it is of zero length */
      pivot_row = COLAMD_EMPTY ;
      COLAMD_ASSERT (pivot_row_length == 0) ;
    }
    COLAMD_ASSERT (Col [pivot_col].length > 0 || pivot_row_length == 0) ;

    /* === Approximate degree computation =============================== */

    /* Here begins the computation of the approximate degree.  The column */
    /* score is the sum of the pivot row "length", plus the size of the */
    /* set differences of each row in the column minus the pattern of the */
    /* pivot row itself.  The column ("thickness") itself is also */
    /* excluded from the column score (we thus use an approximate */
    /* external degree). */

    /* The time taken by the following code (compute set differences, and */
    /* add them up) is proportional to the size of the data structure */
    /* being scanned - that is, the sum of the sizes of each column in */
    /* the pivot row.  Thus, the amortized time to compute a column score */
    /* is proportional to the size of that column (where size, in this */
    /* context, is the column "length", or the number of row indices */
    /* in that column).  The number of row indices in a column is */
    /* monotonically non-decreasing, from the length of the original */
    /* column on input to colamd. */

    /* === Compute set differences ====================================== */

    COLAMD_DEBUG3 (("** Computing set differences phase. **\n")) ;

    /* pivot row is currently dead - it will be revived later. */

    COLAMD_DEBUG3 (("Pivot row: ")) ;
    /* for each column in pivot row */
    rp = &A [pivot_row_start] ;
    rp_end = rp + pivot_row_length ;
    while (rp < rp_end)
    {
      col = *rp++ ;
      COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
      COLAMD_DEBUG3 (("Col: %d\n", col)) ;

      /* clear tags used to construct pivot row pattern */
      col_thickness = -Col [col].shared1.thickness ;
      COLAMD_ASSERT (col_thickness > 0) ;
      Col [col].shared1.thickness = col_thickness ;

      /* === Remove column from degree list =========================== */

      cur_score = Col [col].shared2.score ;
      prev_col = Col [col].shared3.prev ;
      next_col = Col [col].shared4.degree_next ;
      COLAMD_ASSERT (cur_score >= 0) ;
      COLAMD_ASSERT (cur_score <= n_col) ;
      COLAMD_ASSERT (cur_score >= COLAMD_EMPTY) ;
      if (prev_col == COLAMD_EMPTY)
      {
	head [cur_score] = next_col ;
      }
      else
      {
	Col [prev_col].shared4.degree_next = next_col ;
      }
      if (next_col != COLAMD_EMPTY)
      {
	Col [next_col].shared3.prev = prev_col ;
      }

      /* === Scan the column ========================================== */

      cp = &A [Col [col].start] ;
      cp_end = cp + Col [col].length ;
      while (cp < cp_end)
      {
	/* get a row */
	row = *cp++ ;
	row_mark = Row [row].shared2.mark ;
	/* skip if dead */
	if (ROW_IS_MARKED_DEAD (row_mark))
	{
	  continue ;
	}
	COLAMD_ASSERT (row != pivot_row) ;
	set_difference = row_mark - tag_mark ;
	/* check if the row has been seen yet */
	if (set_difference < 0)
	{
	  COLAMD_ASSERT (Row [row].shared1.degree <= max_deg) ;
	  set_difference = Row [row].shared1.degree ;
	}
	/* subtract column thickness from this row's set difference */
	set_difference -= col_thickness ;
	COLAMD_ASSERT (set_difference >= 0) ;
	/* absorb this row if the set difference becomes zero */
	if (set_difference == 0)
	{
	  COLAMD_DEBUG3 (("aggressive absorption. Row: %d\n", row)) ;
	  KILL_ROW (row) ;
	}
	else
	{
	  /* save the new mark */
	  Row [row].shared2.mark = set_difference + tag_mark ;
	}
      }
    }


    /* === Add up set differences for each column ======================= */

    COLAMD_DEBUG3 (("** Adding set differences phase. **\n")) ;

    /* for each column in pivot row */
    rp = &A [pivot_row_start] ;
    rp_end = rp + pivot_row_length ;
    while (rp < rp_end)
    {
      /* get a column */
      col = *rp++ ;
      COLAMD_ASSERT (COL_IS_ALIVE (col) && col != pivot_col) ;
      hash = 0 ;
      cur_score = 0 ;
      cp = &A [Col [col].start] ;
      /* compact the column */
      new_cp = cp ;
      cp_end = cp + Col [col].length ;

      COLAMD_DEBUG4 (("Adding set diffs for Col: %d.\n", col)) ;

      while (cp < cp_end)
      {
	/* get a row */
	row = *cp++ ;
	COLAMD_ASSERT(row >= 0 && row < n_row) ;
	row_mark = Row [row].shared2.mark ;
	/* skip if dead */
	if (ROW_IS_MARKED_DEAD (row_mark))
	{
	  continue ;
	}
	COLAMD_ASSERT (row_mark > tag_mark) ;
	/* compact the column */
	*new_cp++ = row ;
	/* compute hash function */
	hash += row ;
	/* add set difference */
	cur_score += row_mark - tag_mark ;
	/* integer overflow... */
	cur_score = numext::mini(cur_score, n_col) ;
      }

      /* recompute the column's length */
      Col [col].length = (IndexType) (new_cp - &A [Col [col].start]) ;

      /* === Further mass elimination ================================= */

      if (Col [col].length == 0)
      {
	COLAMD_DEBUG4 (("further mass elimination. Col: %d\n", col)) ;
	/* nothing left but the pivot row in this column */
	KILL_PRINCIPAL_COL (col) ;
	pivot_row_degree -= Col [col].shared1.thickness ;
	COLAMD_ASSERT (pivot_row_degree >= 0) ;
	/* order it */
	Col [col].shared2.order = k ;
	/* increment order count by column thickness */
	k += Col [col].shared1.thickness ;
      }
      else
      {
	/* === Prepare for supercolumn detection ==================== */

	COLAMD_DEBUG4 (("Preparing supercol detection for Col: %d.\n", col)) ;

	/* save score so far */
	Col [col].shared2.score = cur_score ;

	/* add column to hash table, for supercolumn detection */
	hash %= n_col + 1 ;

	COLAMD_DEBUG4 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
	COLAMD_ASSERT (hash <= n_col) ;

	head_column = head [hash] ;
	if (head_column > COLAMD_EMPTY)
	{
	  /* degree list "hash" is non-empty, use prev (shared3) of */
	  /* first column in degree list as head of hash bucket */
	  first_col = Col [head_column].shared3.headhash ;
	  Col [head_column].shared3.headhash = col ;
	}
	else
	{
	  /* degree list "hash" is empty, use head as hash bucket */
	  first_col = - (head_column + 2) ;
	  head [hash] = - (col + 2) ;
	}
	Col [col].shared4.hash_next = first_col ;

	/* save hash function in Col [col].shared3.hash */
	Col [col].shared3.hash = (IndexType) hash ;
	COLAMD_ASSERT (COL_IS_ALIVE (col)) ;
      }
    }

    /* The approximate external column degree is now computed.  */

    /* === Supercolumn detection ======================================== */

    COLAMD_DEBUG3 (("** Supercolumn detection phase. **\n")) ;

    Eigen::internal::detect_super_cols (Col, A, head, pivot_row_start, pivot_row_length) ;

    /* === Kill the pivotal column ====================================== */

    KILL_PRINCIPAL_COL (pivot_col) ;

    /* === Clear mark =================================================== */

    tag_mark += (max_deg + 1) ;
    if (tag_mark >= max_mark)
    {
      COLAMD_DEBUG2 (("clearing tag_mark\n")) ;
      tag_mark = Eigen::internal::clear_mark (n_row, Row) ;
    }

    /* === Finalize the new pivot row, and column scores ================ */

    COLAMD_DEBUG3 (("** Finalize scores phase. **\n")) ;

    /* for each column in pivot row */
    rp = &A [pivot_row_start] ;
    /* compact the pivot row */
    new_rp = rp ;
    rp_end = rp + pivot_row_length ;
    while (rp < rp_end)
    {
      col = *rp++ ;
      /* skip dead columns */
      if (COL_IS_DEAD (col))
      {
	continue ;
      }
      *new_rp++ = col ;
      /* add new pivot row to column */
      A [Col [col].start + (Col [col].length++)] = pivot_row ;

      /* retrieve score so far and add on pivot row's degree. */
      /* (we wait until here for this in case the pivot */
      /* row's degree was reduced due to mass elimination). */
      cur_score = Col [col].shared2.score + pivot_row_degree ;

      /* calculate the max possible score as the number of */
      /* external columns minus the 'k' value minus the */
      /* columns thickness */
      max_score = n_col - k - Col [col].shared1.thickness ;

      /* make the score the external degree of the union-of-rows */
      cur_score -= Col [col].shared1.thickness ;

      /* make sure score is less or equal than the max score */
      cur_score = numext::mini(cur_score, max_score) ;
      COLAMD_ASSERT (cur_score >= 0) ;

      /* store updated score */
      Col [col].shared2.score = cur_score ;

      /* === Place column back in degree list ========================= */

      COLAMD_ASSERT (min_score >= 0) ;
      COLAMD_ASSERT (min_score <= n_col) ;
      COLAMD_ASSERT (cur_score >= 0) ;
      COLAMD_ASSERT (cur_score <= n_col) ;
      COLAMD_ASSERT (head [cur_score] >= COLAMD_EMPTY) ;
      next_col = head [cur_score] ;
      Col [col].shared4.degree_next = next_col ;
      Col [col].shared3.prev = COLAMD_EMPTY ;
      if (next_col != COLAMD_EMPTY)
      {
	Col [next_col].shared3.prev = col ;
      }
      head [cur_score] = col ;

      /* see if this score is less than current min */
      min_score = numext::mini(min_score, cur_score) ;

    }

    /* === Resurrect the new pivot row ================================== */

    if (pivot_row_degree > 0)
    {
      /* update pivot row length to reflect any cols that were killed */
      /* during super-col detection and mass elimination */
      Row [pivot_row].start  = pivot_row_start ;
      Row [pivot_row].length = (IndexType) (new_rp - &A[pivot_row_start]) ;
      Row [pivot_row].shared1.degree = pivot_row_degree ;
      Row [pivot_row].shared2.mark = 0 ;
      /* pivot row is no longer dead */
    }
  }

  /* === All principal columns have now been ordered ====================== */

  return (ngarbage) ;
}


/* ========================================================================== */
/* === order_children ======================================================= */
/* ========================================================================== */

/*
  The find_ordering routine has ordered all of the principal columns (the
  representatives of the supercolumns).  The non-principal columns have not
  yet been ordered.  This routine orders those columns by walking up the
  parent tree (a column is a child of the column which absorbed it).  The
  final permutation vector is then placed in p [0 ... n_col-1], with p [0]
  being the first column, and p [n_col-1] being the last.  It doesn't look
  like it at first glance, but be assured that this routine takes time linear
  in the number of columns.  Although not immediately obvious, the time
  taken by this routine is O (n_col), that is, linear in the number of
  columns.  Not user-callable.
*/
template <typename IndexType>
static inline  void order_children
(
  /* === Parameters ======================================================= */

  IndexType n_col,      /* number of columns of A */
  colamd_col<IndexType> Col [],    /* of size n_col+1 */
  IndexType p []      /* p [0 ... n_col-1] is the column permutation*/
  )
{
  /* === Local variables ================================================== */

  IndexType i ;     /* loop counter for all columns */
  IndexType c ;     /* column index */
  IndexType parent ;    /* index of column's parent */
  IndexType order ;     /* column's order */

  /* === Order each non-principal column ================================== */

  for (i = 0 ; i < n_col ; i++)
  {
    /* find an un-ordered non-principal column */
    COLAMD_ASSERT (COL_IS_DEAD (i)) ;
    if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == COLAMD_EMPTY)
    {
      parent = i ;
      /* once found, find its principal parent */
      do
      {
	parent = Col [parent].shared1.parent ;
      } while (!COL_IS_DEAD_PRINCIPAL (parent)) ;

      /* now, order all un-ordered non-principal columns along path */
      /* to this parent.  collapse tree at the same time */
      c = i ;
      /* get order of parent */
      order = Col [parent].shared2.order ;

      do
      {
	COLAMD_ASSERT (Col [c].shared2.order == COLAMD_EMPTY) ;

	/* order this column */
	Col [c].shared2.order = order++ ;
	/* collaps tree */
	Col [c].shared1.parent = parent ;

	/* get immediate parent of this column */
	c = Col [c].shared1.parent ;

	/* continue until we hit an ordered column.  There are */
	/* guarranteed not to be anymore unordered columns */
	/* above an ordered column */
      } while (Col [c].shared2.order == COLAMD_EMPTY) ;

      /* re-order the super_col parent to largest order for this group */
      Col [parent].shared2.order = order ;
    }
  }

  /* === Generate the permutation ========================================= */

  for (c = 0 ; c < n_col ; c++)
  {
    p [Col [c].shared2.order] = c ;
  }
}


/* ========================================================================== */
/* === detect_super_cols ==================================================== */
/* ========================================================================== */

/*
  Detects supercolumns by finding matches between columns in the hash buckets.
  Check amongst columns in the set A [row_start ... row_start + row_length-1].
  The columns under consideration are currently *not* in the degree lists,
  and have already been placed in the hash buckets.

  The hash bucket for columns whose hash function is equal to h is stored
  as follows:

  if head [h] is >= 0, then head [h] contains a degree list, so:

  head [h] is the first column in degree bucket h.
  Col [head [h]].headhash gives the first column in hash bucket h.

  otherwise, the degree list is empty, and:

  -(head [h] + 2) is the first column in hash bucket h.

  For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
  column" pointer.  Col [c].shared3.hash is used instead as the hash number
  for that column.  The value of Col [c].shared4.hash_next is the next column
  in the same hash bucket.

  Assuming no, or "few" hash collisions, the time taken by this routine is
  linear in the sum of the sizes (lengths) of each column whose score has
  just been computed in the approximate degree computation.
  Not user-callable.
*/
template <typename IndexType>
static void detect_super_cols
(
  /* === Parameters ======================================================= */
  
  colamd_col<IndexType> Col [],    /* of size n_col+1 */
  IndexType A [],     /* row indices of A */
  IndexType head [],    /* head of degree lists and hash buckets */
  IndexType row_start,    /* pointer to set of columns to check */
  IndexType row_length    /* number of columns to check */
)
{
  /* === Local variables ================================================== */

  IndexType hash ;      /* hash value for a column */
  IndexType *rp ;     /* pointer to a row */
  IndexType c ;     /* a column index */
  IndexType super_c ;   /* column index of the column to absorb into */
  IndexType *cp1 ;      /* column pointer for column super_c */
  IndexType *cp2 ;      /* column pointer for column c */
  IndexType length ;    /* length of column super_c */
  IndexType prev_c ;    /* column preceding c in hash bucket */
  IndexType i ;     /* loop counter */
  IndexType *rp_end ;   /* pointer to the end of the row */
  IndexType col ;     /* a column index in the row to check */
  IndexType head_column ;   /* first column in hash bucket or degree list */
  IndexType first_col ;   /* first column in hash bucket */

  /* === Consider each column in the row ================================== */

  rp = &A [row_start] ;
  rp_end = rp + row_length ;
  while (rp < rp_end)
  {
    col = *rp++ ;
    if (COL_IS_DEAD (col))
    {
      continue ;
    }

    /* get hash number for this column */
    hash = Col [col].shared3.hash ;
    COLAMD_ASSERT (hash <= n_col) ;

    /* === Get the first column in this hash bucket ===================== */

    head_column = head [hash] ;
    if (head_column > COLAMD_EMPTY)
    {
      first_col = Col [head_column].shared3.headhash ;
    }
    else
    {
      first_col = - (head_column + 2) ;
    }

    /* === Consider each column in the hash bucket ====================== */

    for (super_c = first_col ; super_c != COLAMD_EMPTY ;
	 super_c = Col [super_c].shared4.hash_next)
    {
      COLAMD_ASSERT (COL_IS_ALIVE (super_c)) ;
      COLAMD_ASSERT (Col [super_c].shared3.hash == hash) ;
      length = Col [super_c].length ;

      /* prev_c is the column preceding column c in the hash bucket */
      prev_c = super_c ;

      /* === Compare super_c with all columns after it ================ */

      for (c = Col [super_c].shared4.hash_next ;
	   c != COLAMD_EMPTY ; c = Col [c].shared4.hash_next)
      {
	COLAMD_ASSERT (c != super_c) ;
	COLAMD_ASSERT (COL_IS_ALIVE (c)) ;
	COLAMD_ASSERT (Col [c].shared3.hash == hash) ;

	/* not identical if lengths or scores are different */
	if (Col [c].length != length ||
	    Col [c].shared2.score != Col [super_c].shared2.score)
	{
	  prev_c = c ;
	  continue ;
	}

	/* compare the two columns */
	cp1 = &A [Col [super_c].start] ;
	cp2 = &A [Col [c].start] ;

	for (i = 0 ; i < length ; i++)
	{
	  /* the columns are "clean" (no dead rows) */
	  COLAMD_ASSERT (ROW_IS_ALIVE (*cp1))  ;
	  COLAMD_ASSERT (ROW_IS_ALIVE (*cp2))  ;
	  /* row indices will same order for both supercols, */
	  /* no gather scatter nessasary */
	  if (*cp1++ != *cp2++)
	  {
	    break ;
	  }
	}

	/* the two columns are different if the for-loop "broke" */
	if (i != length)
	{
	  prev_c = c ;
	  continue ;
	}

	/* === Got it!  two columns are identical =================== */

	COLAMD_ASSERT (Col [c].shared2.score == Col [super_c].shared2.score) ;

	Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
	Col [c].shared1.parent = super_c ;
	KILL_NON_PRINCIPAL_COL (c) ;
	/* order c later, in order_children() */
	Col [c].shared2.order = COLAMD_EMPTY ;
	/* remove c from hash bucket */
	Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
      }
    }

    /* === Empty this hash bucket ======================================= */

    if (head_column > COLAMD_EMPTY)
    {
      /* corresponding degree list "hash" is not empty */
      Col [head_column].shared3.headhash = COLAMD_EMPTY ;
    }
    else
    {
      /* corresponding degree list "hash" is empty */
      head [hash] = COLAMD_EMPTY ;
    }
  }
}


/* ========================================================================== */
/* === garbage_collection =================================================== */
/* ========================================================================== */

/*
  Defragments and compacts columns and rows in the workspace A.  Used when
  all avaliable memory has been used while performing row merging.  Returns
  the index of the first free position in A, after garbage collection.  The
  time taken by this routine is linear is the size of the array A, which is
  itself linear in the number of nonzeros in the input matrix.
  Not user-callable.
*/
template <typename IndexType>
static IndexType garbage_collection  /* returns the new value of pfree */
  (
    /* === Parameters ======================================================= */
    
    IndexType n_row,      /* number of rows */
    IndexType n_col,      /* number of columns */
    Colamd_Row<IndexType> Row [],    /* row info */
    colamd_col<IndexType> Col [],    /* column info */
    IndexType A [],     /* A [0 ... Alen-1] holds the matrix */
    IndexType *pfree      /* &A [0] ... pfree is in use */
    )
{
  /* === Local variables ================================================== */

  IndexType *psrc ;     /* source pointer */
  IndexType *pdest ;    /* destination pointer */
  IndexType j ;     /* counter */
  IndexType r ;     /* a row index */
  IndexType c ;     /* a column index */
  IndexType length ;    /* length of a row or column */

  /* === Defragment the columns =========================================== */

  pdest = &A[0] ;
  for (c = 0 ; c < n_col ; c++)
  {
    if (COL_IS_ALIVE (c))
    {
      psrc = &A [Col [c].start] ;

      /* move and compact the column */
      COLAMD_ASSERT (pdest <= psrc) ;
      Col [c].start = (IndexType) (pdest - &A [0]) ;
      length = Col [c].length ;
      for (j = 0 ; j < length ; j++)
      {
	r = *psrc++ ;
	if (ROW_IS_ALIVE (r))
	{
	  *pdest++ = r ;
	}
      }
      Col [c].length = (IndexType) (pdest - &A [Col [c].start]) ;
    }
  }

  /* === Prepare to defragment the rows =================================== */

  for (r = 0 ; r < n_row ; r++)
  {
    if (ROW_IS_ALIVE (r))
    {
      if (Row [r].length == 0)
      {
	/* this row is of zero length.  cannot compact it, so kill it */
	COLAMD_DEBUG3 (("Defrag row kill\n")) ;
	KILL_ROW (r) ;
      }
      else
      {
	/* save first column index in Row [r].shared2.first_column */
	psrc = &A [Row [r].start] ;
	Row [r].shared2.first_column = *psrc ;
	COLAMD_ASSERT (ROW_IS_ALIVE (r)) ;
	/* flag the start of the row with the one's complement of row */
	*psrc = ONES_COMPLEMENT (r) ;

      }
    }
  }

  /* === Defragment the rows ============================================== */

  psrc = pdest ;
  while (psrc < pfree)
  {
    /* find a negative number ... the start of a row */
    if (*psrc++ < 0)
    {
      psrc-- ;
      /* get the row index */
      r = ONES_COMPLEMENT (*psrc) ;
      COLAMD_ASSERT (r >= 0 && r < n_row) ;
      /* restore first column index */
      *psrc = Row [r].shared2.first_column ;
      COLAMD_ASSERT (ROW_IS_ALIVE (r)) ;

      /* move and compact the row */
      COLAMD_ASSERT (pdest <= psrc) ;
      Row [r].start = (IndexType) (pdest - &A [0]) ;
      length = Row [r].length ;
      for (j = 0 ; j < length ; j++)
      {
	c = *psrc++ ;
	if (COL_IS_ALIVE (c))
	{
	  *pdest++ = c ;
	}
      }
      Row [r].length = (IndexType) (pdest - &A [Row [r].start]) ;

    }
  }
  /* ensure we found all the rows */
  COLAMD_ASSERT (debug_rows == 0) ;

  /* === Return the new value of pfree ==================================== */

  return ((IndexType) (pdest - &A [0])) ;
}


/* ========================================================================== */
/* === clear_mark =========================================================== */
/* ========================================================================== */

/*
  Clears the Row [].shared2.mark array, and returns the new tag_mark.
  Return value is the new tag_mark.  Not user-callable.
*/
template <typename IndexType>
static inline  IndexType clear_mark  /* return the new value for tag_mark */
  (
      /* === Parameters ======================================================= */

    IndexType n_row,    /* number of rows in A */
    Colamd_Row<IndexType> Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
    )
{
  /* === Local variables ================================================== */

  IndexType r ;

  for (r = 0 ; r < n_row ; r++)
  {
    if (ROW_IS_ALIVE (r))
    {
      Row [r].shared2.mark = 0 ;
    }
  }
  return (1) ;
}


} // namespace internal 
#endif