aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/QR/FullPivHouseholderQR.h
blob: 0b39966e145452d9f5649da8e31f3d6437bc5118 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H

namespace Eigen { 

namespace internal {

template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;

template<typename MatrixType>
struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
{
  typedef typename MatrixType::PlainObject ReturnType;
};

}

/** \ingroup QR_Module
  *
  * \class FullPivHouseholderQR
  *
  * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
  *
  * \param MatrixType the type of the matrix of which we are computing the QR decomposition
  *
  * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
  * such that 
  * \f[
  *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
  * \f]
  * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an 
  * upper triangular matrix.
  *
  * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
  * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
  *
  * \sa MatrixBase::fullPivHouseholderQr()
  */
template<typename _MatrixType> class FullPivHouseholderQR
{
  public:

    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
    typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
    typedef Matrix<Index, 1,
                   EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1,
                   EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
    typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
    typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
    typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;

    /** \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
      */
    FullPivHouseholderQR()
      : m_qr(),
        m_hCoeffs(),
        m_rows_transpositions(),
        m_cols_transpositions(),
        m_cols_permutation(),
        m_temp(),
        m_isInitialized(false),
        m_usePrescribedThreshold(false) {}

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa FullPivHouseholderQR()
      */
    FullPivHouseholderQR(Index rows, Index cols)
      : m_qr(rows, cols),
        m_hCoeffs((std::min)(rows,cols)),
        m_rows_transpositions((std::min)(rows,cols)),
        m_cols_transpositions((std::min)(rows,cols)),
        m_cols_permutation(cols),
        m_temp(cols),
        m_isInitialized(false),
        m_usePrescribedThreshold(false) {}

    /** \brief Constructs a QR factorization from a given matrix
      *
      * This constructor computes the QR factorization of the matrix \a matrix by calling
      * the method compute(). It is a short cut for:
      * 
      * \code
      * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
      * qr.compute(matrix);
      * \endcode
      * 
      * \sa compute()
      */
    FullPivHouseholderQR(const MatrixType& matrix)
      : m_qr(matrix.rows(), matrix.cols()),
        m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
        m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
        m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
        m_cols_permutation(matrix.cols()),
        m_temp(matrix.cols()),
        m_isInitialized(false),
        m_usePrescribedThreshold(false)
    {
      compute(matrix);
    }

    /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
      * \c *this is the QR decomposition.
      *
      * \param b the right-hand-side of the equation to solve.
      *
      * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
      * and an arbitrary solution otherwise.
      *
      * \note The case where b is a matrix is not yet implemented. Also, this
      *       code is space inefficient.
      *
      * \note_about_checking_solutions
      *
      * \note_about_arbitrary_choice_of_solution
      *
      * Example: \include FullPivHouseholderQR_solve.cpp
      * Output: \verbinclude FullPivHouseholderQR_solve.out
      */
    template<typename Rhs>
    inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
    }

    /** \returns Expression object representing the matrix Q
      */
    MatrixQReturnType matrixQ(void) const;

    /** \returns a reference to the matrix where the Householder QR decomposition is stored
      */
    const MatrixType& matrixQR() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return m_qr;
    }

    FullPivHouseholderQR& compute(const MatrixType& matrix);

    /** \returns a const reference to the column permutation matrix */
    const PermutationType& colsPermutation() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return m_cols_permutation;
    }

    /** \returns a const reference to the vector of indices representing the rows transpositions */
    const IntDiagSizeVectorType& rowsTranspositions() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return m_rows_transpositions;
    }

    /** \returns the absolute value of the determinant of the matrix of which
      * *this is the QR decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the QR decomposition has already been computed.
      *
      * \note This is only for square matrices.
      *
      * \warning a determinant can be very big or small, so for matrices
      * of large enough dimension, there is a risk of overflow/underflow.
      * One way to work around that is to use logAbsDeterminant() instead.
      *
      * \sa logAbsDeterminant(), MatrixBase::determinant()
      */
    typename MatrixType::RealScalar absDeterminant() const;

    /** \returns the natural log of the absolute value of the determinant of the matrix of which
      * *this is the QR decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the QR decomposition has already been computed.
      *
      * \note This is only for square matrices.
      *
      * \note This method is useful to work around the risk of overflow/underflow that's inherent
      * to determinant computation.
      *
      * \sa absDeterminant(), MatrixBase::determinant()
      */
    typename MatrixType::RealScalar logAbsDeterminant() const;

    /** \returns the rank of the matrix of which *this is the QR decomposition.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline Index rank() const
    {
      using std::abs;
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
      Index result = 0;
      for(Index i = 0; i < m_nonzero_pivots; ++i)
        result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
      return result;
    }

    /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline Index dimensionOfKernel() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return cols() - rank();
    }

    /** \returns true if the matrix of which *this is the QR decomposition represents an injective
      *          linear map, i.e. has trivial kernel; false otherwise.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline bool isInjective() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return rank() == cols();
    }

    /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
      *          linear map; false otherwise.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline bool isSurjective() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return rank() == rows();
    }

    /** \returns true if the matrix of which *this is the QR decomposition is invertible.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline bool isInvertible() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return isInjective() && isSurjective();
    }

    /** \returns the inverse of the matrix of which *this is the QR decomposition.
      *
      * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
      *       Use isInvertible() to first determine whether this matrix is invertible.
      */    inline const
    internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
    inverse() const
    {
      eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
      return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
               (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
    }

    inline Index rows() const { return m_qr.rows(); }
    inline Index cols() const { return m_qr.cols(); }
    
    /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
      * 
      * For advanced uses only.
      */
    const HCoeffsType& hCoeffs() const { return m_hCoeffs; }

    /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
      * who need to determine when pivots are to be considered nonzero. This is not used for the
      * QR decomposition itself.
      *
      * When it needs to get the threshold value, Eigen calls threshold(). By default, this
      * uses a formula to automatically determine a reasonable threshold.
      * Once you have called the present method setThreshold(const RealScalar&),
      * your value is used instead.
      *
      * \param threshold The new value to use as the threshold.
      *
      * A pivot will be considered nonzero if its absolute value is strictly greater than
      *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
      * where maxpivot is the biggest pivot.
      *
      * If you want to come back to the default behavior, call setThreshold(Default_t)
      */
    FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
    {
      m_usePrescribedThreshold = true;
      m_prescribedThreshold = threshold;
      return *this;
    }

    /** Allows to come back to the default behavior, letting Eigen use its default formula for
      * determining the threshold.
      *
      * You should pass the special object Eigen::Default as parameter here.
      * \code qr.setThreshold(Eigen::Default); \endcode
      *
      * See the documentation of setThreshold(const RealScalar&).
      */
    FullPivHouseholderQR& setThreshold(Default_t)
    {
      m_usePrescribedThreshold = false;
      return *this;
    }

    /** Returns the threshold that will be used by certain methods such as rank().
      *
      * See the documentation of setThreshold(const RealScalar&).
      */
    RealScalar threshold() const
    {
      eigen_assert(m_isInitialized || m_usePrescribedThreshold);
      return m_usePrescribedThreshold ? m_prescribedThreshold
      // this formula comes from experimenting (see "LU precision tuning" thread on the list)
      // and turns out to be identical to Higham's formula used already in LDLt.
                                      : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
    }

    /** \returns the number of nonzero pivots in the QR decomposition.
      * Here nonzero is meant in the exact sense, not in a fuzzy sense.
      * So that notion isn't really intrinsically interesting, but it is
      * still useful when implementing algorithms.
      *
      * \sa rank()
      */
    inline Index nonzeroPivots() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return m_nonzero_pivots;
    }

    /** \returns the absolute value of the biggest pivot, i.e. the biggest
      *          diagonal coefficient of U.
      */
    RealScalar maxPivot() const { return m_maxpivot; }

  protected:
    
    static void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    }
    
    MatrixType m_qr;
    HCoeffsType m_hCoeffs;
    IntDiagSizeVectorType m_rows_transpositions;
    IntDiagSizeVectorType m_cols_transpositions;
    PermutationType m_cols_permutation;
    RowVectorType m_temp;
    bool m_isInitialized, m_usePrescribedThreshold;
    RealScalar m_prescribedThreshold, m_maxpivot;
    Index m_nonzero_pivots;
    RealScalar m_precision;
    Index m_det_pq;
};

template<typename MatrixType>
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
{
  using std::abs;
  eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
  return abs(m_qr.diagonal().prod());
}

template<typename MatrixType>
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
{
  eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
  return m_qr.diagonal().cwiseAbs().array().log().sum();
}

/** Performs the QR factorization of the given matrix \a matrix. The result of
  * the factorization is stored into \c *this, and a reference to \c *this
  * is returned.
  *
  * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&)
  */
template<typename MatrixType>
FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{
  check_template_parameters();
  
  using std::abs;
  Index rows = matrix.rows();
  Index cols = matrix.cols();
  Index size = (std::min)(rows,cols);

  m_qr = matrix;
  m_hCoeffs.resize(size);

  m_temp.resize(cols);

  m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);

  m_rows_transpositions.resize(size);
  m_cols_transpositions.resize(size);
  Index number_of_transpositions = 0;

  RealScalar biggest(0);

  m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
  m_maxpivot = RealScalar(0);

  for (Index k = 0; k < size; ++k)
  {
    Index row_of_biggest_in_corner, col_of_biggest_in_corner;
    RealScalar biggest_in_corner;

    biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
                            .cwiseAbs()
                            .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
    row_of_biggest_in_corner += k;
    col_of_biggest_in_corner += k;
    if(k==0) biggest = biggest_in_corner;

    // if the corner is negligible, then we have less than full rank, and we can finish early
    if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
    {
      m_nonzero_pivots = k;
      for(Index i = k; i < size; i++)
      {
        m_rows_transpositions.coeffRef(i) = i;
        m_cols_transpositions.coeffRef(i) = i;
        m_hCoeffs.coeffRef(i) = Scalar(0);
      }
      break;
    }

    m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
    m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
    if(k != row_of_biggest_in_corner) {
      m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
      ++number_of_transpositions;
    }
    if(k != col_of_biggest_in_corner) {
      m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
      ++number_of_transpositions;
    }

    RealScalar beta;
    m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
    m_qr.coeffRef(k,k) = beta;

    // remember the maximum absolute value of diagonal coefficients
    if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);

    m_qr.bottomRightCorner(rows-k, cols-k-1)
        .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
  }

  m_cols_permutation.setIdentity(cols);
  for(Index k = 0; k < size; ++k)
    m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));

  m_det_pq = (number_of_transpositions%2) ? -1 : 1;
  m_isInitialized = true;

  return *this;
}

namespace internal {

template<typename _MatrixType, typename Rhs>
struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
  : solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
{
  EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    const Index rows = dec().rows(), cols = dec().cols();
    eigen_assert(rhs().rows() == rows);

    // FIXME introduce nonzeroPivots() and use it here. and more generally,
    // make the same improvements in this dec as in FullPivLU.
    if(dec().rank()==0)
    {
      dst.setZero();
      return;
    }

    typename Rhs::PlainObject c(rhs());

    Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
    for (Index k = 0; k < dec().rank(); ++k)
    {
      Index remainingSize = rows-k;
      c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
      c.bottomRightCorner(remainingSize, rhs().cols())
       .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
                                  dec().hCoeffs().coeff(k), &temp.coeffRef(0));
    }

    dec().matrixQR()
       .topLeftCorner(dec().rank(), dec().rank())
       .template triangularView<Upper>()
       .solveInPlace(c.topRows(dec().rank()));

    for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
    for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
  }
};

/** \ingroup QR_Module
  *
  * \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
  *
  * \tparam MatrixType type of underlying dense matrix
  */
template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
  : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
{
public:
  typedef typename MatrixType::Index Index;
  typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType;
  typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
  typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
                 MatrixType::MaxRowsAtCompileTime> WorkVectorType;

  FullPivHouseholderQRMatrixQReturnType(const MatrixType&       qr,
                                        const HCoeffsType&      hCoeffs,
                                        const IntDiagSizeVectorType& rowsTranspositions)
    : m_qr(qr),
      m_hCoeffs(hCoeffs),
      m_rowsTranspositions(rowsTranspositions)
      {}

  template <typename ResultType>
  void evalTo(ResultType& result) const
  {
    const Index rows = m_qr.rows();
    WorkVectorType workspace(rows);
    evalTo(result, workspace);
  }

  template <typename ResultType>
  void evalTo(ResultType& result, WorkVectorType& workspace) const
  {
    using numext::conj;
    // compute the product H'_0 H'_1 ... H'_n-1,
    // where H_k is the k-th Householder transformation I - h_k v_k v_k'
    // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
    const Index rows = m_qr.rows();
    const Index cols = m_qr.cols();
    const Index size = (std::min)(rows, cols);
    workspace.resize(rows);
    result.setIdentity(rows, rows);
    for (Index k = size-1; k >= 0; k--)
    {
      result.block(k, k, rows-k, rows-k)
            .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
      result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
    }
  }

    Index rows() const { return m_qr.rows(); }
    Index cols() const { return m_qr.rows(); }

protected:
  typename MatrixType::Nested m_qr;
  typename HCoeffsType::Nested m_hCoeffs;
  typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
};

} // end namespace internal

template<typename MatrixType>
inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
{
  eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
  return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
}

/** \return the full-pivoting Householder QR decomposition of \c *this.
  *
  * \sa class FullPivHouseholderQR
  */
template<typename Derived>
const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::fullPivHouseholderQr() const
{
  return FullPivHouseholderQR<PlainObject>(eval());
}

} // end namespace Eigen

#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H