aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/SVD/BDCSVD.h
blob: 25fca6f4d4565c54c102f20bdfc5d1a54ce51bab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
// 
// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
// research report written by Ming Gu and Stanley C.Eisenstat
// The code variable names correspond to the names they used in their 
// report
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
// Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2014-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_BDCSVD_H
#define EIGEN_BDCSVD_H
// #define EIGEN_BDCSVD_DEBUG_VERBOSE
// #define EIGEN_BDCSVD_SANITY_CHECKS

namespace Eigen {

#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
IOFormat bdcsvdfmt(8, 0, ", ", "\n", "  [", "]");
#endif
  
template<typename _MatrixType> class BDCSVD;

namespace internal {

template<typename _MatrixType> 
struct traits<BDCSVD<_MatrixType> >
{
  typedef _MatrixType MatrixType;
};  

} // end namespace internal
  
  
/** \ingroup SVD_Module
 *
 *
 * \class BDCSVD
 *
 * \brief class Bidiagonal Divide and Conquer SVD
 *
 * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
 *
 * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization,
 * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD.
 * You can control the switching size with the setSwitchSize() method, default is 16.
 * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly
 * recommended and can several order of magnitude faster.
 *
 * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations.
 * For instance, this concerns Intel's compiler (ICC), which perfroms such optimization by default unless
 * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will
 * significantly degrade the accuracy.
 *
 * \sa class JacobiSVD
 */
template<typename _MatrixType> 
class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
{
  typedef SVDBase<BDCSVD> Base;
    
public:
  using Base::rows;
  using Base::cols;
  using Base::computeU;
  using Base::computeV;
  
  typedef _MatrixType MatrixType;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime, 
    ColsAtCompileTime = MatrixType::ColsAtCompileTime, 
    DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime), 
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, 
    MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime), 
    MatrixOptions = MatrixType::Options
  };

  typedef typename Base::MatrixUType MatrixUType;
  typedef typename Base::MatrixVType MatrixVType;
  typedef typename Base::SingularValuesType SingularValuesType;
  
  typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX;
  typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr;
  typedef Matrix<RealScalar, Dynamic, 1> VectorType;
  typedef Array<RealScalar, Dynamic, 1> ArrayXr;
  typedef Array<Index,1,Dynamic> ArrayXi;
  typedef Ref<ArrayXr> ArrayRef;
  typedef Ref<ArrayXi> IndicesRef;

  /** \brief Default Constructor.
   *
   * The default constructor is useful in cases in which the user intends to
   * perform decompositions via BDCSVD::compute(const MatrixType&).
   */
  BDCSVD() : m_algoswap(16), m_numIters(0)
  {}


  /** \brief Default Constructor with memory preallocation
   *
   * Like the default constructor but with preallocation of the internal data
   * according to the specified problem size.
   * \sa BDCSVD()
   */
  BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
    : m_algoswap(16), m_numIters(0)
  {
    allocate(rows, cols, computationOptions);
  }

  /** \brief Constructor performing the decomposition of given matrix.
   *
   * \param matrix the matrix to decompose
   * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
   *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, 
   *                           #ComputeFullV, #ComputeThinV.
   *
   * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
   * available with the (non - default) FullPivHouseholderQR preconditioner.
   */
  BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
    : m_algoswap(16), m_numIters(0)
  {
    compute(matrix, computationOptions);
  }

  ~BDCSVD() 
  {
  }
  
  /** \brief Method performing the decomposition of given matrix using custom options.
   *
   * \param matrix the matrix to decompose
   * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
   *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, 
   *                           #ComputeFullV, #ComputeThinV.
   *
   * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
   * available with the (non - default) FullPivHouseholderQR preconditioner.
   */
  BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);

  /** \brief Method performing the decomposition of given matrix using current options.
   *
   * \param matrix the matrix to decompose
   *
   * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
   */
  BDCSVD& compute(const MatrixType& matrix)
  {
    return compute(matrix, this->m_computationOptions);
  }

  void setSwitchSize(int s) 
  {
    eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
    m_algoswap = s;
  }
 
private:
  void allocate(Index rows, Index cols, unsigned int computationOptions);
  void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
  void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
  void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
  void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat);
  void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V);
  void deflation43(Index firstCol, Index shift, Index i, Index size);
  void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
  void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
  template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
  void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
  void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
  static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);

protected:
  MatrixXr m_naiveU, m_naiveV;
  MatrixXr m_computed;
  Index m_nRec;
  ArrayXr m_workspace;
  ArrayXi m_workspaceI;
  int m_algoswap;
  bool m_isTranspose, m_compU, m_compV;
  
  using Base::m_singularValues;
  using Base::m_diagSize;
  using Base::m_computeFullU;
  using Base::m_computeFullV;
  using Base::m_computeThinU;
  using Base::m_computeThinV;
  using Base::m_matrixU;
  using Base::m_matrixV;
  using Base::m_isInitialized;
  using Base::m_nonzeroSingularValues;

public:  
  int m_numIters;
}; //end class BDCSVD


// Method to allocate and initialize matrix and attributes
template<typename MatrixType>
void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
  m_isTranspose = (cols > rows);

  if (Base::allocate(rows, cols, computationOptions))
    return;
  
  m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
  m_compU = computeV();
  m_compV = computeU();
  if (m_isTranspose)
    std::swap(m_compU, m_compV);
  
  if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
  else         m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
  
  if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
  
  m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3);
  m_workspaceI.resize(3*m_diagSize);
}// end allocate

template<typename MatrixType>
BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions) 
{
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "\n\n\n======================================================================================================================\n\n\n";
#endif
  allocate(matrix.rows(), matrix.cols(), computationOptions);
  using std::abs;

  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
  
  //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return
  if(matrix.cols() < m_algoswap)
  {
    // FIXME this line involves temporaries
    JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
    if(computeU()) m_matrixU = jsvd.matrixU();
    if(computeV()) m_matrixV = jsvd.matrixV();
    m_singularValues = jsvd.singularValues();
    m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
    m_isInitialized = true;
    return *this;
  }
  
  //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
  RealScalar scale = matrix.cwiseAbs().maxCoeff();
  if(scale==RealScalar(0)) scale = RealScalar(1);
  MatrixX copy;
  if (m_isTranspose) copy = matrix.adjoint()/scale;
  else               copy = matrix/scale;
  
  //**** step 1 - Bidiagonalization
  // FIXME this line involves temporaries
  internal::UpperBidiagonalization<MatrixX> bid(copy);

  //**** step 2 - Divide & Conquer
  m_naiveU.setZero();
  m_naiveV.setZero();
  // FIXME this line involves a temporary matrix
  m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
  m_computed.template bottomRows<1>().setZero();
  divide(0, m_diagSize - 1, 0, 0, 0);

  //**** step 3 - Copy singular values and vectors
  for (int i=0; i<m_diagSize; i++)
  {
    RealScalar a = abs(m_computed.coeff(i, i));
    m_singularValues.coeffRef(i) = a * scale;
    if (a<considerZero)
    {
      m_nonzeroSingularValues = i;
      m_singularValues.tail(m_diagSize - i - 1).setZero();
      break;
    }
    else if (i == m_diagSize - 1)
    {
      m_nonzeroSingularValues = i + 1;
      break;
    }
  }

#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
//   std::cout << "m_naiveU\n" << m_naiveU << "\n\n";
//   std::cout << "m_naiveV\n" << m_naiveV << "\n\n";
#endif
  if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
  else              copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);

  m_isInitialized = true;
  return *this;
}// end compute


template<typename MatrixType>
template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
{
  // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
  if (computeU())
  {
    Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
    m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
    m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
    householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
  }
  if (computeV())
  {
    Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
    m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
    m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
    householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
  }
}

/** \internal
  * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as:
  *  A = [A1]
  *      [A2]
  * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros.
  * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large
  * enough.
  */
template<typename MatrixType>
void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
{
  Index n = A.rows();
  if(n>100)
  {
    // If the matrices are large enough, let's exploit the sparse structure of A by
    // splitting it in half (wrt n1), and packing the non-zero columns.
    Index n2 = n - n1;
    Map<MatrixXr> A1(m_workspace.data()      , n1, n);
    Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n);
    Map<MatrixXr> B1(m_workspace.data()+  n*n, n,  n);
    Map<MatrixXr> B2(m_workspace.data()+2*n*n, n,  n);
    Index k1=0, k2=0;
    for(Index j=0; j<n; ++j)
    {
      if( (A.col(j).head(n1).array()!=0).any() )
      {
        A1.col(k1) = A.col(j).head(n1);
        B1.row(k1) = B.row(j);
        ++k1;
      }
      if( (A.col(j).tail(n2).array()!=0).any() )
      {
        A2.col(k2) = A.col(j).tail(n2);
        B2.row(k2) = B.row(j);
        ++k2;
      }
    }
  
    A.topRows(n1).noalias()    = A1.leftCols(k1) * B1.topRows(k1);
    A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
  }
  else
  {
    Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n);
    tmp.noalias() = A*B;
    A = tmp;
  }
}

// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the 
// place of the submatrix we are currently working on.

//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; 
// lastCol + 1 - firstCol is the size of the submatrix.
//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
//@param firstRowW : Same as firstRowW with the column.
//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix 
// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
template<typename MatrixType>
void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift)
{
  // requires rows = cols + 1;
  using std::pow;
  using std::sqrt;
  using std::abs;
  const Index n = lastCol - firstCol + 1;
  const Index k = n/2;
  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
  RealScalar alphaK;
  RealScalar betaK; 
  RealScalar r0; 
  RealScalar lambda, phi, c0, s0;
  VectorType l, f;
  // We use the other algorithm which is more efficient for small 
  // matrices.
  if (n < m_algoswap)
  {
    // FIXME this line involves temporaries
    JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
    if (m_compU)
      m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
    else 
    {
      m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
      m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
    }
    if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
    m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
    m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
    return;
  }
  // We use the divide and conquer algorithm
  alphaK =  m_computed(firstCol + k, firstCol + k);
  betaK = m_computed(firstCol + k + 1, firstCol + k);
  // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
  // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the 
  // right submatrix before the left one. 
  divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
  divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);

  if (m_compU)
  {
    lambda = m_naiveU(firstCol + k, firstCol + k);
    phi = m_naiveU(firstCol + k + 1, lastCol + 1);
  } 
  else 
  {
    lambda = m_naiveU(1, firstCol + k);
    phi = m_naiveU(0, lastCol + 1);
  }
  r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
  if (m_compU)
  {
    l = m_naiveU.row(firstCol + k).segment(firstCol, k);
    f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
  } 
  else 
  {
    l = m_naiveU.row(1).segment(firstCol, k);
    f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
  }
  if (m_compV) m_naiveV(firstRowW+k, firstColW) = 1;
  if (r0<considerZero)
  {
    c0 = 1;
    s0 = 0;
  }
  else
  {
    c0 = alphaK * lambda / r0;
    s0 = betaK * phi / r0;
  }
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
  
  if (m_compU)
  {
    MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));     
    // we shiftW Q1 to the right
    for (Index i = firstCol + k - 1; i >= firstCol; i--) 
      m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
    // we shift q1 at the left with a factor c0
    m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
    // last column = q1 * - s0
    m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
    // first column = q2 * s0
    m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0; 
    // q2 *= c0
    m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
  } 
  else 
  {
    RealScalar q1 = m_naiveU(0, firstCol + k);
    // we shift Q1 to the right
    for (Index i = firstCol + k - 1; i >= firstCol; i--) 
      m_naiveU(0, i + 1) = m_naiveU(0, i);
    // we shift q1 at the left with a factor c0
    m_naiveU(0, firstCol) = (q1 * c0);
    // last column = q1 * - s0
    m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
    // first column = q2 * s0
    m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; 
    // q2 *= c0
    m_naiveU(1, lastCol + 1) *= c0;
    m_naiveU.row(1).segment(firstCol + 1, k).setZero();
    m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
  }
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
  
  m_computed(firstCol + shift, firstCol + shift) = r0;
  m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
  m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();

#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
#endif
  // Second part: try to deflate singular values in combined matrix
  deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
  std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
  std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
  std::cout << "err:      " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
  static int count = 0;
  std::cout << "# " << ++count << "\n\n";
  assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
//   assert(count<681);
//   assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all());
#endif
  
  // Third part: compute SVD of combined matrix
  MatrixXr UofSVD, VofSVD;
  VectorType singVals;
  computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(UofSVD.allFinite());
  assert(VofSVD.allFinite());
#endif
  
  if (m_compU)
    structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
  else
  {
    Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1);
    tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD;
    m_naiveU.middleCols(firstCol, n + 1) = tmp;
  }
  
  if (m_compV)  structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
  
  m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
  m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
}// end divide

// Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
// the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
// order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
// that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
//
// TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
// handling of round-off errors, be consistent in ordering
// For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
template <typename MatrixType>
void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
{
  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
  using std::abs;
  ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
  m_workspace.head(n) =  m_computed.block(firstCol, firstCol, n, n).diagonal();
  ArrayRef diag = m_workspace.head(n);
  diag(0) = 0;

  // Allocate space for singular values and vectors
  singVals.resize(n);
  U.resize(n+1, n+1);
  if (m_compV) V.resize(n, n);

#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  if (col0.hasNaN() || diag.hasNaN())
    std::cout << "\n\nHAS NAN\n\n";
#endif
  
  // Many singular values might have been deflated, the zero ones have been moved to the end,
  // but others are interleaved and we must ignore them at this stage.
  // To this end, let's compute a permutation skipping them:
  Index actual_n = n;
  while(actual_n>1 && diag(actual_n-1)==0) --actual_n;
  Index m = 0; // size of the deflated problem
  for(Index k=0;k<actual_n;++k)
    if(abs(col0(k))>considerZero)
      m_workspaceI(m++) = k;
  Map<ArrayXi> perm(m_workspaceI.data(),m);
  
  Map<ArrayXr> shifts(m_workspace.data()+1*n, n);
  Map<ArrayXr> mus(m_workspace.data()+2*n, n);
  Map<ArrayXr> zhat(m_workspace.data()+3*n, n);

#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "computeSVDofM using:\n";
  std::cout << "  z: " << col0.transpose() << "\n";
  std::cout << "  d: " << diag.transpose() << "\n";
#endif
  
  // Compute singVals, shifts, and mus
  computeSingVals(col0, diag, perm, singVals, shifts, mus);
  
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "  j:        " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
  std::cout << "  sing-val: " << singVals.transpose() << "\n";
  std::cout << "  mu:       " << mus.transpose() << "\n";
  std::cout << "  shift:    " << shifts.transpose() << "\n";
  
  {
    Index actual_n = n;
    while(actual_n>1 && abs(col0(actual_n-1))<considerZero) --actual_n;
    std::cout << "\n\n    mus:    " << mus.head(actual_n).transpose() << "\n\n";
    std::cout << "    check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
    std::cout << "    check2 (>0)      : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
    std::cout << "    check3 (>0)      : " << ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n";
    std::cout << "    check4 (>0)      : " << ((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).transpose() << "\n\n\n";
  }
#endif
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(singVals.allFinite());
  assert(mus.allFinite());
  assert(shifts.allFinite());
#endif
  
  // Compute zhat
  perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "  zhat: " << zhat.transpose() << "\n";
#endif
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(zhat.allFinite());
#endif
  
  computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
  
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
  std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n";
#endif
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(U.allFinite());
  assert(V.allFinite());
  assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 1e-14 * n);
  assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 1e-14 * n);
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
  
  // Because of deflation, the singular values might not be completely sorted.
  // Fortunately, reordering them is a O(n) problem
  for(Index i=0; i<actual_n-1; ++i)
  {
    if(singVals(i)>singVals(i+1))
    {
      using std::swap;
      swap(singVals(i),singVals(i+1));
      U.col(i).swap(U.col(i+1));
      if(m_compV) V.col(i).swap(V.col(i+1));
    }
  }
  
  // Reverse order so that singular values in increased order
  // Because of deflation, the zeros singular-values are already at the end
  singVals.head(actual_n).reverseInPlace();
  U.leftCols(actual_n).rowwise().reverseInPlace();
  if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace();
  
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
  std::cout << "  * j:        " << jsvd.singularValues().transpose() << "\n\n";
  std::cout << "  * sing-val: " << singVals.transpose() << "\n";
//   std::cout << "  * err:      " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n";
#endif
}

template <typename MatrixType>
typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
{
  Index m = perm.size();
  RealScalar res = 1;
  for(Index i=0; i<m; ++i)
  {
    Index j = perm(i);
    res += numext::abs2(col0(j)) / ((diagShifted(j) - mu) * (diag(j) + shift + mu));
  }
  return res;

}

template <typename MatrixType>
void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
                                         VectorType& singVals, ArrayRef shifts, ArrayRef mus)
{
  using std::abs;
  using std::swap;

  Index n = col0.size();
  Index actual_n = n;
  while(actual_n>1 && col0(actual_n-1)==0) --actual_n;

  for (Index k = 0; k < n; ++k)
  {
    if (col0(k) == 0 || actual_n==1)
    {
      // if col0(k) == 0, then entry is deflated, so singular value is on diagonal
      // if actual_n==1, then the deflated problem is already diagonalized
      singVals(k) = k==0 ? col0(0) : diag(k);
      mus(k) = 0;
      shifts(k) = k==0 ? col0(0) : diag(k);
      continue;
    } 

    // otherwise, use secular equation to find singular value
    RealScalar left = diag(k);
    RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm());
    if(k==actual_n-1)
      right = (diag(actual_n-1) + col0.matrix().norm());
    else
    {
      // Skip deflated singular values
      Index l = k+1;
      while(col0(l)==0) { ++l; eigen_internal_assert(l<actual_n); }
      right = diag(l);
    }

    // first decide whether it's closer to the left end or the right end
    RealScalar mid = left + (right-left) / 2;
    RealScalar fMid = secularEq(mid, col0, diag, perm, diag, 0);
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    std::cout << right-left << "\n";
    std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, diag-left, left) << " " << secularEq(mid-right, col0, diag, perm, diag-right, right)   << "\n";
    std::cout << "     = " << secularEq(0.1*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.2*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.3*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.4*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.49*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.5*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.51*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.6*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.7*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.8*(left+right), col0, diag, perm, diag, 0)
              << " "       << secularEq(0.9*(left+right), col0, diag, perm, diag, 0) << "\n";
#endif
    RealScalar shift = (k == actual_n-1 || fMid > 0) ? left : right;
    
    // measure everything relative to shift
    Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
    diagShifted = diag - shift;
    
    // initial guess
    RealScalar muPrev, muCur;
    if (shift == left)
    {
      muPrev = (right - left) * RealScalar(0.1);
      if (k == actual_n-1) muCur = right - left;
      else                 muCur = (right - left) * RealScalar(0.5);
    }
    else
    {
      muPrev = -(right - left) * RealScalar(0.1);
      muCur = -(right - left) * RealScalar(0.5);
    }

    RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
    RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
    if (abs(fPrev) < abs(fCur))
    {
      swap(fPrev, fCur);
      swap(muPrev, muCur);
    }

    // rational interpolation: fit a function of the form a / mu + b through the two previous
    // iterates and use its zero to compute the next iterate
    bool useBisection = fPrev*fCur>0;
    while (fCur!=0 && abs(muCur - muPrev) > 8 * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
    {
      ++m_numIters;

      // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
      RealScalar a = (fCur - fPrev) / (1/muCur - 1/muPrev);
      RealScalar b = fCur - a / muCur;
      // And find mu such that f(mu)==0:
      RealScalar muZero = -a/b;
      RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
      
      muPrev = muCur;
      fPrev = fCur;
      muCur = muZero;
      fCur = fZero;
      
      
      if (shift == left  && (muCur < 0 || muCur > right - left)) useBisection = true;
      if (shift == right && (muCur < -(right - left) || muCur > 0)) useBisection = true;
      if (abs(fCur)>abs(fPrev)) useBisection = true;
    }

    // fall back on bisection method if rational interpolation did not work
    if (useBisection)
    {
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
      std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
#endif
      RealScalar leftShifted, rightShifted;
      if (shift == left)
      {
        leftShifted = (std::numeric_limits<RealScalar>::min)();
        // I don't understand why the case k==0 would be special there:
        // if (k == 0) rightShifted = right - left; else 
        rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.6)); // theoretically we can take 0.5, but let's be safe
      }
      else
      {
        leftShifted = -(right - left) * RealScalar(0.6);
        rightShifted = -(std::numeric_limits<RealScalar>::min)();
      }
      
      RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);

#if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_DEBUG_VERBOSE
      RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
#endif

#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
      if(!(fLeft * fRight<0))
      {
        std::cout << "fLeft: " << leftShifted << " - " << diagShifted.head(10).transpose()  << "\n ; " << bool(left==shift) << " " << (left-shift) << "\n";
        std::cout << k << " : " <<  fLeft << " * " << fRight << " == " << fLeft * fRight << "  ;  " << left << " - " << right << " -> " <<  leftShifted << " " << rightShifted << "   shift=" << shift << "\n";
      }
#endif
      eigen_internal_assert(fLeft * fRight < 0);
      
      while (rightShifted - leftShifted > 2 * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
      {
        RealScalar midShifted = (leftShifted + rightShifted) / 2;
        fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
        if (fLeft * fMid < 0)
        {
          rightShifted = midShifted;
        }
        else
        {
          leftShifted = midShifted;
          fLeft = fMid;
        }
      }

      muCur = (leftShifted + rightShifted) / 2;
    }
      
    singVals[k] = shift + muCur;
    shifts[k] = shift;
    mus[k] = muCur;

    // perturb singular value slightly if it equals diagonal entry to avoid division by zero later
    // (deflation is supposed to avoid this from happening)
    // - this does no seem to be necessary anymore -
//     if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon();
//     if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon();
  }
}


// zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
template <typename MatrixType>
void BDCSVD<MatrixType>::perturbCol0
   (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
    const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
{
  using std::sqrt;
  Index n = col0.size();
  Index m = perm.size();
  if(m==0)
  {
    zhat.setZero();
    return;
  }
  Index last = perm(m-1);
  // The offset permits to skip deflated entries while computing zhat
  for (Index k = 0; k < n; ++k)
  {
    if (col0(k) == 0) // deflated
      zhat(k) = 0;
    else
    {
      // see equation (3.6)
      RealScalar dk = diag(k);
      RealScalar prod = (singVals(last) + dk) * (mus(last) + (shifts(last) - dk));

      for(Index l = 0; l<m; ++l)
      {
        Index i = perm(l);
        if(i!=k)
        {
          Index j = i<k ? i : perm(l-1);
          prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
          if(i!=k && std::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
            std::cout << "     " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
                       << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
#endif
        }
      }
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
      std::cout << "zhat(" << k << ") =  sqrt( " << prod << ")  ;  " << (singVals(last) + dk) << " * " << mus(last) + shifts(last) << " - " << dk << "\n";
#endif
      RealScalar tmp = sqrt(prod);
      zhat(k) = col0(k) > 0 ? tmp : -tmp;
    }
  }
}

// compute singular vectors
template <typename MatrixType>
void BDCSVD<MatrixType>::computeSingVecs
   (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
    const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
{
  Index n = zhat.size();
  Index m = perm.size();
  
  for (Index k = 0; k < n; ++k)
  {
    if (zhat(k) == 0)
    {
      U.col(k) = VectorType::Unit(n+1, k);
      if (m_compV) V.col(k) = VectorType::Unit(n, k);
    }
    else
    {
      U.col(k).setZero();
      for(Index l=0;l<m;++l)
      {
        Index i = perm(l);
        U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
      }
      U(n,k) = 0;      
      U.col(k).normalize();
    
      if (m_compV)
      {
        V.col(k).setZero();
        for(Index l=1;l<m;++l)
        {
          Index i = perm(l);
          V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
        }
        V(0,k) = -1;
        V.col(k).normalize();
      }
    }
  }
  U.col(n) = VectorType::Unit(n+1, n);
}


// page 12_13
// i >= 1, di almost null and zi non null.
// We use a rotation to zero out zi applied to the left of M
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size)
{
  using std::abs;
  using std::sqrt;
  using std::pow;
  Index start = firstCol + shift;
  RealScalar c = m_computed(start, start);
  RealScalar s = m_computed(start+i, start);
  RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
  if (r == 0)
  {
    m_computed(start+i, start+i) = 0;
    return;
  }
  m_computed(start,start) = r;  
  m_computed(start+i, start) = 0;
  m_computed(start+i, start+i) = 0;
  
  JacobiRotation<RealScalar> J(c/r,-s/r);
  if (m_compU)  m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
  else          m_naiveU.applyOnTheRight(firstCol, firstCol+i, J);
}// end deflation 43


// page 13
// i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
// We apply two rotations to have zj = 0;
// TODO deflation44 is still broken and not properly tested
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
{
  using std::abs;
  using std::sqrt;
  using std::conj;
  using std::pow;
  RealScalar c = m_computed(firstColm+i, firstColm);
  RealScalar s = m_computed(firstColm+j, firstColm);
  RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
    << m_computed(firstColm + i-1, firstColm)  << " "
    << m_computed(firstColm + i, firstColm)  << " "
    << m_computed(firstColm + i+1, firstColm) << " "
    << m_computed(firstColm + i+2, firstColm) << "\n";
  std::cout << m_computed(firstColm + i-1, firstColm + i-1)  << " "
    << m_computed(firstColm + i, firstColm+i)  << " "
    << m_computed(firstColm + i+1, firstColm+i+1) << " "
    << m_computed(firstColm + i+2, firstColm+i+2) << "\n";
#endif
  if (r==0)
  {
    m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
    return;
  }
  c/=r;
  s/=r;
  m_computed(firstColm + i, firstColm) = r;  
  m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
  m_computed(firstColm + j, firstColm) = 0;

  JacobiRotation<RealScalar> J(c,-s);
  if (m_compU)  m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
  else          m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
  if (m_compV)  m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
}// end deflation 44


// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
{
  using std::sqrt;
  using std::abs;
  const Index length = lastCol + 1 - firstCol;
  
  Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
  Diagonal<MatrixXr> fulldiag(m_computed);
  VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
  
  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
  RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
  RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
  RealScalar epsilon_coarse = 8 * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif

#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE  
  std::cout << "\ndeflate:" << diag.head(k+1).transpose() << "  |  " << diag.segment(k+1,length-k-1).transpose() << "\n";
#endif
  
  //condition 4.1
  if (diag(0) < epsilon_coarse)
  { 
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
    std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
#endif
    diag(0) = epsilon_coarse;
  }

  //condition 4.2
  for (Index i=1;i<length;++i)
    if (abs(col0(i)) < epsilon_strict)
    {
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
      std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << "  (diag(" << i << ")=" << diag(i) << ")\n";
#endif
      col0(i) = 0;
    }

  //condition 4.3
  for (Index i=1;i<length; i++)
    if (diag(i) < epsilon_coarse)
    {
#ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
      std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
#endif
      deflation43(firstCol, shift, i, length);
    }

#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "to be sorted: " << diag.transpose() << "\n\n";
#endif
  {
    // Check for total deflation
    // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
    bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
    
    // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
    // First, compute the respective permutation.
    Index *permutation = m_workspaceI.data();
    {
      permutation[0] = 0;
      Index p = 1;
      
      // Move deflated diagonal entries at the end.
      for(Index i=1; i<length; ++i)
        if(abs(diag(i))<considerZero)
          permutation[p++] = i;
        
      Index i=1, j=k+1;
      for( ; p < length; ++p)
      {
             if (i > k)             permutation[p] = j++;
        else if (j >= length)       permutation[p] = i++;
        else if (diag(i) < diag(j)) permutation[p] = j++;
        else                        permutation[p] = i++;
      }
    }
    
    // If we have a total deflation, then we have to insert diag(0) at the right place
    if(total_deflation)
    {
      for(Index i=1; i<length; ++i)
      {
        Index pi = permutation[i];
        if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
          permutation[i-1] = permutation[i];
        else
        {
          permutation[i-1] = 0;
          break;
        }
      }
    }
    
    // Current index of each col, and current column of each index
    Index *realInd = m_workspaceI.data()+length;
    Index *realCol = m_workspaceI.data()+2*length;
    
    for(int pos = 0; pos< length; pos++)
    {
      realCol[pos] = pos;
      realInd[pos] = pos;
    }
    
    for(Index i = total_deflation?0:1; i < length; i++)
    {
      const Index pi = permutation[length - (total_deflation ? i+1 : i)];
      const Index J = realCol[pi];
      
      using std::swap;
      // swap diagonal and first column entries:
      swap(diag(i), diag(J));
      if(i!=0 && J!=0) swap(col0(i), col0(J));

      // change columns
      if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
      else         m_naiveU.col(firstCol+i).segment(0, 2)                .swap(m_naiveU.col(firstCol+J).segment(0, 2));
      if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));

      //update real pos
      const Index realI = realInd[i];
      realCol[realI] = J;
      realCol[pi] = i;
      realInd[J] = realI;
      realInd[i] = pi;
    }
  }
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
  std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
  std::cout << "      : " << col0.transpose() << "\n\n";
#endif
    
  //condition 4.4
  {
    Index i = length-1;
    while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
    for(; i>1;--i)
       if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
      {
#ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
        std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*diag(i) << "\n";
#endif
        eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
        deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
      }
  }
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  for(Index j=2;j<length;++j)
    assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
#endif
  
#ifdef EIGEN_BDCSVD_SANITY_CHECKS
  assert(m_naiveU.allFinite());
  assert(m_naiveV.allFinite());
  assert(m_computed.allFinite());
#endif
}//end deflation

#ifndef __CUDACC__
/** \svd_module
  *
  * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm
  *
  * \sa class BDCSVD
  */
template<typename Derived>
BDCSVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
{
  return BDCSVD<PlainObject>(*this, computationOptions);
}
#endif

} // end namespace Eigen

#endif