aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h
blob: 72e1740c1938f9dc9e744624120d95658181ca38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

/*
NOTE: these functions have been adapted from the LDL library:

LDL Copyright (c) 2005 by Timothy A. Davis.  All Rights Reserved.

The author of LDL, Timothy A. Davis., has executed a license with Google LLC
to permit distribution of this code and derivative works as part of Eigen under
the Mozilla Public License v. 2.0, as stated at the top of this file.
 */

#ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
#define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H

namespace Eigen {

template<typename Derived>
void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT)
{
  const StorageIndex size = StorageIndex(ap.rows());
  m_matrix.resize(size, size);
  m_parent.resize(size);
  m_nonZerosPerCol.resize(size);

  ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0);

  for(StorageIndex k = 0; k < size; ++k)
  {
    /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
    m_parent[k] = -1;             /* parent of k is not yet known */
    tags[k] = k;                  /* mark node k as visited */
    m_nonZerosPerCol[k] = 0;      /* count of nonzeros in column k of L */
    for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
    {
      StorageIndex i = it.index();
      if(i < k)
      {
        /* follow path from i to root of etree, stop at flagged node */
        for(; tags[i] != k; i = m_parent[i])
        {
          /* find parent of i if not yet determined */
          if (m_parent[i] == -1)
            m_parent[i] = k;
          m_nonZerosPerCol[i]++;        /* L (k,i) is nonzero */
          tags[i] = k;                  /* mark i as visited */
        }
      }
    }
  }

  /* construct Lp index array from m_nonZerosPerCol column counts */
  StorageIndex* Lp = m_matrix.outerIndexPtr();
  Lp[0] = 0;
  for(StorageIndex k = 0; k < size; ++k)
    Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1);

  m_matrix.resizeNonZeros(Lp[size]);

  m_isInitialized     = true;
  m_info              = Success;
  m_analysisIsOk      = true;
  m_factorizationIsOk = false;
}


template<typename Derived>
template<bool DoLDLT>
void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap)
{
  using std::sqrt;

  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
  eigen_assert(ap.rows()==ap.cols());
  eigen_assert(m_parent.size()==ap.rows());
  eigen_assert(m_nonZerosPerCol.size()==ap.rows());

  const StorageIndex size = StorageIndex(ap.rows());
  const StorageIndex* Lp = m_matrix.outerIndexPtr();
  StorageIndex* Li = m_matrix.innerIndexPtr();
  Scalar* Lx = m_matrix.valuePtr();

  ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0);
  ei_declare_aligned_stack_constructed_variable(StorageIndex,  pattern, size, 0);
  ei_declare_aligned_stack_constructed_variable(StorageIndex,  tags, size, 0);

  bool ok = true;
  m_diag.resize(DoLDLT ? size : 0);

  for(StorageIndex k = 0; k < size; ++k)
  {
    // compute nonzero pattern of kth row of L, in topological order
    y[k] = Scalar(0);                     // Y(0:k) is now all zero
    StorageIndex top = size;               // stack for pattern is empty
    tags[k] = k;                    // mark node k as visited
    m_nonZerosPerCol[k] = 0;        // count of nonzeros in column k of L
    for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
    {
      StorageIndex i = it.index();
      if(i <= k)
      {
        y[i] += numext::conj(it.value());            /* scatter A(i,k) into Y (sum duplicates) */
        Index len;
        for(len = 0; tags[i] != k; i = m_parent[i])
        {
          pattern[len++] = i;     /* L(k,i) is nonzero */
          tags[i] = k;            /* mark i as visited */
        }
        while(len > 0)
          pattern[--top] = pattern[--len];
      }
    }

    /* compute numerical values kth row of L (a sparse triangular solve) */

    RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset;    // get D(k,k), apply the shift function, and clear Y(k)
    y[k] = Scalar(0);
    for(; top < size; ++top)
    {
      Index i = pattern[top];       /* pattern[top:n-1] is pattern of L(:,k) */
      Scalar yi = y[i];             /* get and clear Y(i) */
      y[i] = Scalar(0);

      /* the nonzero entry L(k,i) */
      Scalar l_ki;
      if(DoLDLT)
        l_ki = yi / numext::real(m_diag[i]);
      else
        yi = l_ki = yi / Lx[Lp[i]];

      Index p2 = Lp[i] + m_nonZerosPerCol[i];
      Index p;
      for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p)
        y[Li[p]] -= numext::conj(Lx[p]) * yi;
      d -= numext::real(l_ki * numext::conj(yi));
      Li[p] = k;                          /* store L(k,i) in column form of L */
      Lx[p] = l_ki;
      ++m_nonZerosPerCol[i];              /* increment count of nonzeros in col i */
    }
    if(DoLDLT)
    {
      m_diag[k] = d;
      if(d == RealScalar(0))
      {
        ok = false;                         /* failure, D(k,k) is zero */
        break;
      }
    }
    else
    {
      Index p = Lp[k] + m_nonZerosPerCol[k]++;
      Li[p] = k ;                /* store L(k,k) = sqrt (d) in column k */
      if(d <= RealScalar(0)) {
        ok = false;              /* failure, matrix is not positive definite */
        break;
      }
      Lx[p] = sqrt(d) ;
    }
  }

  m_info = ok ? Success : NumericalIssue;
  m_factorizationIsOk = true;
}

} // end namespace Eigen

#endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H