aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/SparseCore/CompressedStorage.h
blob: d89fa0dae47655ebea39339e75af54fa9717984a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_COMPRESSED_STORAGE_H
#define EIGEN_COMPRESSED_STORAGE_H

namespace Eigen { 

namespace internal {

/** \internal
  * Stores a sparse set of values as a list of values and a list of indices.
  *
  */
template<typename _Scalar,typename _StorageIndex>
class CompressedStorage
{
  public:

    typedef _Scalar Scalar;
    typedef _StorageIndex StorageIndex;

  protected:

    typedef typename NumTraits<Scalar>::Real RealScalar;

  public:

    CompressedStorage()
      : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
    {}

    explicit CompressedStorage(Index size)
      : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
    {
      resize(size);
    }

    CompressedStorage(const CompressedStorage& other)
      : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
    {
      *this = other;
    }

    CompressedStorage& operator=(const CompressedStorage& other)
    {
      resize(other.size());
      if(other.size()>0)
      {
        internal::smart_copy(other.m_values,  other.m_values  + m_size, m_values);
        internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices);
      }
      return *this;
    }

    void swap(CompressedStorage& other)
    {
      std::swap(m_values, other.m_values);
      std::swap(m_indices, other.m_indices);
      std::swap(m_size, other.m_size);
      std::swap(m_allocatedSize, other.m_allocatedSize);
    }

    ~CompressedStorage()
    {
      delete[] m_values;
      delete[] m_indices;
    }

    void reserve(Index size)
    {
      Index newAllocatedSize = m_size + size;
      if (newAllocatedSize > m_allocatedSize)
        reallocate(newAllocatedSize);
    }

    void squeeze()
    {
      if (m_allocatedSize>m_size)
        reallocate(m_size);
    }

    void resize(Index size, double reserveSizeFactor = 0)
    {
      if (m_allocatedSize<size)
      {
        Index realloc_size = (std::min<Index>)(NumTraits<StorageIndex>::highest(),  size + Index(reserveSizeFactor*double(size)));
        if(realloc_size<size)
          internal::throw_std_bad_alloc();
        reallocate(realloc_size);
      }
      m_size = size;
    }

    void append(const Scalar& v, Index i)
    {
      Index id = m_size;
      resize(m_size+1, 1);
      m_values[id] = v;
      m_indices[id] = internal::convert_index<StorageIndex>(i);
    }

    inline Index size() const { return m_size; }
    inline Index allocatedSize() const { return m_allocatedSize; }
    inline void clear() { m_size = 0; }

    const Scalar* valuePtr() const { return m_values; }
    Scalar* valuePtr() { return m_values; }
    const StorageIndex* indexPtr() const { return m_indices; }
    StorageIndex* indexPtr() { return m_indices; }

    inline Scalar& value(Index i) { eigen_internal_assert(m_values!=0); return m_values[i]; }
    inline const Scalar& value(Index i) const { eigen_internal_assert(m_values!=0); return m_values[i]; }

    inline StorageIndex& index(Index i) { eigen_internal_assert(m_indices!=0); return m_indices[i]; }
    inline const StorageIndex& index(Index i) const { eigen_internal_assert(m_indices!=0); return m_indices[i]; }

    /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */
    inline Index searchLowerIndex(Index key) const
    {
      return searchLowerIndex(0, m_size, key);
    }

    /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */
    inline Index searchLowerIndex(Index start, Index end, Index key) const
    {
      while(end>start)
      {
        Index mid = (end+start)>>1;
        if (m_indices[mid]<key)
          start = mid+1;
        else
          end = mid;
      }
      return start;
    }

    /** \returns the stored value at index \a key
      * If the value does not exist, then the value \a defaultValue is returned without any insertion. */
    inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const
    {
      if (m_size==0)
        return defaultValue;
      else if (key==m_indices[m_size-1])
        return m_values[m_size-1];
      // ^^  optimization: let's first check if it is the last coefficient
      // (very common in high level algorithms)
      const Index id = searchLowerIndex(0,m_size-1,key);
      return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
    }

    /** Like at(), but the search is performed in the range [start,end) */
    inline Scalar atInRange(Index start, Index end, Index key, const Scalar &defaultValue = Scalar(0)) const
    {
      if (start>=end)
        return defaultValue;
      else if (end>start && key==m_indices[end-1])
        return m_values[end-1];
      // ^^  optimization: let's first check if it is the last coefficient
      // (very common in high level algorithms)
      const Index id = searchLowerIndex(start,end-1,key);
      return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
    }

    /** \returns a reference to the value at index \a key
      * If the value does not exist, then the value \a defaultValue is inserted
      * such that the keys are sorted. */
    inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0))
    {
      Index id = searchLowerIndex(0,m_size,key);
      if (id>=m_size || m_indices[id]!=key)
      {
        if (m_allocatedSize<m_size+1)
        {
          m_allocatedSize = 2*(m_size+1);
          internal::scoped_array<Scalar> newValues(m_allocatedSize);
          internal::scoped_array<StorageIndex> newIndices(m_allocatedSize);

          // copy first chunk
          internal::smart_copy(m_values,  m_values +id, newValues.ptr());
          internal::smart_copy(m_indices, m_indices+id, newIndices.ptr());

          // copy the rest
          if(m_size>id)
          {
            internal::smart_copy(m_values +id,  m_values +m_size, newValues.ptr() +id+1);
            internal::smart_copy(m_indices+id,  m_indices+m_size, newIndices.ptr()+id+1);
          }
          std::swap(m_values,newValues.ptr());
          std::swap(m_indices,newIndices.ptr());
        }
        else if(m_size>id)
        {
          internal::smart_memmove(m_values +id, m_values +m_size, m_values +id+1);
          internal::smart_memmove(m_indices+id, m_indices+m_size, m_indices+id+1);
        }
        m_size++;
        m_indices[id] = internal::convert_index<StorageIndex>(key);
        m_values[id] = defaultValue;
      }
      return m_values[id];
    }

    void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
    {
      Index k = 0;
      Index n = size();
      for (Index i=0; i<n; ++i)
      {
        if (!internal::isMuchSmallerThan(value(i), reference, epsilon))
        {
          value(k) = value(i);
          index(k) = index(i);
          ++k;
        }
      }
      resize(k,0);
    }

  protected:

    inline void reallocate(Index size)
    {
      #ifdef EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN
        EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN
      #endif
      eigen_internal_assert(size!=m_allocatedSize);
      internal::scoped_array<Scalar> newValues(size);
      internal::scoped_array<StorageIndex> newIndices(size);
      Index copySize = (std::min)(size, m_size);
      if (copySize>0) {
        internal::smart_copy(m_values, m_values+copySize, newValues.ptr());
        internal::smart_copy(m_indices, m_indices+copySize, newIndices.ptr());
      }
      std::swap(m_values,newValues.ptr());
      std::swap(m_indices,newIndices.ptr());
      m_allocatedSize = size;
    }

  protected:
    Scalar* m_values;
    StorageIndex* m_indices;
    Index m_size;
    Index m_allocatedSize;

};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_COMPRESSED_STORAGE_H