aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/SparseCore/SparseDenseProduct.h
blob: 0547db59689da03ac5ea195649f7ac0bbe87455a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SPARSEDENSEPRODUCT_H
#define EIGEN_SPARSEDENSEPRODUCT_H

namespace Eigen { 

namespace internal {

template <> struct product_promote_storage_type<Sparse,Dense, OuterProduct> { typedef Sparse ret; };
template <> struct product_promote_storage_type<Dense,Sparse, OuterProduct> { typedef Sparse ret; };

template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,
         typename AlphaType,
         int LhsStorageOrder = ((SparseLhsType::Flags&RowMajorBit)==RowMajorBit) ? RowMajor : ColMajor,
         bool ColPerCol = ((DenseRhsType::Flags&RowMajorBit)==0) || DenseRhsType::ColsAtCompileTime==1>
struct sparse_time_dense_product_impl;

template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, RowMajor, true>
{
  typedef typename internal::remove_all<SparseLhsType>::type Lhs;
  typedef typename internal::remove_all<DenseRhsType>::type Rhs;
  typedef typename internal::remove_all<DenseResType>::type Res;
  typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
  typedef evaluator<Lhs> LhsEval;
  static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
  {
    LhsEval lhsEval(lhs);
    
    Index n = lhs.outerSize();
#ifdef EIGEN_HAS_OPENMP
    Eigen::initParallel();
    Index threads = Eigen::nbThreads();
#endif
    
    for(Index c=0; c<rhs.cols(); ++c)
    {
#ifdef EIGEN_HAS_OPENMP
      // This 20000 threshold has been found experimentally on 2D and 3D Poisson problems.
      // It basically represents the minimal amount of work to be done to be worth it.
      if(threads>1 && lhsEval.nonZerosEstimate() > 20000)
      {
        #pragma omp parallel for schedule(dynamic,(n+threads*4-1)/(threads*4)) num_threads(threads)
        for(Index i=0; i<n; ++i)
          processRow(lhsEval,rhs,res,alpha,i,c);
      }
      else
#endif
      {
        for(Index i=0; i<n; ++i)
          processRow(lhsEval,rhs,res,alpha,i,c);
      }
    }
  }
  
  static void processRow(const LhsEval& lhsEval, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha, Index i, Index col)
  {
    typename Res::Scalar tmp(0);
    for(LhsInnerIterator it(lhsEval,i); it ;++it)
      tmp += it.value() * rhs.coeff(it.index(),col);
    res.coeffRef(i,col) += alpha * tmp;
  }
  
};

// FIXME: what is the purpose of the following specialization? Is it for the BlockedSparse format?
// -> let's disable it for now as it is conflicting with generic scalar*matrix and matrix*scalar operators
// template<typename T1, typename T2/*, int _Options, typename _StrideType*/>
// struct ScalarBinaryOpTraits<T1, Ref<T2/*, _Options, _StrideType*/> >
// {
//   enum {
//     Defined = 1
//   };
//   typedef typename CwiseUnaryOp<scalar_multiple2_op<T1, typename T2::Scalar>, T2>::PlainObject ReturnType;
// };

template<typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, AlphaType, ColMajor, true>
{
  typedef typename internal::remove_all<SparseLhsType>::type Lhs;
  typedef typename internal::remove_all<DenseRhsType>::type Rhs;
  typedef typename internal::remove_all<DenseResType>::type Res;
  typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
  static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
  {
    evaluator<Lhs> lhsEval(lhs);
    for(Index c=0; c<rhs.cols(); ++c)
    {
      for(Index j=0; j<lhs.outerSize(); ++j)
      {
//        typename Res::Scalar rhs_j = alpha * rhs.coeff(j,c);
        typename ScalarBinaryOpTraits<AlphaType, typename Rhs::Scalar>::ReturnType rhs_j(alpha * rhs.coeff(j,c));
        for(LhsInnerIterator it(lhsEval,j); it ;++it)
          res.coeffRef(it.index(),c) += it.value() * rhs_j;
      }
    }
  }
};

template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, RowMajor, false>
{
  typedef typename internal::remove_all<SparseLhsType>::type Lhs;
  typedef typename internal::remove_all<DenseRhsType>::type Rhs;
  typedef typename internal::remove_all<DenseResType>::type Res;
  typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
  static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
  {
    evaluator<Lhs> lhsEval(lhs);
    for(Index j=0; j<lhs.outerSize(); ++j)
    {
      typename Res::RowXpr res_j(res.row(j));
      for(LhsInnerIterator it(lhsEval,j); it ;++it)
        res_j += (alpha*it.value()) * rhs.row(it.index());
    }
  }
};

template<typename SparseLhsType, typename DenseRhsType, typename DenseResType>
struct sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, typename DenseResType::Scalar, ColMajor, false>
{
  typedef typename internal::remove_all<SparseLhsType>::type Lhs;
  typedef typename internal::remove_all<DenseRhsType>::type Rhs;
  typedef typename internal::remove_all<DenseResType>::type Res;
  typedef typename evaluator<Lhs>::InnerIterator LhsInnerIterator;
  static void run(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const typename Res::Scalar& alpha)
  {
    evaluator<Lhs> lhsEval(lhs);
    for(Index j=0; j<lhs.outerSize(); ++j)
    {
      typename Rhs::ConstRowXpr rhs_j(rhs.row(j));
      for(LhsInnerIterator it(lhsEval,j); it ;++it)
        res.row(it.index()) += (alpha*it.value()) * rhs_j;
    }
  }
};

template<typename SparseLhsType, typename DenseRhsType, typename DenseResType,typename AlphaType>
inline void sparse_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
{
  sparse_time_dense_product_impl<SparseLhsType,DenseRhsType,DenseResType, AlphaType>::run(lhs, rhs, res, alpha);
}

} // end namespace internal

namespace internal {

template<typename Lhs, typename Rhs, int ProductType>
struct generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType>
 : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SparseShape,DenseShape,ProductType> >
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  
  template<typename Dest>
  static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
  {
    typedef typename nested_eval<Lhs,((Rhs::Flags&RowMajorBit)==0) ? 1 : Rhs::ColsAtCompileTime>::type LhsNested;
    typedef typename nested_eval<Rhs,((Lhs::Flags&RowMajorBit)==0) ? 1 : Dynamic>::type RhsNested;
    LhsNested lhsNested(lhs);
    RhsNested rhsNested(rhs);
    internal::sparse_time_dense_product(lhsNested, rhsNested, dst, alpha);
  }
};

template<typename Lhs, typename Rhs, int ProductType>
struct generic_product_impl<Lhs, Rhs, SparseTriangularShape, DenseShape, ProductType>
  : generic_product_impl<Lhs, Rhs, SparseShape, DenseShape, ProductType>
{};

template<typename Lhs, typename Rhs, int ProductType>
struct generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
  : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SparseShape,ProductType> >
{
  typedef typename Product<Lhs,Rhs>::Scalar Scalar;
  
  template<typename Dst>
  static void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
  {
    typedef typename nested_eval<Lhs,((Rhs::Flags&RowMajorBit)==0) ? Dynamic : 1>::type LhsNested;
    typedef typename nested_eval<Rhs,((Lhs::Flags&RowMajorBit)==RowMajorBit) ? 1 : Lhs::RowsAtCompileTime>::type RhsNested;
    LhsNested lhsNested(lhs);
    RhsNested rhsNested(rhs);
    
    // transpose everything
    Transpose<Dst> dstT(dst);
    internal::sparse_time_dense_product(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
  }
};

template<typename Lhs, typename Rhs, int ProductType>
struct generic_product_impl<Lhs, Rhs, DenseShape, SparseTriangularShape, ProductType>
  : generic_product_impl<Lhs, Rhs, DenseShape, SparseShape, ProductType>
{};

template<typename LhsT, typename RhsT, bool NeedToTranspose>
struct sparse_dense_outer_product_evaluator
{
protected:
  typedef typename conditional<NeedToTranspose,RhsT,LhsT>::type Lhs1;
  typedef typename conditional<NeedToTranspose,LhsT,RhsT>::type ActualRhs;
  typedef Product<LhsT,RhsT,DefaultProduct> ProdXprType;
  
  // if the actual left-hand side is a dense vector,
  // then build a sparse-view so that we can seamlessly iterate over it.
  typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value,
            Lhs1, SparseView<Lhs1> >::type ActualLhs;
  typedef typename conditional<is_same<typename internal::traits<Lhs1>::StorageKind,Sparse>::value,
            Lhs1 const&, SparseView<Lhs1> >::type LhsArg;
            
  typedef evaluator<ActualLhs> LhsEval;
  typedef evaluator<ActualRhs> RhsEval;
  typedef typename evaluator<ActualLhs>::InnerIterator LhsIterator;
  typedef typename ProdXprType::Scalar Scalar;
  
public:
  enum {
    Flags = NeedToTranspose ? RowMajorBit : 0,
    CoeffReadCost = HugeCost
  };
  
  class InnerIterator : public LhsIterator
  {
  public:
    InnerIterator(const sparse_dense_outer_product_evaluator &xprEval, Index outer)
      : LhsIterator(xprEval.m_lhsXprImpl, 0),
        m_outer(outer),
        m_empty(false),
        m_factor(get(xprEval.m_rhsXprImpl, outer, typename internal::traits<ActualRhs>::StorageKind() ))
    {}
    
    EIGEN_STRONG_INLINE Index outer() const { return m_outer; }
    EIGEN_STRONG_INLINE Index row()   const { return NeedToTranspose ? m_outer : LhsIterator::index(); }
    EIGEN_STRONG_INLINE Index col()   const { return NeedToTranspose ? LhsIterator::index() : m_outer; }

    EIGEN_STRONG_INLINE Scalar value() const { return LhsIterator::value() * m_factor; }
    EIGEN_STRONG_INLINE operator bool() const { return LhsIterator::operator bool() && (!m_empty); }
    
  protected:
    Scalar get(const RhsEval &rhs, Index outer, Dense = Dense()) const
    {
      return rhs.coeff(outer);
    }
    
    Scalar get(const RhsEval &rhs, Index outer, Sparse = Sparse())
    {
      typename RhsEval::InnerIterator it(rhs, outer);
      if (it && it.index()==0 && it.value()!=Scalar(0))
        return it.value();
      m_empty = true;
      return Scalar(0);
    }
    
    Index m_outer;
    bool m_empty;
    Scalar m_factor;
  };
  
  sparse_dense_outer_product_evaluator(const Lhs1 &lhs, const ActualRhs &rhs)
     : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs)
  {
    EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
  }
  
  // transpose case
  sparse_dense_outer_product_evaluator(const ActualRhs &rhs, const Lhs1 &lhs)
     : m_lhs(lhs), m_lhsXprImpl(m_lhs), m_rhsXprImpl(rhs)
  {
    EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
  }
    
protected:
  const LhsArg m_lhs;
  evaluator<ActualLhs> m_lhsXprImpl;
  evaluator<ActualRhs> m_rhsXprImpl;
};

// sparse * dense outer product
template<typename Lhs, typename Rhs>
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, SparseShape, DenseShape>
  : sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor>
{
  typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Lhs::IsRowMajor> Base;
  
  typedef Product<Lhs, Rhs> XprType;
  typedef typename XprType::PlainObject PlainObject;

  explicit product_evaluator(const XprType& xpr)
    : Base(xpr.lhs(), xpr.rhs())
  {}
  
};

template<typename Lhs, typename Rhs>
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, OuterProduct, DenseShape, SparseShape>
  : sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor>
{
  typedef sparse_dense_outer_product_evaluator<Lhs,Rhs, Rhs::IsRowMajor> Base;
  
  typedef Product<Lhs, Rhs> XprType;
  typedef typename XprType::PlainObject PlainObject;

  explicit product_evaluator(const XprType& xpr)
    : Base(xpr.lhs(), xpr.rhs())
  {}
  
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_SPARSEDENSEPRODUCT_H