aboutsummaryrefslogtreecommitdiff
path: root/debug/gdb/printers.py
blob: 86996a4f9fb55ba960a0e14ef0af089905a32e6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-
# This file is part of Eigen, a lightweight C++ template library
# for linear algebra.
#
# Copyright (C) 2009 Benjamin Schindler <bschindler@inf.ethz.ch>
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.

# Pretty printers for Eigen::Matrix
# This is still pretty basic as the python extension to gdb is still pretty basic. 
# It cannot handle complex eigen types and it doesn't support any of the other eigen types
# Such as quaternion or some other type. 
# This code supports fixed size as well as dynamic size matrices

# To use it:
#
# * Create a directory and put the file as well as an empty __init__.py in 
#   that directory.
# * Create a ~/.gdbinit file, that contains the following:
#      python
#      import sys
#      sys.path.insert(0, '/path/to/eigen/printer/directory')
#      from printers import register_eigen_printers
#      register_eigen_printers (None)
#      end

import gdb
import re
import itertools


class EigenMatrixPrinter:
	"Print Eigen Matrix or Array of some kind"

	def __init__(self, variety, val):
		"Extract all the necessary information"
		
		# Save the variety (presumably "Matrix" or "Array") for later usage
		self.variety = variety
		
		# The gdb extension does not support value template arguments - need to extract them by hand
		type = val.type
		if type.code == gdb.TYPE_CODE_REF:
			type = type.target()
		self.type = type.unqualified().strip_typedefs()
		tag = self.type.tag
		regex = re.compile('\<.*\>')
		m = regex.findall(tag)[0][1:-1]
		template_params = m.split(',')
		template_params = map(lambda x:x.replace(" ", ""), template_params)
		
		if template_params[1] == '-0x00000000000000001' or template_params[1] == '-0x000000001' or template_params[1] == '-1':
			self.rows = val['m_storage']['m_rows']
		else:
			self.rows = int(template_params[1])
		
		if template_params[2] == '-0x00000000000000001' or template_params[2] == '-0x000000001' or template_params[2] == '-1':
			self.cols = val['m_storage']['m_cols']
		else:
			self.cols = int(template_params[2])
		
		self.options = 0 # default value
		if len(template_params) > 3:
			self.options = template_params[3];
		
		self.rowMajor = (int(self.options) & 0x1)
		
		self.innerType = self.type.template_argument(0)
		
		self.val = val
		
		# Fixed size matrices have a struct as their storage, so we need to walk through this
		self.data = self.val['m_storage']['m_data']
		if self.data.type.code == gdb.TYPE_CODE_STRUCT:
			self.data = self.data['array']
			self.data = self.data.cast(self.innerType.pointer())
			
	class _iterator:
		def __init__ (self, rows, cols, dataPtr, rowMajor):
			self.rows = rows
			self.cols = cols
			self.dataPtr = dataPtr
			self.currentRow = 0
			self.currentCol = 0
			self.rowMajor = rowMajor
			
		def __iter__ (self):
			return self
			
		def next(self):
			
			row = self.currentRow
			col = self.currentCol
			if self.rowMajor == 0:
				if self.currentCol >= self.cols:
					raise StopIteration
					
				self.currentRow = self.currentRow + 1
				if self.currentRow >= self.rows:
					self.currentRow = 0
					self.currentCol = self.currentCol + 1
			else:
				if self.currentRow >= self.rows:
					raise StopIteration
					
				self.currentCol = self.currentCol + 1
				if self.currentCol >= self.cols:
					self.currentCol = 0
					self.currentRow = self.currentRow + 1
				
			
			item = self.dataPtr.dereference()
			self.dataPtr = self.dataPtr + 1
			if (self.cols == 1): #if it's a column vector
				return ('[%d]' % (row,), item)
			elif (self.rows == 1): #if it's a row vector
				return ('[%d]' % (col,), item)
			return ('[%d,%d]' % (row, col), item)
			
	def children(self):
		
		return self._iterator(self.rows, self.cols, self.data, self.rowMajor)
		
	def to_string(self):
		return "Eigen::%s<%s,%d,%d,%s> (data ptr: %s)" % (self.variety, self.innerType, self.rows, self.cols, "RowMajor" if self.rowMajor else  "ColMajor", self.data)

class EigenQuaternionPrinter:
	"Print an Eigen Quaternion"
	
	def __init__(self, val):
		"Extract all the necessary information"
		# The gdb extension does not support value template arguments - need to extract them by hand
		type = val.type
		if type.code == gdb.TYPE_CODE_REF:
			type = type.target()
		self.type = type.unqualified().strip_typedefs()
		self.innerType = self.type.template_argument(0)
		self.val = val
		
		# Quaternions have a struct as their storage, so we need to walk through this
		self.data = self.val['m_coeffs']['m_storage']['m_data']['array']
		self.data = self.data.cast(self.innerType.pointer())
			
	class _iterator:
		def __init__ (self, dataPtr):
			self.dataPtr = dataPtr
			self.currentElement = 0
			self.elementNames = ['x', 'y', 'z', 'w']
			
		def __iter__ (self):
			return self
			
		def next(self):
			element = self.currentElement
			
			if self.currentElement >= 4: #there are 4 elements in a quanternion
				raise StopIteration
			
			self.currentElement = self.currentElement + 1
			
			item = self.dataPtr.dereference()
			self.dataPtr = self.dataPtr + 1
			return ('[%s]' % (self.elementNames[element],), item)
			
	def children(self):
		
		return self._iterator(self.data)
	
	def to_string(self):
		return "Eigen::Quaternion<%s> (data ptr: %s)" % (self.innerType, self.data)

def build_eigen_dictionary ():
	pretty_printers_dict[re.compile('^Eigen::Quaternion<.*>$')] = lambda val: EigenQuaternionPrinter(val)
	pretty_printers_dict[re.compile('^Eigen::Matrix<.*>$')] = lambda val: EigenMatrixPrinter("Matrix", val)
	pretty_printers_dict[re.compile('^Eigen::Array<.*>$')]  = lambda val: EigenMatrixPrinter("Array",  val)

def register_eigen_printers(obj):
	"Register eigen pretty-printers with objfile Obj"

	if obj == None:
		obj = gdb
	obj.pretty_printers.append(lookup_function)

def lookup_function(val):
	"Look-up and return a pretty-printer that can print va."
	
	type = val.type
	
	if type.code == gdb.TYPE_CODE_REF:
		type = type.target()
	
	type = type.unqualified().strip_typedefs()
	
	typename = type.tag
	if typename == None:
		return None
	
	for function in pretty_printers_dict:
		if function.search(typename):
			return pretty_printers_dict[function](val)
	
	return None

pretty_printers_dict = {}

build_eigen_dictionary ()