aboutsummaryrefslogtreecommitdiff
path: root/test/eigen2/eigen2_cwiseop.cpp
blob: 4391d19b49609a7b4ec6060bbd3d00897ee945b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"
#include <functional>
#include <Eigen/Array>

using namespace std;

template<typename Scalar> struct AddIfNull {
    const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;}
    enum { Cost = NumTraits<Scalar>::AddCost };
};

template<typename MatrixType> void cwiseops(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  int rows = m.rows();
  int cols = m.cols();

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols),
             m4(rows, cols),
             mzero = MatrixType::Zero(rows, cols),
             mones = MatrixType::Ones(rows, cols),
             identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
                              ::Identity(rows, rows),
             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
  VectorType v1 = VectorType::Random(rows),
             v2 = VectorType::Random(rows),
             vzero = VectorType::Zero(rows),
             vones = VectorType::Ones(rows),
             v3(rows);

  int r = ei_random<int>(0, rows-1),
      c = ei_random<int>(0, cols-1);
  
  Scalar s1 = ei_random<Scalar>();
  
  // test Zero, Ones, Constant, and the set* variants
  m3 = MatrixType::Constant(rows, cols, s1);
  for (int j=0; j<cols; ++j)
    for (int i=0; i<rows; ++i)
    {
      VERIFY_IS_APPROX(mzero(i,j), Scalar(0));
      VERIFY_IS_APPROX(mones(i,j), Scalar(1));
      VERIFY_IS_APPROX(m3(i,j), s1);
    }
  VERIFY(mzero.isZero());
  VERIFY(mones.isOnes());
  VERIFY(m3.isConstant(s1));
  VERIFY(identity.isIdentity());
  VERIFY_IS_APPROX(m4.setConstant(s1), m3);
  VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3);
  VERIFY_IS_APPROX(m4.setZero(), mzero);
  VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero);
  VERIFY_IS_APPROX(m4.setOnes(), mones);
  VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones);
  m4.fill(s1);
  VERIFY_IS_APPROX(m4, m3);
  
  VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1));
  VERIFY_IS_APPROX(v3.setZero(rows), vzero);
  VERIFY_IS_APPROX(v3.setOnes(rows), vones);

  m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones);

  VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2());
  VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
  VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube());

  VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1));
  VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1));
  m3 = m1; m3.cwise() += 1;
  VERIFY_IS_APPROX(m1 + mones, m3);
  m3 = m1; m3.cwise() -= 1;
  VERIFY_IS_APPROX(m1 - mones, m3);

  VERIFY_IS_APPROX(m2, m2.cwise() * mones);
  VERIFY_IS_APPROX(m1.cwise() * m2,  m2.cwise() * m1);
  m3 = m1;
  m3.cwise() *= m2;
  VERIFY_IS_APPROX(m3, m1.cwise() * m2);
  
  VERIFY_IS_APPROX(mones,    m2.cwise()/m2);
  if(NumTraits<Scalar>::HasFloatingPoint)
  {
    VERIFY_IS_APPROX(m1.cwise() / m2,    m1.cwise() * (m2.cwise().inverse()));
    m3 = m1.cwise().abs().cwise().sqrt();
    VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs());
    VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs());
    VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs());

    VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
    m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1);
    VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse());
    m3 = m1.cwise().abs();
    VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt());
    
//     VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos());
    VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square());
    m3 = m1;
    m3.cwise() /= m2;
    VERIFY_IS_APPROX(m3, m1.cwise() / m2);
  }

  // check min
  VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) );
  VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 );
  VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones );

  // check max
  VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) );
  VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 );
  VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones );
  
  VERIFY( (m1.cwise() == m1).all() );
  VERIFY( (m1.cwise() != m2).any() );
  VERIFY(!(m1.cwise() == (m1+mones)).any() );
  if (rows*cols>1)
  {
    m3 = m1;
    m3(r,c) += 1;
    VERIFY( (m1.cwise() == m3).any() );
    VERIFY( !(m1.cwise() == m3).all() );
  }
  VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() );
  VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() );
  VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() );
  VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() );

  VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
  VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
  VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
}

void test_eigen2_cwiseop()
{
  for(int i = 0; i < g_repeat ; i++) {
    CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( cwiseops(Matrix4d()) );
    CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) );
    CALL_SUBTEST_3( cwiseops(MatrixXf(22, 22)) );
    CALL_SUBTEST_4( cwiseops(MatrixXi(8, 12)) );
    CALL_SUBTEST_5( cwiseops(MatrixXd(20, 20)) );
  }
}