aboutsummaryrefslogtreecommitdiff
path: root/test/eigen2/eigen2_submatrices.cpp
blob: dee970b63826ba714f4453b6449f24d9d80a831d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

// check minor separately in order to avoid the possible creation of a zero-sized
// array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic.
// Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage
// but this is probably not bad to raise such an error at compile time...
template<typename Scalar, int _Rows, int _Cols> struct CheckMinor
{
    typedef Matrix<Scalar, _Rows, _Cols> MatrixType;
    CheckMinor(MatrixType& m1, int r1, int c1)
    {
        int rows = m1.rows();
        int cols = m1.cols();

        Matrix<Scalar, Dynamic, Dynamic> mi = m1.minor(0,0).eval();
        VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1));
        mi = m1.minor(r1,c1);
        VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1));
        //check operator(), both constant and non-constant, on minor()
        m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0);
    }
};

template<typename Scalar> struct CheckMinor<Scalar,1,1>
{
    typedef Matrix<Scalar, 1, 1> MatrixType;
    CheckMinor(MatrixType&, int, int) {}
};

template<typename MatrixType> void submatrices(const MatrixType& m)
{
  /* this test covers the following files:
     Row.h Column.h Block.h Minor.h DiagonalCoeffs.h
  */
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
  int rows = m.rows();
  int cols = m.cols();

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols),
             ones = MatrixType::Ones(rows, cols),
             square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
                              ::Random(rows, rows);
  VectorType v1 = VectorType::Random(rows);

  Scalar s1 = ei_random<Scalar>();

  int r1 = ei_random<int>(0,rows-1);
  int r2 = ei_random<int>(r1,rows-1);
  int c1 = ei_random<int>(0,cols-1);
  int c2 = ei_random<int>(c1,cols-1);

  //check row() and col()
  VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1));
  VERIFY_IS_APPROX(square.row(r1).eigen2_dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1));
  //check operator(), both constant and non-constant, on row() and col()
  m1.row(r1) += s1 * m1.row(r2);
  m1.col(c1) += s1 * m1.col(c2);

  //check block()
  Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
  RowVectorType br1(m1.block(r1,0,1,cols));
  VectorType bc1(m1.block(0,c1,rows,1));
  VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1));
  VERIFY_IS_APPROX(m1.row(r1), br1);
  VERIFY_IS_APPROX(m1.col(c1), bc1);
  //check operator(), both constant and non-constant, on block()
  m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
  m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);

  //check minor()
  CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1);

  //check diagonal()
  VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
  m2.diagonal() = 2 * m1.diagonal();
  m2.diagonal()[0] *= 3;
  VERIFY_IS_APPROX(m2.diagonal()[0], static_cast<Scalar>(6) * m1.diagonal()[0]);

  enum {
    BlockRows = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,2),
    BlockCols = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::ColsAtCompileTime,5)
  };
  if (rows>=5 && cols>=8)
  {
    // test fixed block() as lvalue
    m1.template block<BlockRows,BlockCols>(1,1) *= s1;
    // test operator() on fixed block() both as constant and non-constant
    m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
    // check that fixed block() and block() agree
    Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
    VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols));
  }

  if (rows>2)
  {
    // test sub vectors
    VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1));
    VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2));
    VERIFY_IS_APPROX(v1.template start<2>(), v1.segment(0,2));
    VERIFY_IS_APPROX(v1.template start<2>(), v1.template segment<2>(0));
    int i = rows-2;
    VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1));
    VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2));
    VERIFY_IS_APPROX(v1.template end<2>(), v1.segment(i,2));
    VERIFY_IS_APPROX(v1.template end<2>(), v1.template segment<2>(i));
    i = ei_random(0,rows-2);
    VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i));
  }

  // stress some basic stuffs with block matrices
  VERIFY(ei_real(ones.col(c1).sum()) == RealScalar(rows));
  VERIFY(ei_real(ones.row(r1).sum()) == RealScalar(cols));

  VERIFY(ei_real(ones.col(c1).eigen2_dot(ones.col(c2))) == RealScalar(rows));
  VERIFY(ei_real(ones.row(r1).eigen2_dot(ones.row(r2))) == RealScalar(cols));
}

void test_eigen2_submatrices()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( submatrices(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( submatrices(Matrix4d()) );
    CALL_SUBTEST_3( submatrices(MatrixXcf(3, 3)) );
    CALL_SUBTEST_4( submatrices(MatrixXi(8, 12)) );
    CALL_SUBTEST_5( submatrices(MatrixXcd(20, 20)) );
    CALL_SUBTEST_6( submatrices(MatrixXf(20, 20)) );
  }
}