aboutsummaryrefslogtreecommitdiff
path: root/test/eigen2/eigen2_triangular.cpp
blob: 6f17b7dffe3c5659fd83374ce86c3e465ff89465 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

template<typename MatrixType> void triangular(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;

  RealScalar largerEps = 10*test_precision<RealScalar>();

  int rows = m.rows();
  int cols = m.cols();

  MatrixType m1 = MatrixType::Random(rows, cols),
             m2 = MatrixType::Random(rows, cols),
             m3(rows, cols),
             m4(rows, cols),
             r1(rows, cols),
             r2(rows, cols);

  MatrixType m1up = m1.template part<Eigen::UpperTriangular>();
  MatrixType m2up = m2.template part<Eigen::UpperTriangular>();

  if (rows*cols>1)
  {
    VERIFY(m1up.isUpperTriangular());
    VERIFY(m2up.transpose().isLowerTriangular());
    VERIFY(!m2.isLowerTriangular());
  }

//   VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2);

  // test overloaded operator+=
  r1.setZero();
  r2.setZero();
  r1.template part<Eigen::UpperTriangular>() +=  m1;
  r2 += m1up;
  VERIFY_IS_APPROX(r1,r2);

  // test overloaded operator=
  m1.setZero();
  m1.template part<Eigen::UpperTriangular>() = (m2.transpose() * m2).lazy();
  m3 = m2.transpose() * m2;
  VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>().transpose(), m1);

  // test overloaded operator=
  m1.setZero();
  m1.template part<Eigen::LowerTriangular>() = (m2.transpose() * m2).lazy();
  VERIFY_IS_APPROX(m3.template part<Eigen::LowerTriangular>(), m1);

  VERIFY_IS_APPROX(m3.template part<Diagonal>(), m3.diagonal().asDiagonal());

  m1 = MatrixType::Random(rows, cols);
  for (int i=0; i<rows; ++i)
    while (ei_abs2(m1(i,i))<1e-3) m1(i,i) = ei_random<Scalar>();

  Transpose<MatrixType> trm4(m4);
  // test back and forward subsitution
  m3 = m1.template part<Eigen::LowerTriangular>();
  VERIFY(m3.template marked<Eigen::LowerTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>()));
  VERIFY(m3.transpose().template marked<Eigen::UpperTriangular>()
    .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>()));
  // check M * inv(L) using in place API
  m4 = m3;
  m3.transpose().template marked<Eigen::UpperTriangular>().solveTriangularInPlace(trm4);
  VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));

  m3 = m1.template part<Eigen::UpperTriangular>();
  VERIFY(m3.template marked<Eigen::UpperTriangular>().solveTriangular(m3).cwise().abs().isIdentity(test_precision<RealScalar>()));
  VERIFY(m3.transpose().template marked<Eigen::LowerTriangular>()
    .solveTriangular(m3.transpose()).cwise().abs().isIdentity(test_precision<RealScalar>()));
  // check M * inv(U) using in place API
  m4 = m3;
  m3.transpose().template marked<Eigen::LowerTriangular>().solveTriangularInPlace(trm4);
  VERIFY(m4.cwise().abs().isIdentity(test_precision<RealScalar>()));

  m3 = m1.template part<Eigen::UpperTriangular>();
  VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::UpperTriangular>().solveTriangular(m2)), largerEps));
  m3 = m1.template part<Eigen::LowerTriangular>();
  VERIFY(m2.isApprox(m3 * (m3.template marked<Eigen::LowerTriangular>().solveTriangular(m2)), largerEps));

  VERIFY((m1.template part<Eigen::UpperTriangular>() * m2.template part<Eigen::UpperTriangular>()).isUpperTriangular());

  // test swap
  m1.setOnes();
  m2.setZero();
  m2.template part<Eigen::UpperTriangular>().swap(m1);
  m3.setZero();
  m3.template part<Eigen::UpperTriangular>().setOnes();
  VERIFY_IS_APPROX(m2,m3);

}

void selfadjoint()
{
  Matrix2i m;
  m << 1, 2,
       3, 4;

  Matrix2i m1 = Matrix2i::Zero();
  m1.part<SelfAdjoint>() = m;
  Matrix2i ref1;
  ref1 << 1, 2,
          2, 4;
  VERIFY(m1 == ref1);
  
  Matrix2i m2 = Matrix2i::Zero();
  m2.part<SelfAdjoint>() = m.part<UpperTriangular>();
  Matrix2i ref2;
  ref2 << 1, 2,
          2, 4;
  VERIFY(m2 == ref2);
 
  Matrix2i m3 = Matrix2i::Zero();
  m3.part<SelfAdjoint>() = m.part<LowerTriangular>();
  Matrix2i ref3;
  ref3 << 1, 0,
          0, 4;
  VERIFY(m3 == ref3);
  
  // example inspired from bug 159
  int array[] = {1, 2, 3, 4};
  Matrix2i::Map(array).part<SelfAdjoint>() = Matrix2i::Random().part<LowerTriangular>();
  
  std::cout << "hello\n" << array << std::endl;
}

void test_eigen2_triangular()
{
  CALL_SUBTEST_8( selfadjoint() );
  for(int i = 0; i < g_repeat ; i++) {
    CALL_SUBTEST_1( triangular(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( triangular(Matrix<float, 2, 2>()) );
    CALL_SUBTEST_3( triangular(Matrix3d()) );
    CALL_SUBTEST_4( triangular(MatrixXcf(4, 4)) );
    CALL_SUBTEST_5( triangular(Matrix<std::complex<float>,8, 8>()) );
    CALL_SUBTEST_6( triangular(MatrixXd(17,17)) );
    CALL_SUBTEST_7( triangular(Matrix<float,Dynamic,Dynamic,RowMajor>(5, 5)) );
  }
}