aboutsummaryrefslogtreecommitdiff
path: root/test/jacobisvd.cpp
blob: 12c556e59a43dc9f45cf95ef0439232696c7274c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#include <Eigen/SVD>

template<typename MatrixType, int QRPreconditioner>
void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
{
  typedef typename MatrixType::Index Index;
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;

  MatrixType sigma = MatrixType::Zero(rows,cols);
  sigma.diagonal() = svd.singularValues().template cast<Scalar>();
  MatrixUType u = svd.matrixU();
  MatrixVType v = svd.matrixV();

  VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
  VERIFY_IS_UNITARY(u);
  VERIFY_IS_UNITARY(v);
}

template<typename MatrixType, int QRPreconditioner>
void jacobisvd_compare_to_full(const MatrixType& m,
                               unsigned int computationOptions,
                               const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
{
  typedef typename MatrixType::Index Index;
  Index rows = m.rows();
  Index cols = m.cols();
  Index diagSize = (std::min)(rows, cols);

  JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);

  VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
  if(computationOptions & ComputeFullU)
    VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
  if(computationOptions & ComputeThinU)
    VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
  if(computationOptions & ComputeFullV)
    VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
  if(computationOptions & ComputeThinV)
    VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
}

template<typename MatrixType, int QRPreconditioner>
void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef typename MatrixType::Index Index;
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
  typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;

  RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
  JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);

       if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
  else if(internal::is_same<RealScalar,float>::value)  svd.setThreshold(1e-4);
  
  SolutionType x = svd.solve(rhs);
  
  RealScalar residual = (m*x-rhs).norm();
  // Check that there is no significantly better solution in the neighborhood of x
  if(!test_isMuchSmallerThan(residual,rhs.norm()))
  {
    // If the residual is very small, then we have an exact solution, so we are already good.
    for(int k=0;k<x.rows();++k)
    {
      SolutionType y(x);
      y.row(k).array() += 2*NumTraits<RealScalar>::epsilon();
      RealScalar residual_y = (m*y-rhs).norm();
      VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
      
      y.row(k) = x.row(k).array() - 2*NumTraits<RealScalar>::epsilon();
      residual_y = (m*y-rhs).norm();
      VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
    }
  }
  
  // evaluate normal equation which works also for least-squares solutions
  if(internal::is_same<RealScalar,double>::value)
  {
    // This test is not stable with single precision.
    // This is probably because squaring m signicantly affects the precision.
    VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
  }
  
  // check minimal norm solutions
  {
    // generate a full-rank m x n problem with m<n
    enum {
      RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
      RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
    };
    typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
    typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
    typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
    Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
    MatrixType2 m2(rank,cols);
    int guard = 0;
    do {
      m2.setRandom();
    } while(m2.jacobiSvd().setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
    VERIFY(guard<10);
    RhsType2 rhs2 = RhsType2::Random(rank);
    // use QR to find a reference minimal norm solution
    HouseholderQR<MatrixType2T> qr(m2.adjoint());
    Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
    tmp.conservativeResize(cols);
    tmp.tail(cols-rank).setZero();
    SolutionType x21 = qr.householderQ() * tmp;
    // now check with SVD
    JacobiSVD<MatrixType2, ColPivHouseholderQRPreconditioner> svd2(m2, computationOptions);
    SolutionType x22 = svd2.solve(rhs2);
    VERIFY_IS_APPROX(m2*x21, rhs2);
    VERIFY_IS_APPROX(m2*x22, rhs2);
    VERIFY_IS_APPROX(x21, x22);
    
    // Now check with a rank deficient matrix
    typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
    typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
    Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
    Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
    MatrixType3 m3 = C * m2;
    RhsType3 rhs3 = C * rhs2;
    JacobiSVD<MatrixType3, ColPivHouseholderQRPreconditioner> svd3(m3, computationOptions);
    SolutionType x3 = svd3.solve(rhs3);
    if(svd3.rank()!=rank) {
      std::cout << m3 << "\n\n";
      std::cout << svd3.singularValues().transpose() << "\n";
    std::cout << svd3.rank() << " == " << rank << "\n";
    std::cout << x21.norm() << " == " << x3.norm() << "\n";
    }
//     VERIFY_IS_APPROX(m3*x3, rhs3);
    VERIFY_IS_APPROX(m3*x21, rhs3);
    VERIFY_IS_APPROX(m2*x3, rhs2);
    
    VERIFY_IS_APPROX(x21, x3);
  }
}

template<typename MatrixType, int QRPreconditioner>
void jacobisvd_test_all_computation_options(const MatrixType& m)
{
  if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
    return;
  JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
  CALL_SUBTEST(( jacobisvd_check_full(m, fullSvd) ));
  CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV) ));
  
  #if defined __INTEL_COMPILER
  // remark #111: statement is unreachable
  #pragma warning disable 111
  #endif
  if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
    return;

  CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU, fullSvd) ));
  CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullV, fullSvd) ));
  CALL_SUBTEST(( jacobisvd_compare_to_full(m, 0, fullSvd) ));

  if (MatrixType::ColsAtCompileTime == Dynamic) {
    // thin U/V are only available with dynamic number of columns
    CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
    CALL_SUBTEST(( jacobisvd_compare_to_full(m,              ComputeThinV, fullSvd) ));
    CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
    CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU             , fullSvd) ));
    CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
    CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV) ));
    CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV) ));
    CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV) ));

    // test reconstruction
    typedef typename MatrixType::Index Index;
    Index diagSize = (std::min)(m.rows(), m.cols());
    JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV);
    VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
  }
}

template<typename MatrixType>
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
{
  MatrixType m = a;
  if(pickrandom)
  {
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    Index diagSize = (std::min)(a.rows(), a.cols());
    RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4;
    s = internal::random<RealScalar>(1,s);
    Matrix<RealScalar,Dynamic,1> d =  Matrix<RealScalar,Dynamic,1>::Random(diagSize);
    for(Index k=0; k<diagSize; ++k)
      d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
    m = Matrix<Scalar,Dynamic,Dynamic>::Random(a.rows(),diagSize) * d.asDiagonal() * Matrix<Scalar,Dynamic,Dynamic>::Random(diagSize,a.cols());
    // cancel some coeffs
    Index n  = internal::random<Index>(0,m.size()-1);
    for(Index i=0; i<n; ++i)
      m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = Scalar(0);
  }

  CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m) ));
  CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m) ));
  CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m) ));
  CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m) ));
}

template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::Index Index;
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;

  RhsType rhs(rows);

  JacobiSVD<MatrixType> svd;
  VERIFY_RAISES_ASSERT(svd.matrixU())
  VERIFY_RAISES_ASSERT(svd.singularValues())
  VERIFY_RAISES_ASSERT(svd.matrixV())
  VERIFY_RAISES_ASSERT(svd.solve(rhs))

  MatrixType a = MatrixType::Zero(rows, cols);
  a.setZero();
  svd.compute(a, 0);
  VERIFY_RAISES_ASSERT(svd.matrixU())
  VERIFY_RAISES_ASSERT(svd.matrixV())
  svd.singularValues();
  VERIFY_RAISES_ASSERT(svd.solve(rhs))

  if (ColsAtCompileTime == Dynamic)
  {
    svd.compute(a, ComputeThinU);
    svd.matrixU();
    VERIFY_RAISES_ASSERT(svd.matrixV())
    VERIFY_RAISES_ASSERT(svd.solve(rhs))

    svd.compute(a, ComputeThinV);
    svd.matrixV();
    VERIFY_RAISES_ASSERT(svd.matrixU())
    VERIFY_RAISES_ASSERT(svd.solve(rhs))

    JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
  }
  else
  {
    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
  }
}

template<typename MatrixType>
void jacobisvd_method()
{
  enum { Size = MatrixType::RowsAtCompileTime };
  typedef typename MatrixType::RealScalar RealScalar;
  typedef Matrix<RealScalar, Size, 1> RealVecType;
  MatrixType m = MatrixType::Identity();
  VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
  VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
  VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
  VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
}

// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template<typename Scalar>
EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }

// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; }

template<typename MatrixType>
void jacobisvd_inf_nan()
{
  // all this function does is verify we don't iterate infinitely on nan/inf values

  JacobiSVD<MatrixType> svd;
  typedef typename MatrixType::Scalar Scalar;
  Scalar some_inf = Scalar(1) / zero<Scalar>();
  VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
  svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);

  Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
  VERIFY(nan != nan);
  svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);

  MatrixType m = MatrixType::Zero(10,10);
  m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
  svd.compute(m, ComputeFullU | ComputeFullV);

  m = MatrixType::Zero(10,10);
  m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
  svd.compute(m, ComputeFullU | ComputeFullV);
  
  // regression test for bug 791
  m.resize(3,3);
  m << 0,    2*NumTraits<Scalar>::epsilon(),  0.5,
       0,   -0.5,                             0,
       nan,  0,                               0;
  svd.compute(m, ComputeFullU | ComputeFullV);
}

// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
void jacobisvd_bug286()
{
#if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
#pragma warning push
#pragma warning disable 239
#endif
  Matrix2d M;
  M << -7.90884e-313, -4.94e-324,
                 0, 5.60844e-313;
#if defined __INTEL_COMPILER
#pragma warning pop
#endif
  JacobiSVD<Matrix2d> svd;
  svd.compute(M); // just check we don't loop indefinitely
}

void jacobisvd_preallocate()
{
  Vector3f v(3.f, 2.f, 1.f);
  MatrixXf m = v.asDiagonal();

  internal::set_is_malloc_allowed(false);
  VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
  JacobiSVD<MatrixXf> svd;
  internal::set_is_malloc_allowed(true);
  svd.compute(m);
  VERIFY_IS_APPROX(svd.singularValues(), v);

  JacobiSVD<MatrixXf> svd2(3,3);
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);
  VERIFY_IS_APPROX(svd2.singularValues(), v);
  VERIFY_RAISES_ASSERT(svd2.matrixU());
  VERIFY_RAISES_ASSERT(svd2.matrixV());
  svd2.compute(m, ComputeFullU | ComputeFullV);
  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);

  JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV);
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);
  VERIFY_IS_APPROX(svd2.singularValues(), v);
  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
  internal::set_is_malloc_allowed(false);
  svd2.compute(m, ComputeFullU|ComputeFullV);
  internal::set_is_malloc_allowed(true);
}

void test_jacobisvd()
{
  CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
  CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
  CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
  CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));

  for(int i = 0; i < g_repeat; i++) {
    Matrix2cd m;
    m << 0, 1,
         0, 1;
    CALL_SUBTEST_1(( jacobisvd(m, false) ));
    m << 1, 0,
         1, 0;
    CALL_SUBTEST_1(( jacobisvd(m, false) ));

    Matrix2d n;
    n << 0, 0,
         0, 0;
    CALL_SUBTEST_2(( jacobisvd(n, false) ));
    n << 0, 0,
         0, 1;
    CALL_SUBTEST_2(( jacobisvd(n, false) ));
    
    CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
    CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
    CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
    CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));

    int r = internal::random<int>(1, 30),
        c = internal::random<int>(1, 30);
    
    TEST_SET_BUT_UNUSED_VARIABLE(r)
    TEST_SET_BUT_UNUSED_VARIABLE(c)
    
    CALL_SUBTEST_10(( jacobisvd<MatrixXd>(MatrixXd(r,c)) ));
    CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
    CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
    (void) r;
    (void) c;

    // Test on inf/nan matrix
    CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
    CALL_SUBTEST_10( jacobisvd_inf_nan<MatrixXd>() );
  }

  CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
  CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));

  // test matrixbase method
  CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
  CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() ));

  // Test problem size constructors
  CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );

  // Check that preallocation avoids subsequent mallocs
  CALL_SUBTEST_9( jacobisvd_preallocate() );

  // Regression check for bug 286
  CALL_SUBTEST_2( jacobisvd_bug286() );
}