aboutsummaryrefslogtreecommitdiff
path: root/test/mapstride.cpp
blob: 4858f8fea2681dc191acc55ad520b2f2e87de0ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

template<int Alignment,typename VectorType> void map_class_vector(const VectorType& m)
{
  typedef typename VectorType::Index Index;
  typedef typename VectorType::Scalar Scalar;

  Index size = m.size();

  VectorType v = VectorType::Random(size);

  Index arraysize = 3*size;
  
  Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1);
  Scalar* array = a_array;
  if(Alignment!=Aligned)
    array = (Scalar*)(internal::IntPtr(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));

  {
    Map<VectorType, Alignment, InnerStride<3> > map(array, size);
    map = v;
    for(int i = 0; i < size; ++i)
    {
      VERIFY(array[3*i] == v[i]);
      VERIFY(map[i] == v[i]);
    }
  }

  {
    Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2));
    map = v;
    for(int i = 0; i < size; ++i)
    {
      VERIFY(array[2*i] == v[i]);
      VERIFY(map[i] == v[i]);
    }
  }

  internal::aligned_delete(a_array, arraysize+1);
}

template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixType& _m)
{
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::Scalar Scalar;

  Index rows = _m.rows(), cols = _m.cols();

  MatrixType m = MatrixType::Random(rows,cols);
  Scalar s1 = internal::random<Scalar>();

  Index arraysize = 2*(rows+4)*(cols+4);

  Scalar* a_array1 = internal::aligned_new<Scalar>(arraysize+1);
  Scalar* array1 = a_array1;
  if(Alignment!=Aligned)
    array1 = (Scalar*)(internal::IntPtr(a_array1) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));

  Scalar a_array2[256];
  Scalar* array2 = a_array2;
  if(Alignment!=Aligned)
    array2 = (Scalar*)(internal::IntPtr(a_array2) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real)));
  else
    array2 = (Scalar*)(((internal::UIntPtr(a_array2)+EIGEN_MAX_ALIGN_BYTES-1)/EIGEN_MAX_ALIGN_BYTES)*EIGEN_MAX_ALIGN_BYTES);
  Index maxsize2 = a_array2 - array2 + 256;
  
  // test no inner stride and some dynamic outer stride
  for(int k=0; k<2; ++k)
  {
    if(k==1 && (m.innerSize()+1)*m.outerSize() > maxsize2)
      break;
    Scalar* array = (k==0 ? array1 : array2);
    
    Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize()+1));
    map = m;
    VERIFY(map.outerStride() == map.innerSize()+1);
    for(int i = 0; i < m.outerSize(); ++i)
      for(int j = 0; j < m.innerSize(); ++j)
      {
        VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
        VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
      }
    VERIFY_IS_APPROX(s1*map,s1*m);
    map *= s1;
    VERIFY_IS_APPROX(map,s1*m);
  }

  // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices,
  // this allows to hit the special case where it's vectorizable.
  for(int k=0; k<2; ++k)
  {
    if(k==1 && (m.innerSize()+4)*m.outerSize() > maxsize2)
      break;
    Scalar* array = (k==0 ? array1 : array2);
    
    enum {
      InnerSize = MatrixType::InnerSizeAtCompileTime,
      OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4
    };
    Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> >
      map(array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize()+4));
    map = m;
    VERIFY(map.outerStride() == map.innerSize()+4);
    for(int i = 0; i < m.outerSize(); ++i)
      for(int j = 0; j < m.innerSize(); ++j)
      {
        VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j));
        VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
      }
    VERIFY_IS_APPROX(s1*map,s1*m);
    map *= s1;
    VERIFY_IS_APPROX(map,s1*m);
  }

  // test both inner stride and outer stride
  for(int k=0; k<2; ++k)
  {
    if(k==1 && (2*m.innerSize()+1)*(m.outerSize()*2) > maxsize2)
      break;
    Scalar* array = (k==0 ? array1 : array2);
    
    Map<MatrixType, Alignment, Stride<Dynamic,Dynamic> > map(array, rows, cols, Stride<Dynamic,Dynamic>(2*m.innerSize()+1, 2));
    map = m;
    VERIFY(map.outerStride() == 2*map.innerSize()+1);
    VERIFY(map.innerStride() == 2);
    for(int i = 0; i < m.outerSize(); ++i)
      for(int j = 0; j < m.innerSize(); ++j)
      {
        VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j));
        VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j));
      }
    VERIFY_IS_APPROX(s1*map,s1*m);
    map *= s1;
    VERIFY_IS_APPROX(map,s1*m);
  }

  internal::aligned_delete(a_array1, arraysize+1);
}

void test_mapstride()
{
  for(int i = 0; i < g_repeat; i++) {
    int maxn = 30;
    CALL_SUBTEST_1( map_class_vector<Aligned>(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_1( map_class_vector<Unaligned>(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( map_class_vector<Aligned>(Vector4d()) );
    CALL_SUBTEST_2( map_class_vector<Unaligned>(Vector4d()) );
    CALL_SUBTEST_3( map_class_vector<Aligned>(RowVector4f()) );
    CALL_SUBTEST_3( map_class_vector<Unaligned>(RowVector4f()) );
    CALL_SUBTEST_4( map_class_vector<Aligned>(VectorXcf(internal::random<int>(1,maxn))) );
    CALL_SUBTEST_4( map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1,maxn))) );
    CALL_SUBTEST_5( map_class_vector<Aligned>(VectorXi(internal::random<int>(1,maxn))) );
    CALL_SUBTEST_5( map_class_vector<Unaligned>(VectorXi(internal::random<int>(1,maxn))) );

    CALL_SUBTEST_1( map_class_matrix<Aligned>(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_1( map_class_matrix<Unaligned>(Matrix<float, 1, 1>()) );
    CALL_SUBTEST_2( map_class_matrix<Aligned>(Matrix4d()) );
    CALL_SUBTEST_2( map_class_matrix<Unaligned>(Matrix4d()) );
    CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,3,5>()) );
    CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,3,5>()) );
    CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,4,8>()) );
    CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,4,8>()) );
    CALL_SUBTEST_4( map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
    CALL_SUBTEST_4( map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
    CALL_SUBTEST_5( map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
    CALL_SUBTEST_5( map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
    CALL_SUBTEST_6( map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
    CALL_SUBTEST_6( map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) );
    
    TEST_SET_BUT_UNUSED_VARIABLE(maxn);
  }
}