aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h
blob: 166be200c5587be71dd7b6bfce5bb8ea89e4a34a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H
#define EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H

namespace Eigen {

/** \class TensorAssign
  * \ingroup CXX11_Tensor_Module
  *
  * \brief The tensor assignment class.
  *
  * This class is represents the assignment of the values resulting from the evaluation of
  * the rhs expression to the memory locations denoted by the lhs expression.
  */
namespace internal {
template<typename LhsXprType, typename RhsXprType>
struct traits<TensorAssignOp<LhsXprType, RhsXprType> >
{
  typedef typename LhsXprType::Scalar Scalar;
  typedef typename traits<LhsXprType>::StorageKind StorageKind;
  typedef typename promote_index_type<typename traits<LhsXprType>::Index,
                                      typename traits<RhsXprType>::Index>::type Index;
  typedef typename LhsXprType::Nested LhsNested;
  typedef typename RhsXprType::Nested RhsNested;
  typedef typename remove_reference<LhsNested>::type _LhsNested;
  typedef typename remove_reference<RhsNested>::type _RhsNested;
  static const std::size_t NumDimensions = internal::traits<LhsXprType>::NumDimensions;
  static const int Layout = internal::traits<LhsXprType>::Layout;

  enum {
    Flags = 0
  };
};

template<typename LhsXprType, typename RhsXprType>
struct eval<TensorAssignOp<LhsXprType, RhsXprType>, Eigen::Dense>
{
  typedef const TensorAssignOp<LhsXprType, RhsXprType>& type;
};

template<typename LhsXprType, typename RhsXprType>
struct nested<TensorAssignOp<LhsXprType, RhsXprType>, 1, typename eval<TensorAssignOp<LhsXprType, RhsXprType> >::type>
{
  typedef TensorAssignOp<LhsXprType, RhsXprType> type;
};

}  // end namespace internal



template<typename LhsXprType, typename RhsXprType>
class TensorAssignOp : public TensorBase<TensorAssignOp<LhsXprType, RhsXprType> >
{
  public:
  typedef typename Eigen::internal::traits<TensorAssignOp>::Scalar Scalar;
  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
  typedef typename LhsXprType::CoeffReturnType CoeffReturnType;
  typedef typename Eigen::internal::nested<TensorAssignOp>::type Nested;
  typedef typename Eigen::internal::traits<TensorAssignOp>::StorageKind StorageKind;
  typedef typename Eigen::internal::traits<TensorAssignOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorAssignOp(LhsXprType& lhs, const RhsXprType& rhs)
      : m_lhs_xpr(lhs), m_rhs_xpr(rhs) {}

    /** \returns the nested expressions */
    EIGEN_DEVICE_FUNC
    typename internal::remove_all<typename LhsXprType::Nested>::type&
    lhsExpression() const { return *((typename internal::remove_all<typename LhsXprType::Nested>::type*)&m_lhs_xpr); }

    EIGEN_DEVICE_FUNC
    const typename internal::remove_all<typename RhsXprType::Nested>::type&
    rhsExpression() const { return m_rhs_xpr; }

  protected:
    typename internal::remove_all<typename LhsXprType::Nested>::type& m_lhs_xpr;
    const typename internal::remove_all<typename RhsXprType::Nested>::type& m_rhs_xpr;
};


template<typename LeftArgType, typename RightArgType, typename Device>
struct TensorEvaluator<const TensorAssignOp<LeftArgType, RightArgType>, Device>
{
  typedef TensorAssignOp<LeftArgType, RightArgType> XprType;
  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef typename TensorEvaluator<RightArgType, Device>::Dimensions Dimensions;
  static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;

  enum {
    IsAligned = TensorEvaluator<LeftArgType, Device>::IsAligned & TensorEvaluator<RightArgType, Device>::IsAligned,
    PacketAccess = TensorEvaluator<LeftArgType, Device>::PacketAccess & TensorEvaluator<RightArgType, Device>::PacketAccess,
    Layout = TensorEvaluator<LeftArgType, Device>::Layout,
    RawAccess = TensorEvaluator<LeftArgType, Device>::RawAccess
  };

  EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) :
      m_leftImpl(op.lhsExpression(), device),
      m_rightImpl(op.rhsExpression(), device)
  {
    EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
  }

  EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
  {
    // The dimensions of the lhs and the rhs tensors should be equal to prevent
    // overflows and ensure the result is fully initialized.
    // TODO: use left impl instead if right impl dimensions are known at compile time.
    return m_rightImpl.dimensions();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) {
    eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
    m_leftImpl.evalSubExprsIfNeeded(NULL);
    // If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non
    // null value), attempt to evaluate the rhs expression in place. Returns true iff in place
    // evaluation isn't supported and the caller still needs to manually assign the values generated
    // by the rhs to the lhs.
    return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data());
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
    m_leftImpl.cleanup();
    m_rightImpl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) {
    m_leftImpl.coeffRef(i) = m_rightImpl.coeff(i);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) {
    const int LhsStoreMode = TensorEvaluator<LeftArgType, Device>::IsAligned ? Aligned : Unaligned;
    const int RhsLoadMode = TensorEvaluator<RightArgType, Device>::IsAligned ? Aligned : Unaligned;
    m_leftImpl.template writePacket<LhsStoreMode>(i, m_rightImpl.template packet<RhsLoadMode>(i));
  }
  EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
  {
    return m_leftImpl.coeff(index);
  }
  template<int LoadMode>
  EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
  {
    return m_leftImpl.template packet<LoadMode>(index);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
  costPerCoeff(bool vectorized) const {
    // We assume that evalPacket or evalScalar is called to perform the
    // assignment and account for the cost of the write here, but reduce left
    // cost by one load because we are using m_leftImpl.coeffRef.
    TensorOpCost left = m_leftImpl.costPerCoeff(vectorized);
    return m_rightImpl.costPerCoeff(vectorized) +
           TensorOpCost(
               numext::maxi(0.0, left.bytes_loaded() - sizeof(CoeffReturnType)),
               left.bytes_stored(), left.compute_cycles()) +
           TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize);
  }

  /// required by sycl in order to extract the accessor
  const TensorEvaluator<LeftArgType, Device>& left_impl() const { return m_leftImpl; }
  /// required by sycl in order to extract the accessor
  const TensorEvaluator<RightArgType, Device>& right_impl() const { return m_rightImpl; }

  EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_leftImpl.data(); }

 private:
  TensorEvaluator<LeftArgType, Device> m_leftImpl;
  TensorEvaluator<RightArgType, Device> m_rightImpl;
};

}


#endif // EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H