aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
blob: 1ba7ef170cc52919105854a1e3e962ec03075450 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H
#define EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H

namespace Eigen {

/** \class TensorKChippingReshaping
  * \ingroup CXX11_Tensor_Module
  *
  * \brief A chip is a thin slice, corresponding to a column or a row in a 2-d tensor.
  *
  *
  */

namespace internal {
template<DenseIndex DimId, typename XprType>
struct traits<TensorChippingOp<DimId, XprType> > : public traits<XprType>
{
  typedef typename XprType::Scalar Scalar;
  typedef traits<XprType> XprTraits;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = XprTraits::NumDimensions - 1;
  static const int Layout = XprTraits::Layout;
};

template<DenseIndex DimId, typename XprType>
struct eval<TensorChippingOp<DimId, XprType>, Eigen::Dense>
{
  typedef const TensorChippingOp<DimId, XprType>& type;
};

template<DenseIndex DimId, typename XprType>
struct nested<TensorChippingOp<DimId, XprType>, 1, typename eval<TensorChippingOp<DimId, XprType> >::type>
{
  typedef TensorChippingOp<DimId, XprType> type;
};

template <DenseIndex DimId>
struct DimensionId
{
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) {
    eigen_assert(dim == DimId);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const {
    return DimId;
  }
};
template <>
struct DimensionId<Dynamic>
{
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DimensionId(DenseIndex dim) : actual_dim(dim) {
    eigen_assert(dim >= 0);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex actualDim() const {
    return actual_dim;
  }
 private:
  const DenseIndex actual_dim;
};


}  // end namespace internal



template<DenseIndex DimId, typename XprType>
class TensorChippingOp : public TensorBase<TensorChippingOp<DimId, XprType> >
{
  public:
  typedef typename Eigen::internal::traits<TensorChippingOp>::Scalar Scalar;
  typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename Eigen::internal::nested<TensorChippingOp>::type Nested;
  typedef typename Eigen::internal::traits<TensorChippingOp>::StorageKind StorageKind;
  typedef typename Eigen::internal::traits<TensorChippingOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorChippingOp(const XprType& expr, const Index offset, const Index dim)
      : m_xpr(expr), m_offset(offset), m_dim(dim) {
  }

  EIGEN_DEVICE_FUNC
  const Index offset() const { return m_offset; }
  EIGEN_DEVICE_FUNC
  const Index dim() const { return m_dim.actualDim(); }

  EIGEN_DEVICE_FUNC
  const typename internal::remove_all<typename XprType::Nested>::type&
  expression() const { return m_xpr; }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE TensorChippingOp& operator = (const TensorChippingOp& other)
  {
    typedef TensorAssignOp<TensorChippingOp, const TensorChippingOp> Assign;
    Assign assign(*this, other);
    internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
    return *this;
  }

  template<typename OtherDerived>
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE TensorChippingOp& operator = (const OtherDerived& other)
  {
    typedef TensorAssignOp<TensorChippingOp, const OtherDerived> Assign;
    Assign assign(*this, other);
    internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
    return *this;
  }

  protected:
    typename XprType::Nested m_xpr;
    const Index m_offset;
    const internal::DimensionId<DimId> m_dim;
};


// Eval as rvalue
template<DenseIndex DimId, typename ArgType, typename Device>
struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
{
  typedef TensorChippingOp<DimId, ArgType> XprType;
  static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
  static const int NumDims = NumInputDims-1;
  typedef typename XprType::Index Index;
  typedef DSizes<Index, NumDims> Dimensions;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;


  enum {
    // Alignment can't be guaranteed at compile time since it depends on the
    // slice offsets.
    IsAligned = false,
    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = false,  // to be implemented
    RawAccess = false
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device)
  {
    EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
    eigen_assert(NumInputDims > m_dim.actualDim());

    const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
    eigen_assert(op.offset() < input_dims[m_dim.actualDim()]);

    int j = 0;
    for (int i = 0; i < NumInputDims; ++i) {
      if (i != m_dim.actualDim()) {
        m_dimensions[j] = input_dims[i];
        ++j;
      }
    }

    m_stride = 1;
    m_inputStride = 1;
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      for (int i = 0; i < m_dim.actualDim(); ++i) {
        m_stride *= input_dims[i];
        m_inputStride *= input_dims[i];
      }
    } else {
      for (int i = NumInputDims-1; i > m_dim.actualDim(); --i) {
        m_stride *= input_dims[i];
        m_inputStride *= input_dims[i];
      }
    }
    m_inputStride *= input_dims[m_dim.actualDim()];
    m_inputOffset = m_stride * op.offset();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
    m_impl.evalSubExprsIfNeeded(NULL);
    return true;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    return m_impl.coeff(srcCoeff(index));
  }

  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
    eigen_assert(index+PacketSize-1 < dimensions().TotalSize());

    if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) ||
	(static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
      // m_stride is equal to 1, so let's avoid the integer division.
      eigen_assert(m_stride == 1);
      Index inputIndex = index * m_inputStride + m_inputOffset;
      EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
      for (int i = 0; i < PacketSize; ++i) {
        values[i] = m_impl.coeff(inputIndex);
        inputIndex += m_inputStride;
      }
      PacketReturnType rslt = internal::pload<PacketReturnType>(values);
      return rslt;
    } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims - 1) ||
	       (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
      // m_stride is aways greater than index, so let's avoid the integer division.
      eigen_assert(m_stride > index);
      return m_impl.template packet<LoadMode>(index + m_inputOffset);
    } else {
      const Index idx = index / m_stride;
      const Index rem = index - idx * m_stride;
      if (rem + PacketSize <= m_stride) {
        Index inputIndex = idx * m_inputStride + m_inputOffset + rem;
        return m_impl.template packet<LoadMode>(inputIndex);
      } else {
        // Cross the stride boundary. Fallback to slow path.
        EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
        for (int i = 0; i < PacketSize; ++i) {
          values[i] = coeff(index);
          ++index;
        }
        PacketReturnType rslt = internal::pload<PacketReturnType>(values);
        return rslt;
      }
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
  costPerCoeff(bool vectorized) const {
    double cost = 0;
    if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) &&
         m_dim.actualDim() == 0) ||
        (static_cast<int>(Layout) == static_cast<int>(RowMajor) &&
         m_dim.actualDim() == NumInputDims - 1)) {
      cost += TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
    } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) &&
                m_dim.actualDim() == NumInputDims - 1) ||
               (static_cast<int>(Layout) == static_cast<int>(RowMajor) &&
                m_dim.actualDim() == 0)) {
      cost += TensorOpCost::AddCost<Index>();
    } else {
      cost += 3 * TensorOpCost::MulCost<Index>() + TensorOpCost::DivCost<Index>() +
              3 * TensorOpCost::AddCost<Index>();
    }

    return m_impl.costPerCoeff(vectorized) +
           TensorOpCost(0, 0, cost, vectorized, PacketSize);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType* data() const {
    CoeffReturnType* result = const_cast<CoeffReturnType*>(m_impl.data());
    if (((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumDims) ||
         (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) &&
        result) {
      return result + m_inputOffset;
    } else {
      return NULL;
    }
  }

 protected:
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
  {
    Index inputIndex;
    if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) ||
	(static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
      // m_stride is equal to 1, so let's avoid the integer division.
      eigen_assert(m_stride == 1);
      inputIndex = index * m_inputStride + m_inputOffset;
    } else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims-1) ||
	       (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
      // m_stride is aways greater than index, so let's avoid the integer division.
      eigen_assert(m_stride > index);
      inputIndex = index + m_inputOffset;
    } else {
      const Index idx = index / m_stride;
      inputIndex = idx * m_inputStride + m_inputOffset;
      index -= idx * m_stride;
      inputIndex += index;
    }
    return inputIndex;
  }

  Dimensions m_dimensions;
  Index m_stride;
  Index m_inputOffset;
  Index m_inputStride;
  TensorEvaluator<ArgType, Device> m_impl;
  const internal::DimensionId<DimId> m_dim;
  const Device& m_device;
};


// Eval as lvalue
template<DenseIndex DimId, typename ArgType, typename Device>
struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
  : public TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
{
  typedef TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device> Base;
  typedef TensorChippingOp<DimId, ArgType> XprType;
  static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
  static const int NumDims = NumInputDims-1;
  typedef typename XprType::Index Index;
  typedef DSizes<Index, NumDims> Dimensions;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;

  enum {
    IsAligned = false,
    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
    RawAccess = false
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
    : Base(op, device)
    { }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
  {
    return this->m_impl.coeffRef(this->srcCoeff(index));
  }

  template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  void writePacket(Index index, const PacketReturnType& x)
  {
    EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)

    if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == 0) ||
	(static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == NumInputDims-1)) {
      // m_stride is equal to 1, so let's avoid the integer division.
      eigen_assert(this->m_stride == 1);
      EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
      internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
      Index inputIndex = index * this->m_inputStride + this->m_inputOffset;
      for (int i = 0; i < PacketSize; ++i) {
        this->m_impl.coeffRef(inputIndex) = values[i];
        inputIndex += this->m_inputStride;
      }
    } else if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == NumInputDims-1) ||
	       (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == 0)) {
      // m_stride is aways greater than index, so let's avoid the integer division.
      eigen_assert(this->m_stride > index);
      this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x);
    } else {
      const Index idx = index / this->m_stride;
      const Index rem = index - idx * this->m_stride;
      if (rem + PacketSize <= this->m_stride) {
        const Index inputIndex = idx * this->m_inputStride + this->m_inputOffset + rem;
        this->m_impl.template writePacket<StoreMode>(inputIndex, x);
      } else {
        // Cross stride boundary. Fallback to slow path.
        EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
        internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
        for (int i = 0; i < PacketSize; ++i) {
          this->coeffRef(index) = values[i];
          ++index;
        }
      }
    }
  }
};


} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_CHIPPING_H