aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h
blob: 9b2cb3ff6bcbf9b1dc55b9ee90dcd77e1f689a64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H

namespace Eigen {

namespace internal {

enum {
  Rhs = 0,
  Lhs = 1
};

/*
 * Implementation of the Eigen blas_data_mapper class for tensors.
 */

template <typename Tensor, bool HasRawAccess> struct CoeffLoader {
  enum {
    DirectOffsets = false
  };

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_tensor(tensor) { }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index) {
    eigen_assert(false && "unsupported");
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return m_tensor.coeff(index); }

 template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
 typename Tensor::PacketReturnType packet(typename Tensor::Index index) const
  {
    return m_tensor.template packet<LoadMode>(index);
  }


 private:
  const Tensor m_tensor;
};

template <typename Tensor> struct CoeffLoader<Tensor, true> {
  enum {
    DirectOffsets = true
  };

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffLoader(const Tensor& tensor) : m_data(tensor.data()) {}

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) {
    m_data += offset;
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE typename Tensor::Scalar coeff(typename Tensor::Index index) const { return loadConstant(m_data+index); }

 template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
 typename Tensor::PacketReturnType packet(typename Tensor::Index index) const
  {
    return internal::ploadt_ro<typename Tensor::PacketReturnType, LoadMode>(m_data + index);
  }
 private:
  typedef typename Tensor::Scalar Scalar;
  const Scalar* m_data;
};

template<typename Scalar, typename Index, int side,
         typename Tensor,
         typename nocontract_t, typename contract_t,
         int packet_size, bool inner_dim_contiguous, int Alignment>
class SimpleTensorContractionMapper {
  public:
  EIGEN_DEVICE_FUNC
  SimpleTensorContractionMapper(const Tensor& tensor,
                                const nocontract_t& nocontract_strides,
                                const nocontract_t& ij_strides,
                                const contract_t& contract_strides,
                                const contract_t& k_strides) :
      m_tensor(tensor),
      m_nocontract_strides(nocontract_strides),
      m_ij_strides(ij_strides),
      m_contract_strides(contract_strides),
      m_k_strides(k_strides) { }

  enum {
    DirectOffsets = CoeffLoader<Tensor, Tensor::RawAccess>::DirectOffsets
  };

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void offsetBuffer(typename Tensor::Index offset) {
    m_tensor.offsetBuffer(offset);
  }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE void prefetch(Index /*i*/) { }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Scalar operator()(Index row) const {
    // column major assumption
    return operator()(row, 0);
  }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Scalar operator()(Index row, Index col) const {
    return m_tensor.coeff(computeIndex(row, col));
  }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Index computeIndex(Index row, Index col) const {
    const bool left = (side == Lhs);
    Index nocontract_val = left ? row : col;
    Index linidx = 0;
    for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
      const Index idx = nocontract_val / m_ij_strides[i];
      linidx += idx * m_nocontract_strides[i];
      nocontract_val -= idx * m_ij_strides[i];
    }
    if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) {
      if (side == Lhs && inner_dim_contiguous) {
        eigen_assert(m_nocontract_strides[0] == 1);
        linidx += nocontract_val;
      } else {
        linidx += nocontract_val * m_nocontract_strides[0];
      }
    }

    Index contract_val = left ? col : row;
    if(array_size<contract_t>::value > 0) {
      for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
        const Index idx = contract_val / m_k_strides[i];
        linidx += idx * m_contract_strides[i];
        contract_val -= idx * m_k_strides[i];
      }

      if (side == Rhs && inner_dim_contiguous) {
        eigen_assert(m_contract_strides[0] == 1);
        linidx += contract_val;
      } else {
        linidx += contract_val * m_contract_strides[0];
      }
    }

    return linidx;
  }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE IndexPair<Index> computeIndexPair(Index row, Index col, const Index distance) const {
    const bool left = (side == Lhs);
    Index nocontract_val[2] = {left ? row : col, left ? row + distance : col};
    Index linidx[2] = {0, 0};
    if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) {
      for (int i = static_cast<int>(array_size<nocontract_t>::value) - 1; i > 0; i--) {
        const Index idx0 = nocontract_val[0] / m_ij_strides[i];
        const Index idx1 = nocontract_val[1] / m_ij_strides[i];
        linidx[0] += idx0 * m_nocontract_strides[i];
        linidx[1] += idx1 * m_nocontract_strides[i];
        nocontract_val[0] -= idx0 * m_ij_strides[i];
        nocontract_val[1] -= idx1 * m_ij_strides[i];
      }
      if (side == Lhs && inner_dim_contiguous) {
        eigen_assert(m_nocontract_strides[0] == 1);
        linidx[0] += nocontract_val[0];
        linidx[1] += nocontract_val[1];
      } else {
        linidx[0] += nocontract_val[0] * m_nocontract_strides[0];
        linidx[1] += nocontract_val[1] * m_nocontract_strides[0];
      }
    }

    Index contract_val[2] = {left ? col : row, left ? col : row + distance};
    if (array_size<contract_t>::value> 0) {
      for (int i = static_cast<int>(array_size<contract_t>::value) - 1; i > 0; i--) {
        const Index idx0 = contract_val[0] / m_k_strides[i];
        const Index idx1 = contract_val[1] / m_k_strides[i];
        linidx[0] += idx0 * m_contract_strides[i];
        linidx[1] += idx1 * m_contract_strides[i];
        contract_val[0] -= idx0 * m_k_strides[i];
        contract_val[1] -= idx1 * m_k_strides[i];
      }

      if (side == Rhs && inner_dim_contiguous) {
        eigen_assert(m_contract_strides[0] == 1);
        linidx[0] += contract_val[0];
        linidx[1] += contract_val[1];
      } else {
        linidx[0] += contract_val[0] * m_contract_strides[0];
        linidx[1] += contract_val[1] * m_contract_strides[0];
      }
    }
    return IndexPair<Index>(linidx[0], linidx[1]);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index firstAligned(Index size) const {
    // Only claim alignment when we can compute the actual stride (ie when we're
    // dealing with the lhs with inner_dim_contiguous. This is because the
    // matrix-vector product relies on the stride when dealing with aligned inputs.
    return (Alignment == Aligned) && (side == Lhs) && inner_dim_contiguous ? 0 : size;
  }
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Index stride() const {
    return ((side == Lhs) && inner_dim_contiguous && array_size<contract_t>::value > 0) ? m_contract_strides[0] : 1;
  }

 protected:
  CoeffLoader<Tensor, Tensor::RawAccess> m_tensor;
  const nocontract_t m_nocontract_strides;
  const nocontract_t m_ij_strides;
  const contract_t m_contract_strides;
  const contract_t m_k_strides;
};


template<typename Scalar, typename Index, int side,
         typename Tensor,
         typename nocontract_t, typename contract_t,
         int packet_size, bool inner_dim_contiguous,
         bool inner_dim_reordered, int Alignment>
class BaseTensorContractionMapper : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment>
{
 public:
  typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, Alignment> ParentMapper;

  EIGEN_DEVICE_FUNC
  BaseTensorContractionMapper(const Tensor& tensor,
                              const nocontract_t& nocontract_strides,
                              const nocontract_t& ij_strides,
                              const contract_t& contract_strides,
                              const contract_t& k_strides) :
  ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }

  typedef typename Tensor::PacketReturnType Packet;
  typedef typename unpacket_traits<Packet>::half HalfPacket;

  template <int AlignmentType>
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const {
    // whole method makes column major assumption

    // don't need to add offsets for now (because operator handles that)
    // current code assumes packet size must be a multiple of 2
    EIGEN_STATIC_ASSERT(packet_size % 2 == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);

    if (Tensor::PacketAccess && inner_dim_contiguous && !inner_dim_reordered) {
      const Index index = this->computeIndex(i, j);
      eigen_assert(this->computeIndex(i+packet_size-1, j) == index + packet_size-1);
      return this->m_tensor.template packet<AlignmentType>(index);
    }

    const IndexPair<Index> indexPair = this->computeIndexPair(i, j, packet_size - 1);
    const Index first = indexPair.first;
    const Index last = indexPair.second;

    // We can always do optimized packet reads from left hand side right now, because
    // the vertical matrix dimension on the left hand side is never contracting.
    // On the right hand side we need to check if the contracting dimensions may have
    // been shuffled first.
    if (Tensor::PacketAccess &&
        (side == Lhs || internal::array_size<contract_t>::value <= 1 || !inner_dim_reordered) &&
        (last - first) == (packet_size - 1)) {

      return this->m_tensor.template packet<AlignmentType>(first);
    }

    EIGEN_ALIGN_MAX Scalar data[packet_size];

    data[0] = this->m_tensor.coeff(first);
    for (Index k = 1; k < packet_size - 1; k += 2) {
      const IndexPair<Index> internal_pair = this->computeIndexPair(i + k, j, 1);
      data[k] = this->m_tensor.coeff(internal_pair.first);
      data[k + 1] = this->m_tensor.coeff(internal_pair.second);
    }
    data[packet_size - 1] = this->m_tensor.coeff(last);

    return pload<Packet>(data);
  }

  template <int AlignmentType>
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE HalfPacket loadHalfPacket(Index i, Index j) const {
    // whole method makes column major assumption

    // don't need to add offsets for now (because operator handles that)
    const Index half_packet_size = unpacket_traits<HalfPacket>::size;
    if (half_packet_size == packet_size) {
      return loadPacket<AlignmentType>(i, j);
    }
    EIGEN_ALIGN_MAX Scalar data[half_packet_size];
    for (Index k = 0; k < half_packet_size; k++) {
      data[k] = operator()(i + k, j);
    }
    return pload<HalfPacket>(data);
  }
};


template<typename Scalar, typename Index, int side,
         typename Tensor,
         typename nocontract_t, typename contract_t,
         bool inner_dim_contiguous,
         bool inner_dim_reordered, int Alignment>
class BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, inner_dim_reordered, Alignment> : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment>
{
 public:
  typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, Alignment> ParentMapper;

  EIGEN_DEVICE_FUNC
  BaseTensorContractionMapper(const Tensor& tensor,
                              const nocontract_t& nocontract_strides,
                              const nocontract_t& ij_strides,
                              const contract_t& contract_strides,
                              const contract_t& k_strides) :
  ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }

  typedef typename Tensor::PacketReturnType Packet;
  template <int> EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const {
    EIGEN_ALIGN_MAX Scalar data[1];
    data[0] = this->m_tensor.coeff(this->computeIndex(i, j));
    return pload<typename Tensor::PacketReturnType>(data);
  }
  template <int> EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Packet loadHalfPacket(Index i, Index j) const {
    return loadPacket(i, j);
  }
};


template<typename Scalar, typename Index, int side,
         typename Tensor,
         typename nocontract_t, typename contract_t,
         int packet_size,
         bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
class TensorContractionSubMapper {
 public:
  typedef typename Tensor::PacketReturnType Packet;
  typedef typename unpacket_traits<Packet>::half HalfPacket;

  typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> ParentMapper;
  typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Self;
  typedef Self LinearMapper;

  enum {
    // We can use direct offsets iff the parent mapper supports then and we can compute the strides.
    // TODO: we should also enable direct offsets for the Rhs case.
    UseDirectOffsets = ParentMapper::DirectOffsets && (side == Lhs) && inner_dim_contiguous && (array_size<contract_t>::value > 0)
  };

  EIGEN_DEVICE_FUNC TensorContractionSubMapper(const ParentMapper& base_mapper, Index vert_offset, Index horiz_offset)
      : m_base_mapper(base_mapper), m_vert_offset(vert_offset), m_horiz_offset(horiz_offset) {
    // Bake the offsets into the buffer used by the base mapper whenever possible. This avoids the need to recompute
    // this offset every time we attempt to access a coefficient.
    if (UseDirectOffsets) {
      Index stride = m_base_mapper.stride();
      m_base_mapper.offsetBuffer(vert_offset + horiz_offset * stride);
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const {
    if (UseDirectOffsets) {
      return m_base_mapper(i, 0);
    }
    return m_base_mapper(i + m_vert_offset, m_horiz_offset);
  }
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i, Index j) const {
    if (UseDirectOffsets) {
      return m_base_mapper(i, j);
    }
    return m_base_mapper(i + m_vert_offset, j + m_horiz_offset);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const {
    if (UseDirectOffsets) {
      return m_base_mapper.template loadPacket<Alignment>(i, 0);
    }
    return m_base_mapper.template loadPacket<Alignment>(i + m_vert_offset, m_horiz_offset);
  }
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const {
    if (UseDirectOffsets) {
      return m_base_mapper.template loadPacket<Alignment>(i, j);
    }
    return m_base_mapper.template loadPacket<Alignment>(i + m_vert_offset, j + m_horiz_offset);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i) const {
    if (UseDirectOffsets) {
      return m_base_mapper.template loadHalfPacket<Alignment>(i, 0);
    }
    return m_base_mapper.template loadHalfPacket<Alignment>(i + m_vert_offset, m_horiz_offset);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Packet p) const {
    if (UseDirectOffsets) {
      m_base_mapper.storePacket(i, 0, p);
    }
    m_base_mapper.storePacket(i + m_vert_offset, m_horiz_offset, p);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const {
    if (UseDirectOffsets) {
      return LinearMapper(m_base_mapper, i, j);
    }
    return LinearMapper(m_base_mapper, i + m_vert_offset, j + m_horiz_offset);
  }

  template <typename PacketT, int AlignmentType>
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i) const {
    EIGEN_STATIC_ASSERT((internal::is_same<PacketT, Packet>::value), YOU_MADE_A_PROGRAMMING_MISTAKE);
    const int ActualAlignment = (AlignmentType == Aligned) && (Alignment == Aligned) ? Aligned : Unaligned;
    if (UseDirectOffsets) {
     return m_base_mapper.template loadPacket<ActualAlignment>(i, 0);
    }
    return m_base_mapper.template loadPacket<ActualAlignment>(i + m_vert_offset, m_horiz_offset);
  }

  template <typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool aligned(Index) const {
    return false;
  }

 private:
  ParentMapper m_base_mapper;
  const Index m_vert_offset;
  const Index m_horiz_offset;
};


template<typename Scalar_, typename Index, int side,
         typename Tensor,
         typename nocontract_t, typename contract_t,
         int packet_size,
         bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
class TensorContractionInputMapper
  : public BaseTensorContractionMapper<Scalar_, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> {

 public:
  typedef Scalar_ Scalar;
  typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Base;
  typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper;
  typedef SubMapper VectorMapper;

  EIGEN_DEVICE_FUNC TensorContractionInputMapper(const Tensor& tensor,
                               const nocontract_t& nocontract_strides,
                               const nocontract_t& ij_strides,
                               const contract_t& contract_strides,
                               const contract_t& k_strides)
      : Base(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE SubMapper getSubMapper(Index i, Index j) const {
    return SubMapper(*this, i, j);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const {
    return VectorMapper(*this, i, j);
  }
};



}  // end namespace internal
}  // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPER_H