aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h
blob: d34f1e328c60d984bd4fe234552557586a6ee25e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H
#define EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H

namespace Eigen {

/** \class TensorReshaping
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor reshaping class.
  *
  *
  */
namespace internal {
template<typename NewDimensions, typename XprType>
struct traits<TensorReshapingOp<NewDimensions, XprType> > : public traits<XprType>
{
  typedef typename XprType::Scalar Scalar;
  typedef traits<XprType> XprTraits;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = array_size<NewDimensions>::value;
  static const int Layout = XprTraits::Layout;
};

template<typename NewDimensions, typename XprType>
struct eval<TensorReshapingOp<NewDimensions, XprType>, Eigen::Dense>
{
  typedef const TensorReshapingOp<NewDimensions, XprType>& type;
};

template<typename NewDimensions, typename XprType>
struct nested<TensorReshapingOp<NewDimensions, XprType>, 1, typename eval<TensorReshapingOp<NewDimensions, XprType> >::type>
{
  typedef TensorReshapingOp<NewDimensions, XprType> type;
};

}  // end namespace internal



template<typename NewDimensions, typename XprType>
class TensorReshapingOp : public TensorBase<TensorReshapingOp<NewDimensions, XprType>, WriteAccessors>
{
  public:
  typedef typename Eigen::internal::traits<TensorReshapingOp>::Scalar Scalar;
  typedef typename internal::remove_const<typename XprType::CoeffReturnType>::type CoeffReturnType;
  typedef typename Eigen::internal::nested<TensorReshapingOp>::type Nested;
  typedef typename Eigen::internal::traits<TensorReshapingOp>::StorageKind StorageKind;
  typedef typename Eigen::internal::traits<TensorReshapingOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorReshapingOp(const XprType& expr, const NewDimensions& dims)
      : m_xpr(expr), m_dims(dims) {}

    EIGEN_DEVICE_FUNC
    const NewDimensions& dimensions() const { return m_dims; }

    EIGEN_DEVICE_FUNC
    const typename internal::remove_all<typename XprType::Nested>::type&
    expression() const { return m_xpr; }

    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorReshapingOp& operator = (const TensorReshapingOp& other)
    {
      typedef TensorAssignOp<TensorReshapingOp, const TensorReshapingOp> Assign;
      Assign assign(*this, other);
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
      return *this;
    }

    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorReshapingOp& operator = (const OtherDerived& other)
    {
      typedef TensorAssignOp<TensorReshapingOp, const OtherDerived> Assign;
      Assign assign(*this, other);
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
      return *this;
    }

  protected:
    typename XprType::Nested m_xpr;
    const NewDimensions m_dims;
};


// Eval as rvalue
template<typename NewDimensions, typename ArgType, typename Device>
struct TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>
{
  typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
  typedef NewDimensions Dimensions;

  enum {
    IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = false,  // to be implemented
    RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device), m_dimensions(op.dimensions())
  {
    // The total size of the reshaped tensor must be equal to the total size
    // of the input tensor.
    eigen_assert(internal::array_prod(m_impl.dimensions()) == internal::array_prod(op.dimensions()));
  }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
    return m_impl.evalSubExprsIfNeeded(data);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    return m_impl.coeff(index);
  }

  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    return m_impl.template packet<LoadMode>(index);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    return m_impl.costPerCoeff(vectorized);
  }

  EIGEN_DEVICE_FUNC Scalar* data() const { return const_cast<Scalar*>(m_impl.data()); }

  EIGEN_DEVICE_FUNC const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }

 protected:
  TensorEvaluator<ArgType, Device> m_impl;
  NewDimensions m_dimensions;
};


// Eval as lvalue
template<typename NewDimensions, typename ArgType, typename Device>
  struct TensorEvaluator<TensorReshapingOp<NewDimensions, ArgType>, Device>
  : public TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device>

{
  typedef TensorEvaluator<const TensorReshapingOp<NewDimensions, ArgType>, Device> Base;
  typedef TensorReshapingOp<NewDimensions, ArgType> XprType;
  typedef NewDimensions Dimensions;

  enum {
    IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = false,  // to be implemented
    RawAccess = TensorEvaluator<ArgType, Device>::RawAccess
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
    : Base(op, device)
  { }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
  {
    return this->m_impl.coeffRef(index);
  }
  template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  void writePacket(Index index, const PacketReturnType& x)
  {
    this->m_impl.template writePacket<StoreMode>(index, x);
  }
};


/** \class TensorSlicing
  * \ingroup CXX11_Tensor_Module
  *
  * \brief Tensor slicing class.
  *
  *
  */
namespace internal {
template<typename StartIndices, typename Sizes, typename XprType>
struct traits<TensorSlicingOp<StartIndices, Sizes, XprType> > : public traits<XprType>
{
  typedef typename XprType::Scalar Scalar;
  typedef traits<XprType> XprTraits;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = array_size<StartIndices>::value;
  static const int Layout = XprTraits::Layout;
};

template<typename StartIndices, typename Sizes, typename XprType>
struct eval<TensorSlicingOp<StartIndices, Sizes, XprType>, Eigen::Dense>
{
  typedef const TensorSlicingOp<StartIndices, Sizes, XprType>& type;
};

template<typename StartIndices, typename Sizes, typename XprType>
struct nested<TensorSlicingOp<StartIndices, Sizes, XprType>, 1, typename eval<TensorSlicingOp<StartIndices, Sizes, XprType> >::type>
{
  typedef TensorSlicingOp<StartIndices, Sizes, XprType> type;
};

}  // end namespace internal



template<typename StartIndices, typename Sizes, typename XprType>
class TensorSlicingOp : public TensorBase<TensorSlicingOp<StartIndices, Sizes, XprType> >
{
  public:
  typedef typename Eigen::internal::traits<TensorSlicingOp>::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename Eigen::internal::nested<TensorSlicingOp>::type Nested;
  typedef typename Eigen::internal::traits<TensorSlicingOp>::StorageKind StorageKind;
  typedef typename Eigen::internal::traits<TensorSlicingOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorSlicingOp(const XprType& expr, const StartIndices& indices, const Sizes& sizes)
      : m_xpr(expr), m_indices(indices), m_sizes(sizes) {}

    EIGEN_DEVICE_FUNC
    const StartIndices& startIndices() const { return m_indices; }
    EIGEN_DEVICE_FUNC
    const Sizes& sizes() const { return m_sizes; }

    EIGEN_DEVICE_FUNC
    const typename internal::remove_all<typename XprType::Nested>::type&
    expression() const { return m_xpr; }

    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorSlicingOp& operator = (const OtherDerived& other)
    {
      typedef TensorAssignOp<TensorSlicingOp, const OtherDerived> Assign;
      Assign assign(*this, other);
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
      return *this;
    }

    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorSlicingOp& operator = (const TensorSlicingOp& other)
    {
      typedef TensorAssignOp<TensorSlicingOp, const TensorSlicingOp> Assign;
      Assign assign(*this, other);
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
      return *this;
    }


  protected:
    typename XprType::Nested m_xpr;
    const StartIndices m_indices;
    const Sizes m_sizes;
};


// Fixme: figure out the exact threshold
namespace {
template <typename Index, typename Device> struct MemcpyTriggerForSlicing {
  EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const Device& device) : threshold_(2 * device.numThreads()) { }
  EIGEN_DEVICE_FUNC bool operator ()(Index val) const { return val > threshold_; }

 private:
  Index threshold_;
};

// It is very expensive to start the memcpy kernel on GPU: we therefore only
// use it for large copies.
#ifdef EIGEN_USE_GPU
template <typename Index> struct MemcpyTriggerForSlicing<Index, GpuDevice>  {
  EIGEN_DEVICE_FUNC MemcpyTriggerForSlicing(const GpuDevice&) { }
  EIGEN_DEVICE_FUNC bool operator ()(Index val) const { return val > 4*1024*1024; }
};
#endif
}

// Eval as rvalue
template<typename StartIndices, typename Sizes, typename ArgType, typename Device>
struct TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
{
  typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
  static const int NumDims = internal::array_size<Sizes>::value;

  enum {
    // Alignment can't be guaranteed at compile time since it depends on the
    // slice offsets and sizes.
    IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = false,
    RawAccess = false
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device), m_device(device), m_dimensions(op.sizes()), m_offsets(op.startIndices())
  {
    for (std::size_t i = 0; i < internal::array_size<Dimensions>::value; ++i) {
      eigen_assert(m_impl.dimensions()[i] >= op.sizes()[i] + op.startIndices()[i]);
    }

    const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
    const Sizes& output_dims = op.sizes();
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_inputStrides[0] = 1;
      for (int i = 1; i < NumDims; ++i) {
        m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
      }

     // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
      m_outputStrides[0] = 1;
      for (int i = 1; i < NumDims; ++i) {
        m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
        m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
      }
    } else {
      m_inputStrides[NumDims-1] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
      }

     // Don't initialize m_fastOutputStrides[NumDims-1] since it won't ever be accessed.
      m_outputStrides[NumDims-1] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1];
        m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(m_outputStrides[i]);
      }
    }
  }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef Sizes Dimensions;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }


  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType* data) {
    m_impl.evalSubExprsIfNeeded(NULL);
    if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data && m_impl.data()) {
      Index contiguous_values = 1;
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        for (int i = 0; i < NumDims; ++i) {
          contiguous_values *= dimensions()[i];
          if (dimensions()[i] != m_impl.dimensions()[i]) {
            break;
          }
        }
      } else {
        for (int i = NumDims-1; i >= 0; --i) {
          contiguous_values *= dimensions()[i];
          if (dimensions()[i] != m_impl.dimensions()[i]) {
            break;
          }
        }
      }
      // Use memcpy if it's going to be faster than using the regular evaluation.
      const MemcpyTriggerForSlicing<Index, Device> trigger(m_device);
      if (trigger(contiguous_values)) {
        Scalar* src = (Scalar*)m_impl.data();
        for (int i = 0; i < internal::array_prod(dimensions()); i += contiguous_values) {
          Index offset = srcCoeff(i);
          m_device.memcpy((void*)(data+i), src+offset, contiguous_values * sizeof(Scalar));
        }
        return false;
      }
    }
    return true;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    return m_impl.coeff(srcCoeff(index));
  }

  template<int LoadMode>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
  {
    const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
    EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
    eigen_assert(index+packetSize-1 < internal::array_prod(dimensions()));

    Index inputIndices[] = {0, 0};
    Index indices[] = {index, index + packetSize - 1};
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      for (int i = NumDims - 1; i > 0; --i) {
        const Index idx0 = indices[0] / m_fastOutputStrides[i];
        const Index idx1 = indices[1] / m_fastOutputStrides[i];
        inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
        inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
        indices[0] -= idx0 * m_outputStrides[i];
        indices[1] -= idx1 * m_outputStrides[i];
      }
      inputIndices[0] += (indices[0] + m_offsets[0]);
      inputIndices[1] += (indices[1] + m_offsets[0]);
    } else {
      for (int i = 0; i < NumDims - 1; ++i) {
        const Index idx0 = indices[0] / m_fastOutputStrides[i];
        const Index idx1 = indices[1] / m_fastOutputStrides[i];
        inputIndices[0] += (idx0 + m_offsets[i]) * m_inputStrides[i];
        inputIndices[1] += (idx1 + m_offsets[i]) * m_inputStrides[i];
        indices[0] -= idx0 * m_outputStrides[i];
        indices[1] -= idx1 * m_outputStrides[i];
      }
      inputIndices[0] += (indices[0] + m_offsets[NumDims-1]);
      inputIndices[1] += (indices[1] + m_offsets[NumDims-1]);
    }
    if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
      PacketReturnType rslt = m_impl.template packet<Unaligned>(inputIndices[0]);
      return rslt;
    }
    else {
      EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize];
      values[0] = m_impl.coeff(inputIndices[0]);
      values[packetSize-1] = m_impl.coeff(inputIndices[1]);
      for (int i = 1; i < packetSize-1; ++i) {
        values[i] = coeff(index+i);
      }
      PacketReturnType rslt = internal::pload<PacketReturnType>(values);
      return rslt;
    }
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, NumDims);
  }


  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const {
    Scalar* result = m_impl.data();
    if (result) {
      Index offset = 0;
      if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
        for (int i = 0; i < NumDims; ++i) {
          if (m_dimensions[i] != m_impl.dimensions()[i]) {
            offset += m_offsets[i] * m_inputStrides[i];
            for (int j = i+1; j < NumDims; ++j) {
              if (m_dimensions[j] > 1) {
                return NULL;
              }
              offset += m_offsets[j] * m_inputStrides[j];
            }
            break;
          }
        }
      } else {
        for (int i = NumDims - 1; i >= 0; --i) {
          if (m_dimensions[i] != m_impl.dimensions()[i]) {
            offset += m_offsets[i] * m_inputStrides[i];
            for (int j = i-1; j >= 0; --j) {
              if (m_dimensions[j] > 1) {
                return NULL;
              }
              offset += m_offsets[j] * m_inputStrides[j];
            }
            break;
          }
        }
      }
      return result + offset;
    }
    return NULL;
  }

 protected:
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
  {
    Index inputIndex = 0;
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      for (int i = NumDims - 1; i > 0; --i) {
        const Index idx = index / m_fastOutputStrides[i];
        inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
        index -= idx * m_outputStrides[i];
      }
      inputIndex += (index + m_offsets[0]);
    } else {
      for (int i = 0; i < NumDims - 1; ++i) {
        const Index idx = index / m_fastOutputStrides[i];
        inputIndex += (idx + m_offsets[i]) * m_inputStrides[i];
        index -= idx * m_outputStrides[i];
      }
      inputIndex += (index + m_offsets[NumDims-1]);
    }
    return inputIndex;
  }

  array<Index, NumDims> m_outputStrides;
  array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
  array<Index, NumDims> m_inputStrides;
  TensorEvaluator<ArgType, Device> m_impl;
  const Device& m_device;
  Dimensions m_dimensions;
  const StartIndices m_offsets;
};


// Eval as lvalue
template<typename StartIndices, typename Sizes, typename ArgType, typename Device>
struct TensorEvaluator<TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
  : public TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device>
{
  typedef TensorEvaluator<const TensorSlicingOp<StartIndices, Sizes, ArgType>, Device> Base;
  typedef TensorSlicingOp<StartIndices, Sizes, ArgType> XprType;
  static const int NumDims = internal::array_size<Sizes>::value;

  enum {
    IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/false,
    PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = false,
    RawAccess = false
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
    : Base(op, device)
    { }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef Sizes Dimensions;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
  {
    return this->m_impl.coeffRef(this->srcCoeff(index));
  }

  template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  void writePacket(Index index, const PacketReturnType& x)
  {
    const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
    Index inputIndices[] = {0, 0};
    Index indices[] = {index, index + packetSize - 1};
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      for (int i = NumDims - 1; i > 0; --i) {
        const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
        const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
        inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
        inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
        indices[0] -= idx0 * this->m_outputStrides[i];
        indices[1] -= idx1 * this->m_outputStrides[i];
      }
      inputIndices[0] += (indices[0] + this->m_offsets[0]);
      inputIndices[1] += (indices[1] + this->m_offsets[0]);
    } else {
      for (int i = 0; i < NumDims - 1; ++i) {
        const Index idx0 = indices[0] / this->m_fastOutputStrides[i];
        const Index idx1 = indices[1] / this->m_fastOutputStrides[i];
        inputIndices[0] += (idx0 + this->m_offsets[i]) * this->m_inputStrides[i];
        inputIndices[1] += (idx1 + this->m_offsets[i]) * this->m_inputStrides[i];
        indices[0] -= idx0 * this->m_outputStrides[i];
        indices[1] -= idx1 * this->m_outputStrides[i];
      }
      inputIndices[0] += (indices[0] + this->m_offsets[NumDims-1]);
      inputIndices[1] += (indices[1] + this->m_offsets[NumDims-1]);
    }
    if (inputIndices[1] - inputIndices[0] == packetSize - 1) {
      this->m_impl.template writePacket<StoreMode>(inputIndices[0], x);
    }
    else {
      EIGEN_ALIGN_MAX CoeffReturnType values[packetSize];
      internal::pstore<CoeffReturnType, PacketReturnType>(values, x);
      this->m_impl.coeffRef(inputIndices[0]) = values[0];
      this->m_impl.coeffRef(inputIndices[1]) = values[packetSize-1];
      for (int i = 1; i < packetSize-1; ++i) {
        this->coeffRef(index+i) = values[i];
      }
    }
  }
};



namespace internal {
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct traits<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> > : public traits<XprType>
{
  typedef typename XprType::Scalar Scalar;
  typedef traits<XprType> XprTraits;
  typedef typename XprTraits::StorageKind StorageKind;
  typedef typename XprTraits::Index Index;
  typedef typename XprType::Nested Nested;
  typedef typename remove_reference<Nested>::type _Nested;
  static const int NumDimensions = array_size<StartIndices>::value;
  static const int Layout = XprTraits::Layout;
};

template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Eigen::Dense>
{
  typedef const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>& type;
};

template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
struct nested<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, 1, typename eval<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >::type>
{
  typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> type;
};

}  // end namespace internal


template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>
class TensorStridingSlicingOp : public TensorBase<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >
{
  public:
  typedef typename internal::traits<TensorStridingSlicingOp>::Scalar Scalar;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename internal::nested<TensorStridingSlicingOp>::type Nested;
  typedef typename internal::traits<TensorStridingSlicingOp>::StorageKind StorageKind;
  typedef typename internal::traits<TensorStridingSlicingOp>::Index Index;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorStridingSlicingOp(
    const XprType& expr, const StartIndices& startIndices,
    const StopIndices& stopIndices, const Strides& strides)
      : m_xpr(expr), m_startIndices(startIndices), m_stopIndices(stopIndices),
        m_strides(strides) {}

    EIGEN_DEVICE_FUNC
    const StartIndices& startIndices() const { return m_startIndices; }
    EIGEN_DEVICE_FUNC
    const StartIndices& stopIndices() const { return m_stopIndices; }
    EIGEN_DEVICE_FUNC
    const StartIndices& strides() const { return m_strides; }

    EIGEN_DEVICE_FUNC
    const typename internal::remove_all<typename XprType::Nested>::type&
    expression() const { return m_xpr; }

    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const TensorStridingSlicingOp& other)
    {
      typedef TensorAssignOp<TensorStridingSlicingOp, const TensorStridingSlicingOp> Assign;
      Assign assign(*this, other);
      internal::TensorExecutor<const Assign, DefaultDevice>::run(
          assign, DefaultDevice());
      return *this;
    }

    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorStridingSlicingOp& operator = (const OtherDerived& other)
    {
      typedef TensorAssignOp<TensorStridingSlicingOp, const OtherDerived> Assign;
      Assign assign(*this, other);
      internal::TensorExecutor<const Assign, DefaultDevice>::run(
          assign, DefaultDevice());
      return *this;
    }

  protected:
    typename XprType::Nested m_xpr;
    const StartIndices m_startIndices;
    const StopIndices m_stopIndices;
    const Strides m_strides;
};

// Eval as rvalue
template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
struct TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
{
  typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
  static const int NumDims = internal::array_size<Strides>::value;

  enum {
    // Alignment can't be guaranteed at compile time since it depends on the
    // slice offsets and sizes.
    IsAligned = false,
    PacketAccess = false,
    BlockAccess = false,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    RawAccess = false
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
      : m_impl(op.expression(), device), m_device(device), m_strides(op.strides())
  {
    // Handle degenerate intervals by gracefully clamping and allowing m_dimensions to be zero
    DSizes<Index,NumDims> startIndicesClamped, stopIndicesClamped;
    for (size_t i = 0; i < internal::array_size<Dimensions>::value; ++i) {
      eigen_assert(m_strides[i] != 0 && "0 stride is invalid");
      if(m_strides[i]>0){
        startIndicesClamped[i] = clamp(op.startIndices()[i], 0, m_impl.dimensions()[i]);
        stopIndicesClamped[i] = clamp(op.stopIndices()[i], 0, m_impl.dimensions()[i]);
      }else{
        /* implies m_strides[i]<0 by assert */
        startIndicesClamped[i] = clamp(op.startIndices()[i], -1, m_impl.dimensions()[i] - 1);
        stopIndicesClamped[i] = clamp(op.stopIndices()[i], -1, m_impl.dimensions()[i] - 1);
      }
      m_startIndices[i] = startIndicesClamped[i];
    }

    const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();

    // check for degenerate intervals and compute output tensor shape
    bool degenerate = false;;
    for(int i = 0; i < NumDims; i++){
      Index interval = stopIndicesClamped[i] - startIndicesClamped[i];
      if(interval == 0 || ((interval<0) != (m_strides[i]<0))){
        m_dimensions[i] = 0;
        degenerate = true;
      }else{
        m_dimensions[i] = interval / m_strides[i]
                          + (interval % m_strides[i] != 0 ? 1 : 0);
        eigen_assert(m_dimensions[i] >= 0);
      }
    }
    Strides output_dims = m_dimensions;

    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      m_inputStrides[0] = m_strides[0];
      m_offsets[0] = startIndicesClamped[0];
      Index previousDimProduct = 1;
      for (int i = 1; i < NumDims; ++i) {
        previousDimProduct *= input_dims[i-1];
        m_inputStrides[i] = previousDimProduct * m_strides[i];
        m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
      }

      // Don't initialize m_fastOutputStrides[0] since it won't ever be accessed.
      m_outputStrides[0] = 1;
      for (int i = 1; i < NumDims; ++i) {
        m_outputStrides[i] = m_outputStrides[i-1] * output_dims[i-1];
        // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
        m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
      }
    } else {
      m_inputStrides[NumDims-1] = m_strides[NumDims-1];
      m_offsets[NumDims-1] = startIndicesClamped[NumDims-1];
      Index previousDimProduct = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        previousDimProduct *= input_dims[i+1];
        m_inputStrides[i] = previousDimProduct * m_strides[i];
        m_offsets[i] = startIndicesClamped[i] * previousDimProduct;
      }

      m_outputStrides[NumDims-1] = 1;
      for (int i = NumDims - 2; i >= 0; --i) {
        m_outputStrides[i] = m_outputStrides[i+1] * output_dims[i+1];
        // NOTE: if tensor is degenerate, we send 1 to prevent TensorIntDivisor constructor crash
        m_fastOutputStrides[i] = internal::TensorIntDivisor<Index>(degenerate ? 1 : m_outputStrides[i]);
      }
    }
    m_block_total_size_max = numext::maxi(static_cast<std::size_t>(1),
                                          device.lastLevelCacheSize() /
                                          sizeof(Scalar));
  }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef Strides Dimensions;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }


  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(CoeffReturnType*) {
    m_impl.evalSubExprsIfNeeded(NULL);
    return true;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
    m_impl.cleanup();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
  {
    return m_impl.coeff(srcCoeff(index));
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
    return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, NumDims);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar* data() const {
    return NULL;
  }

 protected:
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
  {
    Index inputIndex = 0;
    if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
      for (int i = NumDims - 1; i >= 0; --i) {
        const Index idx = index / m_fastOutputStrides[i];
        inputIndex += idx * m_inputStrides[i] + m_offsets[i];
        index -= idx * m_outputStrides[i];
      }
    } else {
      for (int i = 0; i < NumDims; ++i) {
        const Index idx = index / m_fastOutputStrides[i];
        inputIndex += idx * m_inputStrides[i] + m_offsets[i];
        index -= idx * m_outputStrides[i];
      }
    }
    return inputIndex;
  }

  static EIGEN_STRONG_INLINE Index clamp(Index value, Index min, Index max) {
    return numext::maxi(min, numext::mini(max,value));
  }

  array<Index, NumDims> m_outputStrides;
  array<internal::TensorIntDivisor<Index>, NumDims> m_fastOutputStrides;
  array<Index, NumDims> m_inputStrides;
  TensorEvaluator<ArgType, Device> m_impl;
  const Device& m_device;
  DSizes<Index, NumDims> m_startIndices; // clamped startIndices
  DSizes<Index, NumDims> m_dimensions;
  DSizes<Index, NumDims> m_offsets; // offset in a flattened shape
  const Strides m_strides;
  std::size_t m_block_total_size_max;
};

// Eval as lvalue
template<typename StartIndices, typename StopIndices, typename Strides, typename ArgType, typename Device>
struct TensorEvaluator<TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
  : public TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device>
{
  typedef TensorEvaluator<const TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType>, Device> Base;
  typedef TensorStridingSlicingOp<StartIndices, StopIndices, Strides, ArgType> XprType;
  static const int NumDims = internal::array_size<Strides>::value;

  enum {
    IsAligned = false,
    PacketAccess = false,
    BlockAccess = false,
    Layout = TensorEvaluator<ArgType, Device>::Layout,
    CoordAccess = TensorEvaluator<ArgType, Device>::CoordAccess,
    RawAccess = false
  };

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
    : Base(op, device)
    { }

  typedef typename XprType::Index Index;
  typedef typename XprType::Scalar Scalar;
  typedef typename internal::remove_const<Scalar>::type ScalarNonConst;
  typedef typename XprType::CoeffReturnType CoeffReturnType;
  typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
  typedef Strides Dimensions;

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index)
  {
    return this->m_impl.coeffRef(this->srcCoeff(index));
  }
};


} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_MORPHING_H