aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h
blob: 23a2b5467cdc5b3c7ae1ec898d17700b6dbceaef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Dmitry Vyukov <dvyukov@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H
#define EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H

namespace Eigen {

template <typename Environment>
class ThreadPoolTempl : public Eigen::ThreadPoolInterface {
 public:
  typedef typename Environment::Task Task;
  typedef RunQueue<Task, 1024> Queue;

  ThreadPoolTempl(int num_threads, Environment env = Environment())
      : ThreadPoolTempl(num_threads, true, env) {}

  ThreadPoolTempl(int num_threads, bool allow_spinning,
                  Environment env = Environment())
      : env_(env),
        num_threads_(num_threads),
        allow_spinning_(allow_spinning),
        thread_data_(num_threads),
        all_coprimes_(num_threads),
        waiters_(num_threads),
        global_steal_partition_(EncodePartition(0, num_threads_)),
        blocked_(0),
        spinning_(0),
        done_(false),
        cancelled_(false),
        ec_(waiters_) {
    waiters_.resize(num_threads_);
    // Calculate coprimes of all numbers [1, num_threads].
    // Coprimes are used for random walks over all threads in Steal
    // and NonEmptyQueueIndex. Iteration is based on the fact that if we take
    // a random starting thread index t and calculate num_threads - 1 subsequent
    // indices as (t + coprime) % num_threads, we will cover all threads without
    // repetitions (effectively getting a presudo-random permutation of thread
    // indices).
    eigen_plain_assert(num_threads_ < kMaxThreads);
    for (int i = 1; i <= num_threads_; ++i) {
      all_coprimes_.emplace_back(i);
      ComputeCoprimes(i, &all_coprimes_.back());
    }
#ifndef EIGEN_THREAD_LOCAL
    init_barrier_.reset(new Barrier(num_threads_));
#endif
    thread_data_.resize(num_threads_);
    for (int i = 0; i < num_threads_; i++) {
      SetStealPartition(i, EncodePartition(0, num_threads_));
      thread_data_[i].thread.reset(
          env_.CreateThread([this, i]() { WorkerLoop(i); }));
    }
#ifndef EIGEN_THREAD_LOCAL
    // Wait for workers to initialize per_thread_map_. Otherwise we might race
    // with them in Schedule or CurrentThreadId.
    init_barrier_->Wait();
#endif
  }

  ~ThreadPoolTempl() {
    done_ = true;

    // Now if all threads block without work, they will start exiting.
    // But note that threads can continue to work arbitrary long,
    // block, submit new work, unblock and otherwise live full life.
    if (!cancelled_) {
      ec_.Notify(true);
    } else {
      // Since we were cancelled, there might be entries in the queues.
      // Empty them to prevent their destructor from asserting.
      for (size_t i = 0; i < thread_data_.size(); i++) {
        thread_data_[i].queue.Flush();
      }
    }
    // Join threads explicitly (by destroying) to avoid destruction order within
    // this class.
    for (size_t i = 0; i < thread_data_.size(); ++i)
      thread_data_[i].thread.reset();
  }

  void SetStealPartitions(const std::vector<std::pair<unsigned, unsigned>>& partitions) {
    eigen_plain_assert(partitions.size() == static_cast<std::size_t>(num_threads_));

    // Pass this information to each thread queue.
    for (int i = 0; i < num_threads_; i++) {
      const auto& pair = partitions[i];
      unsigned start = pair.first, end = pair.second;
      AssertBounds(start, end);
      unsigned val = EncodePartition(start, end);
      SetStealPartition(i, val);
    }
  }

  void Schedule(std::function<void()> fn) EIGEN_OVERRIDE {
    ScheduleWithHint(std::move(fn), 0, num_threads_);
  }

  void ScheduleWithHint(std::function<void()> fn, int start,
                        int limit) override {
    Task t = env_.CreateTask(std::move(fn));
    PerThread* pt = GetPerThread();
    if (pt->pool == this) {
      // Worker thread of this pool, push onto the thread's queue.
      Queue& q = thread_data_[pt->thread_id].queue;
      t = q.PushFront(std::move(t));
    } else {
      // A free-standing thread (or worker of another pool), push onto a random
      // queue.
      eigen_plain_assert(start < limit);
      eigen_plain_assert(limit <= num_threads_);
      int num_queues = limit - start;
      int rnd = Rand(&pt->rand) % num_queues;
      eigen_plain_assert(start + rnd < limit);
      Queue& q = thread_data_[start + rnd].queue;
      t = q.PushBack(std::move(t));
    }
    // Note: below we touch this after making w available to worker threads.
    // Strictly speaking, this can lead to a racy-use-after-free. Consider that
    // Schedule is called from a thread that is neither main thread nor a worker
    // thread of this pool. Then, execution of w directly or indirectly
    // completes overall computations, which in turn leads to destruction of
    // this. We expect that such scenario is prevented by program, that is,
    // this is kept alive while any threads can potentially be in Schedule.
    if (!t.f) {
      ec_.Notify(false);
    } else {
      env_.ExecuteTask(t);  // Push failed, execute directly.
    }
  }

  void Cancel() EIGEN_OVERRIDE {
    cancelled_ = true;
    done_ = true;

    // Let each thread know it's been cancelled.
#ifdef EIGEN_THREAD_ENV_SUPPORTS_CANCELLATION
    for (size_t i = 0; i < thread_data_.size(); i++) {
      thread_data_[i].thread->OnCancel();
    }
#endif

    // Wake up the threads without work to let them exit on their own.
    ec_.Notify(true);
  }

  int NumThreads() const EIGEN_FINAL { return num_threads_; }

  int CurrentThreadId() const EIGEN_FINAL {
    const PerThread* pt = const_cast<ThreadPoolTempl*>(this)->GetPerThread();
    if (pt->pool == this) {
      return pt->thread_id;
    } else {
      return -1;
    }
  }

 private:
  // Create a single atomic<int> that encodes start and limit information for
  // each thread.
  // We expect num_threads_ < 65536, so we can store them in a single
  // std::atomic<unsigned>.
  // Exposed publicly as static functions so that external callers can reuse
  // this encode/decode logic for maintaining their own thread-safe copies of
  // scheduling and steal domain(s).
  static const int kMaxPartitionBits = 16;
  static const int kMaxThreads = 1 << kMaxPartitionBits;

  inline unsigned EncodePartition(unsigned start, unsigned limit) {
    return (start << kMaxPartitionBits) | limit;
  }

  inline void DecodePartition(unsigned val, unsigned* start, unsigned* limit) {
    *limit = val & (kMaxThreads - 1);
    val >>= kMaxPartitionBits;
    *start = val;
  }

  void AssertBounds(int start, int end) {
    eigen_plain_assert(start >= 0);
    eigen_plain_assert(start < end);  // non-zero sized partition
    eigen_plain_assert(end <= num_threads_);
  }

  inline void SetStealPartition(size_t i, unsigned val) {
    thread_data_[i].steal_partition.store(val, std::memory_order_relaxed);
  }

  inline unsigned GetStealPartition(int i) {
    return thread_data_[i].steal_partition.load(std::memory_order_relaxed);
  }

  void ComputeCoprimes(int N, MaxSizeVector<unsigned>* coprimes) {
    for (int i = 1; i <= N; i++) {
      unsigned a = i;
      unsigned b = N;
      // If GCD(a, b) == 1, then a and b are coprimes.
      while (b != 0) {
        unsigned tmp = a;
        a = b;
        b = tmp % b;
      }
      if (a == 1) {
        coprimes->push_back(i);
      }
    }
  }

  typedef typename Environment::EnvThread Thread;

  struct PerThread {
    constexpr PerThread() : pool(NULL), rand(0), thread_id(-1) {}
    ThreadPoolTempl* pool;  // Parent pool, or null for normal threads.
    uint64_t rand;          // Random generator state.
    int thread_id;          // Worker thread index in pool.
#ifndef EIGEN_THREAD_LOCAL
    // Prevent false sharing.
    char pad_[128];
#endif
  };

  struct ThreadData {
    constexpr ThreadData() : thread(), steal_partition(0), queue() {}
    std::unique_ptr<Thread> thread;
    std::atomic<unsigned> steal_partition;
    Queue queue;
  };

  Environment env_;
  const int num_threads_;
  const bool allow_spinning_;
  MaxSizeVector<ThreadData> thread_data_;
  MaxSizeVector<MaxSizeVector<unsigned>> all_coprimes_;
  MaxSizeVector<EventCount::Waiter> waiters_;
  unsigned global_steal_partition_;
  std::atomic<unsigned> blocked_;
  std::atomic<bool> spinning_;
  std::atomic<bool> done_;
  std::atomic<bool> cancelled_;
  EventCount ec_;
#ifndef EIGEN_THREAD_LOCAL
  std::unique_ptr<Barrier> init_barrier_;
  std::mutex per_thread_map_mutex_;  // Protects per_thread_map_.
  std::unordered_map<uint64_t, std::unique_ptr<PerThread>> per_thread_map_;
#endif

  // Main worker thread loop.
  void WorkerLoop(int thread_id) {
#ifndef EIGEN_THREAD_LOCAL
    std::unique_ptr<PerThread> new_pt(new PerThread());
    per_thread_map_mutex_.lock();
    bool insertOK = per_thread_map_.emplace(GlobalThreadIdHash(), std::move(new_pt)).second;
    eigen_plain_assert(insertOK);
    EIGEN_UNUSED_VARIABLE(insertOK);
    per_thread_map_mutex_.unlock();
    init_barrier_->Notify();
    init_barrier_->Wait();
#endif
    PerThread* pt = GetPerThread();
    pt->pool = this;
    pt->rand = GlobalThreadIdHash();
    pt->thread_id = thread_id;
    Queue& q = thread_data_[thread_id].queue;
    EventCount::Waiter* waiter = &waiters_[thread_id];
    // TODO(dvyukov,rmlarsen): The time spent in NonEmptyQueueIndex() is
    // proportional to num_threads_ and we assume that new work is scheduled at
    // a constant rate, so we set spin_count to 5000 / num_threads_. The
    // constant was picked based on a fair dice roll, tune it.
    const int spin_count =
        allow_spinning_ && num_threads_ > 0 ? 5000 / num_threads_ : 0;
    if (num_threads_ == 1) {
      // For num_threads_ == 1 there is no point in going through the expensive
      // steal loop. Moreover, since NonEmptyQueueIndex() calls PopBack() on the
      // victim queues it might reverse the order in which ops are executed
      // compared to the order in which they are scheduled, which tends to be
      // counter-productive for the types of I/O workloads the single thread
      // pools tend to be used for.
      while (!cancelled_) {
        Task t = q.PopFront();
        for (int i = 0; i < spin_count && !t.f; i++) {
          if (!cancelled_.load(std::memory_order_relaxed)) {
            t = q.PopFront();
          }
        }
        if (!t.f) {
          if (!WaitForWork(waiter, &t)) {
            return;
          }
        }
        if (t.f) {
          env_.ExecuteTask(t);
        }
      }
    } else {
      while (!cancelled_) {
        Task t = q.PopFront();
        if (!t.f) {
          t = LocalSteal();
          if (!t.f) {
            t = GlobalSteal();
            if (!t.f) {
              // Leave one thread spinning. This reduces latency.
              if (allow_spinning_ && !spinning_ && !spinning_.exchange(true)) {
                for (int i = 0; i < spin_count && !t.f; i++) {
                  if (!cancelled_.load(std::memory_order_relaxed)) {
                    t = GlobalSteal();
                  } else {
                    return;
                  }
                }
                spinning_ = false;
              }
              if (!t.f) {
                if (!WaitForWork(waiter, &t)) {
                  return;
                }
              }
            }
          }
        }
        if (t.f) {
          env_.ExecuteTask(t);
        }
      }
    }
  }

  // Steal tries to steal work from other worker threads in the range [start,
  // limit) in best-effort manner.
  Task Steal(unsigned start, unsigned limit) {
    PerThread* pt = GetPerThread();
    const size_t size = limit - start;
    unsigned r = Rand(&pt->rand);
    // Reduce r into [0, size) range, this utilizes trick from
    // https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
    eigen_plain_assert(all_coprimes_[size - 1].size() < (1<<30));
    unsigned victim = ((uint64_t)r * (uint64_t)size) >> 32;
    unsigned index = ((uint64_t) all_coprimes_[size - 1].size() * (uint64_t)r) >> 32;
    unsigned inc = all_coprimes_[size - 1][index];

    for (unsigned i = 0; i < size; i++) {
      eigen_plain_assert(start + victim < limit);
      Task t = thread_data_[start + victim].queue.PopBack();
      if (t.f) {
        return t;
      }
      victim += inc;
      if (victim >= size) {
        victim -= size;
      }
    }
    return Task();
  }

  // Steals work within threads belonging to the partition.
  Task LocalSteal() {
    PerThread* pt = GetPerThread();
    unsigned partition = GetStealPartition(pt->thread_id);
    // If thread steal partition is the same as global partition, there is no
    // need to go through the steal loop twice.
    if (global_steal_partition_ == partition) return Task();
    unsigned start, limit;
    DecodePartition(partition, &start, &limit);
    AssertBounds(start, limit);

    return Steal(start, limit);
  }

  // Steals work from any other thread in the pool.
  Task GlobalSteal() {
    return Steal(0, num_threads_);
  }


  // WaitForWork blocks until new work is available (returns true), or if it is
  // time to exit (returns false). Can optionally return a task to execute in t
  // (in such case t.f != nullptr on return).
  bool WaitForWork(EventCount::Waiter* waiter, Task* t) {
    eigen_plain_assert(!t->f);
    // We already did best-effort emptiness check in Steal, so prepare for
    // blocking.
    ec_.Prewait();
    // Now do a reliable emptiness check.
    int victim = NonEmptyQueueIndex();
    if (victim != -1) {
      ec_.CancelWait();
      if (cancelled_) {
        return false;
      } else {
        *t = thread_data_[victim].queue.PopBack();
        return true;
      }
    }
    // Number of blocked threads is used as termination condition.
    // If we are shutting down and all worker threads blocked without work,
    // that's we are done.
    blocked_++;
    // TODO is blocked_ required to be unsigned?
    if (done_ && blocked_ == static_cast<unsigned>(num_threads_)) {
      ec_.CancelWait();
      // Almost done, but need to re-check queues.
      // Consider that all queues are empty and all worker threads are preempted
      // right after incrementing blocked_ above. Now a free-standing thread
      // submits work and calls destructor (which sets done_). If we don't
      // re-check queues, we will exit leaving the work unexecuted.
      if (NonEmptyQueueIndex() != -1) {
        // Note: we must not pop from queues before we decrement blocked_,
        // otherwise the following scenario is possible. Consider that instead
        // of checking for emptiness we popped the only element from queues.
        // Now other worker threads can start exiting, which is bad if the
        // work item submits other work. So we just check emptiness here,
        // which ensures that all worker threads exit at the same time.
        blocked_--;
        return true;
      }
      // Reached stable termination state.
      ec_.Notify(true);
      return false;
    }
    ec_.CommitWait(waiter);
    blocked_--;
    return true;
  }

  int NonEmptyQueueIndex() {
    PerThread* pt = GetPerThread();
    // We intentionally design NonEmptyQueueIndex to steal work from
    // anywhere in the queue so threads don't block in WaitForWork() forever
    // when all threads in their partition go to sleep. Steal is still local.
    const size_t size = thread_data_.size();
    unsigned r = Rand(&pt->rand);
    unsigned inc = all_coprimes_[size - 1][r % all_coprimes_[size - 1].size()];
    unsigned victim = r % size;
    for (unsigned i = 0; i < size; i++) {
      if (!thread_data_[victim].queue.Empty()) {
        return victim;
      }
      victim += inc;
      if (victim >= size) {
        victim -= size;
      }
    }
    return -1;
  }

  static EIGEN_STRONG_INLINE uint64_t GlobalThreadIdHash() {
    return std::hash<std::thread::id>()(std::this_thread::get_id());
  }

  EIGEN_STRONG_INLINE PerThread* GetPerThread() {
#ifndef EIGEN_THREAD_LOCAL
    static PerThread dummy;
    auto it = per_thread_map_.find(GlobalThreadIdHash());
    if (it == per_thread_map_.end()) {
      return &dummy;
    } else {
      return it->second.get();
    }
#else
    EIGEN_THREAD_LOCAL PerThread per_thread_;
    PerThread* pt = &per_thread_;
    return pt;
#endif
  }

  static EIGEN_STRONG_INLINE unsigned Rand(uint64_t* state) {
    uint64_t current = *state;
    // Update the internal state
    *state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL;
    // Generate the random output (using the PCG-XSH-RS scheme)
    return static_cast<unsigned>((current ^ (current >> 22)) >>
                                 (22 + (current >> 61)));
  }
};

typedef ThreadPoolTempl<StlThreadEnvironment> ThreadPool;

}  // namespace Eigen

#endif  // EIGEN_CXX11_THREADPOOL_NONBLOCKING_THREAD_POOL_H