aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/IterativeSolvers/GMRES.h
blob: 34e67db825fe03f823e19dd73262f2e068c2fd12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2012 Kolja Brix <brix@igpm.rwth-aaachen.de>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_GMRES_H
#define EIGEN_GMRES_H

namespace Eigen { 

namespace internal {

/**
 * Generalized Minimal Residual Algorithm based on the
 * Arnoldi algorithm implemented with Householder reflections.
 *
 * Parameters:
 *  \param mat       matrix of linear system of equations
 *  \param Rhs       right hand side vector of linear system of equations
 *  \param x         on input: initial guess, on output: solution
 *  \param precond   preconditioner used
 *  \param iters     on input: maximum number of iterations to perform
 *                   on output: number of iterations performed
 *  \param restart   number of iterations for a restart
 *  \param tol_error on input: residual tolerance
 *                   on output: residuum achieved
 *
 * \sa IterativeMethods::bicgstab() 
 *  
 *
 * For references, please see:
 *
 * Saad, Y. and Schultz, M. H.
 * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems.
 * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869.
 *
 * Saad, Y.
 * Iterative Methods for Sparse Linear Systems.
 * Society for Industrial and Applied Mathematics, Philadelphia, 2003.
 *
 * Walker, H. F.
 * Implementations of the GMRES method.
 * Comput.Phys.Comm. 53, 1989, pp. 311 - 320.
 *
 * Walker, H. F.
 * Implementation of the GMRES Method using Householder Transformations.
 * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163.
 *
 */
template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
		int &iters, const int &restart, typename Dest::RealScalar & tol_error) {

	using std::sqrt;
	using std::abs;

	typedef typename Dest::RealScalar RealScalar;
	typedef typename Dest::Scalar Scalar;
	typedef Matrix < RealScalar, Dynamic, 1 > RealVectorType;
	typedef Matrix < Scalar, Dynamic, 1 > VectorType;
	typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;

	RealScalar tol = tol_error;
	const int maxIters = iters;
	iters = 0;

	const int m = mat.rows();

	VectorType p0 = rhs - mat*x;
	VectorType r0 = precond.solve(p0);
// 	RealScalar r0_sqnorm = r0.squaredNorm();

	VectorType w = VectorType::Zero(restart + 1);

	FMatrixType H = FMatrixType::Zero(m, restart + 1);
	VectorType tau = VectorType::Zero(restart + 1);
	std::vector < JacobiRotation < Scalar > > G(restart);

	// generate first Householder vector
	VectorType e;
	RealScalar beta;
	r0.makeHouseholder(e, tau.coeffRef(0), beta);
	w(0)=(Scalar) beta;
	H.bottomLeftCorner(m - 1, 1) = e;

	for (int k = 1; k <= restart; ++k) {

		++iters;

		VectorType v = VectorType::Unit(m, k - 1), workspace(m);

		// apply Householder reflections H_{1} ... H_{k-1} to v
		for (int i = k - 1; i >= 0; --i) {
			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
		}

		// apply matrix M to v:  v = mat * v;
		VectorType t=mat*v;
		v=precond.solve(t);

		// apply Householder reflections H_{k-1} ... H_{1} to v
		for (int i = 0; i < k; ++i) {
			v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
		}

		if (v.tail(m - k).norm() != 0.0) {

			if (k <= restart) {

				// generate new Householder vector
                                  VectorType e(m - k - 1);
				RealScalar beta;
				v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
				H.col(k).tail(m - k - 1) = e;

				// apply Householder reflection H_{k} to v
				v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());

			}
                }

                if (k > 1) {
                        for (int i = 0; i < k - 1; ++i) {
                                // apply old Givens rotations to v
                                v.applyOnTheLeft(i, i + 1, G[i].adjoint());
                        }
                }

                if (k<m && v(k) != (Scalar) 0) {
                        // determine next Givens rotation
                        G[k - 1].makeGivens(v(k - 1), v(k));

                        // apply Givens rotation to v and w
                        v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
                        w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());

                }

                // insert coefficients into upper matrix triangle
                H.col(k - 1).head(k) = v.head(k);

                bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);

                if (stop || k == restart) {

                        // solve upper triangular system
                        VectorType y = w.head(k);
                        H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);

                        // use Horner-like scheme to calculate solution vector
                        VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);

                        // apply Householder reflection H_{k} to x_new
                        x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());

                        for (int i = k - 2; i >= 0; --i) {
                                x_new += y(i) * VectorType::Unit(m, i);
                                // apply Householder reflection H_{i} to x_new
                                x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
                        }

                        x += x_new;

                        if (stop) {
                                return true;
                        } else {
                                k=0;

                                // reset data for a restart  r0 = rhs - mat * x;
                                VectorType p0=mat*x;
                                VectorType p1=precond.solve(p0);
                                r0 = rhs - p1;
//                                 r0_sqnorm = r0.squaredNorm();
                                w = VectorType::Zero(restart + 1);
                                H = FMatrixType::Zero(m, restart + 1);
                                tau = VectorType::Zero(restart + 1);

                                // generate first Householder vector
                                RealScalar beta;
                                r0.makeHouseholder(e, tau.coeffRef(0), beta);
                                w(0)=(Scalar) beta;
                                H.bottomLeftCorner(m - 1, 1) = e;

                        }

                }



	}
	
	return false;

}

}

template< typename _MatrixType,
          typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class GMRES;

namespace internal {

template< typename _MatrixType, typename _Preconditioner>
struct traits<GMRES<_MatrixType,_Preconditioner> >
{
  typedef _MatrixType MatrixType;
  typedef _Preconditioner Preconditioner;
};

}

/** \ingroup IterativeLinearSolvers_Module
  * \brief A GMRES solver for sparse square problems
  *
  * This class allows to solve for A.x = b sparse linear problems using a generalized minimal
  * residual method. The vectors x and b can be either dense or sparse.
  *
  * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
  * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
  *
  * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
  * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
  * and NumTraits<Scalar>::epsilon() for the tolerance.
  * 
  * This class can be used as the direct solver classes. Here is a typical usage example:
  * \code
  * int n = 10000;
  * VectorXd x(n), b(n);
  * SparseMatrix<double> A(n,n);
  * // fill A and b
  * GMRES<SparseMatrix<double> > solver(A);
  * x = solver.solve(b);
  * std::cout << "#iterations:     " << solver.iterations() << std::endl;
  * std::cout << "estimated error: " << solver.error()      << std::endl;
  * // update b, and solve again
  * x = solver.solve(b);
  * \endcode
  * 
  * By default the iterations start with x=0 as an initial guess of the solution.
  * One can control the start using the solveWithGuess() method. Here is a step by
  * step execution example starting with a random guess and printing the evolution
  * of the estimated error:
  * * \code
  * x = VectorXd::Random(n);
  * solver.setMaxIterations(1);
  * int i = 0;
  * do {
  *   x = solver.solveWithGuess(b,x);
  *   std::cout << i << " : " << solver.error() << std::endl;
  *   ++i;
  * } while (solver.info()!=Success && i<100);
  * \endcode
  * Note that such a step by step excution is slightly slower.
  * 
  * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
  */
template< typename _MatrixType, typename _Preconditioner>
class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
{
  typedef IterativeSolverBase<GMRES> Base;
  using Base::mp_matrix;
  using Base::m_error;
  using Base::m_iterations;
  using Base::m_info;
  using Base::m_isInitialized;
 
private:
  int m_restart;
  
public:
  typedef _MatrixType MatrixType;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::Index Index;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef _Preconditioner Preconditioner;

public:

  /** Default constructor. */
  GMRES() : Base(), m_restart(30) {}

  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    * 
    * This constructor is a shortcut for the default constructor followed
    * by a call to compute().
    * 
    * \warning this class stores a reference to the matrix A as well as some
    * precomputed values that depend on it. Therefore, if \a A is changed
    * this class becomes invalid. Call compute() to update it with the new
    * matrix A, or modify a copy of A.
    */
  GMRES(const MatrixType& A) : Base(A), m_restart(30) {}

  ~GMRES() {}
  
  /** Get the number of iterations after that a restart is performed.
    */
  int get_restart() { return m_restart; }
  
  /** Set the number of iterations after that a restart is performed.
    *  \param restart   number of iterations for a restarti, default is 30.
    */
  void set_restart(const int restart) { m_restart=restart; }
  
  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
    * \a x0 as an initial solution.
    *
    * \sa compute()
    */
  template<typename Rhs,typename Guess>
  inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
  solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
  {
    eigen_assert(m_isInitialized && "GMRES is not initialized.");
    eigen_assert(Base::rows()==b.rows()
              && "GMRES::solve(): invalid number of rows of the right hand side matrix b");
    return internal::solve_retval_with_guess
            <GMRES, Rhs, Guess>(*this, b.derived(), x0);
  }
  
  /** \internal */
  template<typename Rhs,typename Dest>
  void _solveWithGuess(const Rhs& b, Dest& x) const
  {    
    bool failed = false;
    for(int j=0; j<b.cols(); ++j)
    {
      m_iterations = Base::maxIterations();
      m_error = Base::m_tolerance;
      
      typename Dest::ColXpr xj(x,j);
      if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
        failed = true;
    }
    m_info = failed ? NumericalIssue
           : m_error <= Base::m_tolerance ? Success
           : NoConvergence;
    m_isInitialized = true;
  }

  /** \internal */
  template<typename Rhs,typename Dest>
  void _solve(const Rhs& b, Dest& x) const
  {
    x.setZero();
    _solveWithGuess(b,x);
  }

protected:

};


namespace internal {

  template<typename _MatrixType, typename _Preconditioner, typename Rhs>
struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
  : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
{
  typedef GMRES<_MatrixType, _Preconditioner> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_GMRES_H