aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
blob: 661c1f2e002c7f44dd66de224595c81572bc0ac3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
#define EIGEN_INCOMPLETE_CHOlESKY_H
#include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h" 
#include <Eigen/OrderingMethods>
#include <list>

namespace Eigen {  
/** 
 * \brief Modified Incomplete Cholesky with dual threshold
 * 
 * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
 *              Limited memory, SIAM J. Sci. Comput.  21(1), pp. 24-45, 1999
 * 
 * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric 
 *                     matrix. It is advised to give  a row-oriented sparse matrix 
 * \tparam _UpLo The triangular part of the matrix to reference. 
 * \tparam _OrderingType 
 */

template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
class IncompleteCholesky : internal::noncopyable
{
  public:
    typedef SparseMatrix<Scalar,ColMajor> MatrixType;
    typedef _OrderingType OrderingType;
    typedef typename MatrixType::RealScalar RealScalar; 
    typedef typename MatrixType::Index Index; 
    typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
    typedef Matrix<Scalar,Dynamic,1> ScalarType; 
    typedef Matrix<Index,Dynamic, 1> IndexType;
    typedef std::vector<std::list<Index> > VectorList; 
    enum { UpLo = _UpLo };
  public:
    IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
    IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
    {
      compute(matrix);
    }
    
    Index rows() const { return m_L.rows(); }
    
    Index cols() const { return m_L.cols(); }
    

    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the matrix appears to be negative.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
      return m_info;
    }
    
    /** 
     * \brief Set the initial shift parameter
     */
    void setShift( Scalar shift) { m_shift = shift; }
    
    /**
    * \brief Computes the fill reducing permutation vector. 
    */
    template<typename MatrixType>
    void analyzePattern(const MatrixType& mat)
    {
      OrderingType ord; 
      ord(mat.template selfadjointView<UpLo>(), m_perm); 
      m_analysisIsOk = true; 
    }
    
    template<typename MatrixType>
    void factorize(const MatrixType& amat);
    
    template<typename MatrixType>
    void compute (const MatrixType& matrix)
    {
      analyzePattern(matrix); 
      factorize(matrix);
    }
    
    template<typename Rhs, typename Dest>
    void _solve(const Rhs& b, Dest& x) const
    {
      eigen_assert(m_factorizationIsOk && "factorize() should be called first");
      if (m_perm.rows() == b.rows())
        x = m_perm.inverse() * b; 
      else 
        x = b; 
      x = m_scal.asDiagonal() * x;
      x = m_L.template triangularView<UnitLower>().solve(x); 
      x = m_L.adjoint().template triangularView<Upper>().solve(x); 
      if (m_perm.rows() == b.rows())
        x = m_perm * x;
      x = m_scal.asDiagonal() * x;
    }
    template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed");
      eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
      eigen_assert(cols()==b.rows()
                && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
    }
  protected:
    SparseMatrix<Scalar,ColMajor> m_L;  // The lower part stored in CSC
    ScalarType m_scal; // The vector for scaling the matrix 
    Scalar m_shift; //The initial shift parameter
    bool m_analysisIsOk; 
    bool m_factorizationIsOk; 
    bool m_isInitialized;
    ComputationInfo m_info;
    PermutationType m_perm; 
    
  private:
    template <typename IdxType, typename SclType>
    inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol); 
}; 

template<typename Scalar, int _UpLo, typename OrderingType>
template<typename _MatrixType>
void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
{
  using std::sqrt;
  using std::min;
  eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); 
    
  // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
  
  // Apply the fill-reducing permutation computed in analyzePattern()
  if (m_perm.rows() == mat.rows() ) // To detect the null permutation
    m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
  else
    m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
  
  Index n = m_L.cols(); 
  Index nnz = m_L.nonZeros();
  Map<ScalarType> vals(m_L.valuePtr(), nnz); //values
  Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz);  //Row indices
  Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
  IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
  VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
  ScalarType curCol(n); // Store a  nonzero values in each column
  IndexType irow(n); // Row indices of nonzero elements in each column
  
  
  // Computes the scaling factors 
  m_scal.resize(n);
  for (int j = 0; j < n; j++)
  {
    m_scal(j) = m_L.col(j).norm();
    m_scal(j) = sqrt(m_scal(j));
  }
  // Scale and compute the shift for the matrix 
  Scalar mindiag = vals[0];
  for (int j = 0; j < n; j++){
    for (int k = colPtr[j]; k < colPtr[j+1]; k++)
     vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
    mindiag = (min)(vals[colPtr[j]], mindiag);
  }
  
  if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
  // Apply the shift to the diagonal elements of the matrix
  for (int j = 0; j < n; j++)
    vals[colPtr[j]] += m_shift;
  // jki version of the Cholesky factorization 
  for (int j=0; j < n; ++j)
  {  
    //Left-looking factorize the column j 
    // First, load the jth column into curCol 
    Scalar diag = vals[colPtr[j]];  // It is assumed that only the lower part is stored
    curCol.setZero();
    irow.setLinSpaced(n,0,n-1); 
    for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
    {
      curCol(rowIdx[i]) = vals[i]; 
      irow(rowIdx[i]) = rowIdx[i]; 
    }
    std::list<int>::iterator k; 
    // Browse all previous columns that will update column j
    for(k = listCol[j].begin(); k != listCol[j].end(); k++) 
    {
      int jk = firstElt(*k); // First element to use in the column 
      jk += 1; 
      for (int i = jk; i < colPtr[*k+1]; i++)
      {
        curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
      }
      updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
    }
    
    // Scale the current column
    if(RealScalar(diag) <= 0) 
    {
      std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
      m_info = NumericalIssue; 
      return; 
    }
    RealScalar rdiag = sqrt(RealScalar(diag));
    vals[colPtr[j]] = rdiag;
    for (int i = j+1; i < n; i++)
    {
      //Scale 
      curCol(i) /= rdiag;
      //Update the remaining diagonals with curCol
      vals[colPtr[i]] -= curCol(i) * curCol(i);
    }
    // Select the largest p elements
    //  p is the original number of elements in the column (without the diagonal)
    int p = colPtr[j+1] - colPtr[j] - 1 ; 
    internal::QuickSplit(curCol, irow, p); 
    // Insert the largest p elements in the matrix
    int cpt = 0; 
    for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
    {
      vals[i] = curCol(cpt); 
      rowIdx[i] = irow(cpt); 
      cpt ++; 
    }
    // Get the first smallest row index and put it after the diagonal element
    Index jk = colPtr(j)+1;
    updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol); 
  }
  m_factorizationIsOk = true; 
  m_isInitialized = true;
  m_info = Success; 
}

template<typename Scalar, int _UpLo, typename OrderingType>
template <typename IdxType, typename SclType>
inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol)
{
  if (jk < colPtr(col+1) )
  {
    Index p = colPtr(col+1) - jk;
    Index minpos; 
    rowIdx.segment(jk,p).minCoeff(&minpos);
    minpos += jk;
    if (rowIdx(minpos) != rowIdx(jk))
    {
      //Swap
      std::swap(rowIdx(jk),rowIdx(minpos));
      std::swap(vals(jk),vals(minpos));
    }
    firstElt(col) = jk;
    listCol[rowIdx(jk)].push_back(col);
  }
}
namespace internal {

template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
struct solve_retval<IncompleteCholesky<_Scalar,  _UpLo, OrderingType>, Rhs>
  : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
{
  typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};

} // end namespace internal

} // end namespace Eigen 

#endif