aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
blob: 6429167640b8328eeb3c0302115748af25fe650e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_EXPONENTIAL
#define EIGEN_MATRIX_EXPONENTIAL

#include "StemFunction.h"

namespace Eigen { 

#if defined(_MSC_VER) || defined(__FreeBSD__)
  template <typename Scalar> Scalar log2(Scalar v) { using std::log; return log(v)/log(Scalar(2)); }
#endif


/** \ingroup MatrixFunctions_Module
  * \brief Class for computing the matrix exponential.
  * \tparam MatrixType type of the argument of the exponential,
  * expected to be an instantiation of the Matrix class template.
  */
template <typename MatrixType>
class MatrixExponential {

  public:

    /** \brief Constructor.
      * 
      * The class stores a reference to \p M, so it should not be
      * changed (or destroyed) before compute() is called.
      *
      * \param[in] M  matrix whose exponential is to be computed.
      */
    MatrixExponential(const MatrixType &M);

    /** \brief Computes the matrix exponential.
      *
      * \param[out] result  the matrix exponential of \p M in the constructor.
      */
    template <typename ResultType> 
    void compute(ResultType &result);

  private:

    // Prevent copying
    MatrixExponential(const MatrixExponential&);
    MatrixExponential& operator=(const MatrixExponential&);

    /** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade3(const MatrixType &A);

    /** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade5(const MatrixType &A);

    /** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade7(const MatrixType &A);

    /** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade9(const MatrixType &A);

    /** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade13(const MatrixType &A);

    /** \brief Compute the (17,17)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  This function activates only if your long double is double-double or quadruple.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade17(const MatrixType &A);

    /** \brief Compute Pad&eacute; approximant to the exponential.
     *
     * Computes \c m_U, \c m_V and \c m_squarings such that
     * \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute; of
     * \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The
     * degree of the Pad&eacute; approximant and the value of
     * squarings are chosen such that the approximation error is no
     * more than the round-off error.
     *
     * The argument of this function should correspond with the (real
     * part of) the entries of \c m_M.  It is used to select the
     * correct implementation using overloading.
     */
    void computeUV(double);

    /** \brief Compute Pad&eacute; approximant to the exponential.
     *
     *  \sa computeUV(double);
     */
    void computeUV(float);
    
    /** \brief Compute Pad&eacute; approximant to the exponential.
     *
     *  \sa computeUV(double);
     */
    void computeUV(long double);

    typedef typename internal::traits<MatrixType>::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef typename std::complex<RealScalar> ComplexScalar;

    /** \brief Reference to matrix whose exponential is to be computed. */
    typename internal::nested<MatrixType>::type m_M;

    /** \brief Odd-degree terms in numerator of Pad&eacute; approximant. */
    MatrixType m_U;

    /** \brief Even-degree terms in numerator of Pad&eacute; approximant. */
    MatrixType m_V;

    /** \brief Used for temporary storage. */
    MatrixType m_tmp1;

    /** \brief Used for temporary storage. */
    MatrixType m_tmp2;

    /** \brief Identity matrix of the same size as \c m_M. */
    MatrixType m_Id;

    /** \brief Number of squarings required in the last step. */
    int m_squarings;

    /** \brief L1 norm of m_M. */
    RealScalar m_l1norm;
};

template <typename MatrixType>
MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
  m_M(M),
  m_U(M.rows(),M.cols()),
  m_V(M.rows(),M.cols()),
  m_tmp1(M.rows(),M.cols()),
  m_tmp2(M.rows(),M.cols()),
  m_Id(MatrixType::Identity(M.rows(), M.cols())),
  m_squarings(0),
  m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff())
{
  /* empty body */
}

template <typename MatrixType>
template <typename ResultType> 
void MatrixExponential<MatrixType>::compute(ResultType &result)
{
#if LDBL_MANT_DIG > 112 // rarely happens
  if(sizeof(RealScalar) > 14) {
    result = m_M.matrixFunction(StdStemFunctions<ComplexScalar>::exp);
    return;
  }
#endif
  computeUV(RealScalar());
  m_tmp1 = m_U + m_V;   // numerator of Pade approximant
  m_tmp2 = -m_U + m_V;  // denominator of Pade approximant
  result = m_tmp2.partialPivLu().solve(m_tmp1);
  for (int i=0; i<m_squarings; i++)
    result *= result;   // undo scaling by repeated squaring
}

template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
{
  const RealScalar b[] = {120., 60., 12., 1.};
  m_tmp1.noalias() = A * A;
  m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_V = b[2]*m_tmp1 + b[0]*m_Id;
}

template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
{
  const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.};
  MatrixType A2 = A * A;
  m_tmp1.noalias() = A2 * A2;
  m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
}

template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
{
  const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
  MatrixType A2 = A * A;
  MatrixType A4 = A2 * A2;
  m_tmp1.noalias() = A4 * A2;
  m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}

template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
{
  const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
  		      2162160., 110880., 3960., 90., 1.};
  MatrixType A2 = A * A;
  MatrixType A4 = A2 * A2;
  MatrixType A6 = A4 * A2;
  m_tmp1.noalias() = A6 * A2;
  m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}

template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
{
  const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
  		      1187353796428800., 129060195264000., 10559470521600., 670442572800.,
  		      33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
  MatrixType A2 = A * A;
  MatrixType A4 = A2 * A2;
  m_tmp1.noalias() = A4 * A2;
  m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage
  m_tmp2.noalias() = m_tmp1 * m_V;
  m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
  m_V.noalias() = m_tmp1 * m_tmp2;
  m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}

#if LDBL_MANT_DIG > 64
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType &A)
{
  const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
            100610229646136770560000.L, 15720348382208870400000.L,
            1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
            595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
            33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
            46512.L, 306.L, 1.L};
  MatrixType A2 = A * A;
  MatrixType A4 = A2 * A2;
  MatrixType A6 = A4 * A2;
  m_tmp1.noalias() = A4 * A4;
  m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2; // used for temporary storage
  m_tmp2.noalias() = m_tmp1 * m_V;
  m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2;
  m_V.noalias() = m_tmp1 * m_tmp2;
  m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}
#endif

template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(float)
{
  using std::max;
  using std::pow;
  using std::ceil;
  if (m_l1norm < 4.258730016922831e-001) {
    pade3(m_M);
  } else if (m_l1norm < 1.880152677804762e+000) {
    pade5(m_M);
  } else {
    const float maxnorm = 3.925724783138660f;
    m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
    MatrixType A = m_M / pow(Scalar(2), m_squarings);
    pade7(A);
  }
}

template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(double)
{
  using std::max;
  using std::pow;
  using std::ceil;
  if (m_l1norm < 1.495585217958292e-002) {
    pade3(m_M);
  } else if (m_l1norm < 2.539398330063230e-001) {
    pade5(m_M);
  } else if (m_l1norm < 9.504178996162932e-001) {
    pade7(m_M);
  } else if (m_l1norm < 2.097847961257068e+000) {
    pade9(m_M);
  } else {
    const double maxnorm = 5.371920351148152;
    m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
    MatrixType A = m_M / pow(Scalar(2), m_squarings);
    pade13(A);
  }
}

template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(long double)
{
  using std::max;
  using std::pow;
  using std::ceil;
#if   LDBL_MANT_DIG == 53   // double precision
  computeUV(double());
#elif LDBL_MANT_DIG <= 64   // extended precision
  if (m_l1norm < 4.1968497232266989671e-003L) {
    pade3(m_M);
  } else if (m_l1norm < 1.1848116734693823091e-001L) {
    pade5(m_M);
  } else if (m_l1norm < 5.5170388480686700274e-001L) {
    pade7(m_M);
  } else if (m_l1norm < 1.3759868875587845383e+000L) {
    pade9(m_M);
  } else {
    const long double maxnorm = 4.0246098906697353063L;
    m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
    MatrixType A = m_M / pow(Scalar(2), m_squarings);
    pade13(A);
  }
#elif LDBL_MANT_DIG <= 106  // double-double
  if (m_l1norm < 3.2787892205607026992947488108213e-005L) {
    pade3(m_M);
  } else if (m_l1norm < 6.4467025060072760084130906076332e-003L) {
    pade5(m_M);
  } else if (m_l1norm < 6.8988028496595374751374122881143e-002L) {
    pade7(m_M);
  } else if (m_l1norm < 2.7339737518502231741495857201670e-001L) {
    pade9(m_M);
  } else if (m_l1norm < 1.3203382096514474905666448850278e+000L) {
    pade13(m_M);
  } else {
    const long double maxnorm = 3.2579440895405400856599663723517L;
    m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
    MatrixType A = m_M / pow(Scalar(2), m_squarings);
    pade17(A);
  }
#elif LDBL_MANT_DIG <= 112  // quadruple precison
  if (m_l1norm < 1.639394610288918690547467954466970e-005L) {
    pade3(m_M);
  } else if (m_l1norm < 4.253237712165275566025884344433009e-003L) {
    pade5(m_M);
  } else if (m_l1norm < 5.125804063165764409885122032933142e-002L) {
    pade7(m_M);
  } else if (m_l1norm < 2.170000765161155195453205651889853e-001L) {
    pade9(m_M);
  } else if (m_l1norm < 1.125358383453143065081397882891878e+000L) {
    pade13(m_M);
  } else {
    const long double maxnorm = 2.884233277829519311757165057717815L;
    m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm)));
    MatrixType A = m_M / pow(Scalar(2), m_squarings);
    pade17(A);
  }
#else
  // this case should be handled in compute()
  eigen_assert(false && "Bug in MatrixExponential"); 
#endif  // LDBL_MANT_DIG
}

/** \ingroup MatrixFunctions_Module
  *
  * \brief Proxy for the matrix exponential of some matrix (expression).
  *
  * \tparam Derived  Type of the argument to the matrix exponential.
  *
  * This class holds the argument to the matrix exponential until it
  * is assigned or evaluated for some other reason (so the argument
  * should not be changed in the meantime). It is the return type of
  * MatrixBase::exp() and most of the time this is the only way it is
  * used.
  */
template<typename Derived> struct MatrixExponentialReturnValue
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
{
    typedef typename Derived::Index Index;
  public:
    /** \brief Constructor.
      *
      * \param[in] src %Matrix (expression) forming the argument of the
      * matrix exponential.
      */
    MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }

    /** \brief Compute the matrix exponential.
      *
      * \param[out] result the matrix exponential of \p src in the
      * constructor.
      */
    template <typename ResultType>
    inline void evalTo(ResultType& result) const
    {
      const typename Derived::PlainObject srcEvaluated = m_src.eval();
      MatrixExponential<typename Derived::PlainObject> me(srcEvaluated);
      me.compute(result);
    }

    Index rows() const { return m_src.rows(); }
    Index cols() const { return m_src.cols(); }

  protected:
    const Derived& m_src;
  private:
    MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&);
};

namespace internal {
template<typename Derived>
struct traits<MatrixExponentialReturnValue<Derived> >
{
  typedef typename Derived::PlainObject ReturnType;
};
}

template <typename Derived>
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
{
  eigen_assert(rows() == cols());
  return MatrixExponentialReturnValue<Derived>(derived());
}

} // end namespace Eigen

#endif // EIGEN_MATRIX_EXPONENTIAL