aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
blob: 02284b0ddf0bc4799ff6721f8c1f7cd55e026199 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_EXPONENTIAL
#define EIGEN_MATRIX_EXPONENTIAL

#include "StemFunction.h"

namespace Eigen {
namespace internal {

/** \brief Scaling operator.
 *
 * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$.
 */
template <typename RealScalar>
struct MatrixExponentialScalingOp
{
  /** \brief Constructor.
   *
   * \param[in] squarings  The integer \f$ s \f$ in this document.
   */
  MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { }


  /** \brief Scale a matrix coefficient.
   *
   * \param[in,out] x  The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
   */
  inline const RealScalar operator() (const RealScalar& x) const
  {
    using std::ldexp;
    return ldexp(x, -m_squarings);
  }

  typedef std::complex<RealScalar> ComplexScalar;

  /** \brief Scale a matrix coefficient.
   *
   * \param[in,out] x  The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
   */
  inline const ComplexScalar operator() (const ComplexScalar& x) const
  {
    using std::ldexp;
    return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
  }

  private:
    int m_squarings;
};

/** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
 *
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 */
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V)
{
  typedef typename MatA::PlainObject MatrixType;
  typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar;
  const RealScalar b[] = {120.L, 60.L, 12.L, 1.L};
  const MatrixType A2 = A * A;
  const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
  U.noalias() = A * tmp;
  V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}

/** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
 *
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 */
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V)
{
  typedef typename MatA::PlainObject MatrixType;
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
  const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
  const MatrixType A2 = A * A;
  const MatrixType A4 = A2 * A2;
  const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
  U.noalias() = A * tmp;
  V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}

/** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
 *
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 */
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V)
{
  typedef typename MatA::PlainObject MatrixType;
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
  const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
  const MatrixType A2 = A * A;
  const MatrixType A4 = A2 * A2;
  const MatrixType A6 = A4 * A2;
  const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2 
    + b[1] * MatrixType::Identity(A.rows(), A.cols());
  U.noalias() = A * tmp;
  V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());

}

/** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
 *
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 */
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V)
{
  typedef typename MatA::PlainObject MatrixType;
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
  const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
                          2162160.L, 110880.L, 3960.L, 90.L, 1.L};
  const MatrixType A2 = A * A;
  const MatrixType A4 = A2 * A2;
  const MatrixType A6 = A4 * A2;
  const MatrixType A8 = A6 * A2;
  const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 
    + b[1] * MatrixType::Identity(A.rows(), A.cols());
  U.noalias() = A * tmp;
  V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}

/** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
 *
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 */
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V)
{
  typedef typename MatA::PlainObject MatrixType;
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
  const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
                          1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
                          33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
  const MatrixType A2 = A * A;
  const MatrixType A4 = A2 * A2;
  const MatrixType A6 = A4 * A2;
  V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage
  MatrixType tmp = A6 * V;
  tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
  U.noalias() = A * tmp;
  tmp = b[12] * A6 + b[10] * A4 + b[8] * A2;
  V.noalias() = A6 * tmp;
  V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
}

/** \brief Compute the (17,17)-Pad&eacute; approximant to the exponential.
 *
 *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
 *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
 *
 *  This function activates only if your long double is double-double or quadruple.
 */
#if LDBL_MANT_DIG > 64
template <typename MatA, typename MatU, typename MatV>
void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V)
{
  typedef typename MatA::PlainObject MatrixType;
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
  const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
                          100610229646136770560000.L, 15720348382208870400000.L,
                          1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
                          595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
                          33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
                          46512.L, 306.L, 1.L};
  const MatrixType A2 = A * A;
  const MatrixType A4 = A2 * A2;
  const MatrixType A6 = A4 * A2;
  const MatrixType A8 = A4 * A4;
  V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage
  MatrixType tmp = A8 * V;
  tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 
    + b[1] * MatrixType::Identity(A.rows(), A.cols());
  U.noalias() = A * tmp;
  tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2;
  V.noalias() = tmp * A8;
  V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 
    + b[0] * MatrixType::Identity(A.rows(), A.cols());
}
#endif

template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
struct matrix_exp_computeUV
{
  /** \brief Compute Pad&eacute; approximant to the exponential.
    *
    * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute;
    * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$
    * denotes the matrix \c arg. The degree of the Pad&eacute; approximant and the value of squarings
    * are chosen such that the approximation error is no more than the round-off error.
    */
  static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings);
};

template <typename MatrixType>
struct matrix_exp_computeUV<MatrixType, float>
{
  template <typename ArgType>
  static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
  {
    using std::frexp;
    using std::pow;
    const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
    squarings = 0;
    if (l1norm < 4.258730016922831e-001f) {
      matrix_exp_pade3(arg, U, V);
    } else if (l1norm < 1.880152677804762e+000f) {
      matrix_exp_pade5(arg, U, V);
    } else {
      const float maxnorm = 3.925724783138660f;
      frexp(l1norm / maxnorm, &squarings);
      if (squarings < 0) squarings = 0;
      MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings));
      matrix_exp_pade7(A, U, V);
    }
  }
};

template <typename MatrixType>
struct matrix_exp_computeUV<MatrixType, double>
{
  typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
  template <typename ArgType>
  static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
  {
    using std::frexp;
    using std::pow;
    const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
    squarings = 0;
    if (l1norm < 1.495585217958292e-002) {
      matrix_exp_pade3(arg, U, V);
    } else if (l1norm < 2.539398330063230e-001) {
      matrix_exp_pade5(arg, U, V);
    } else if (l1norm < 9.504178996162932e-001) {
      matrix_exp_pade7(arg, U, V);
    } else if (l1norm < 2.097847961257068e+000) {
      matrix_exp_pade9(arg, U, V);
    } else {
      const RealScalar maxnorm = 5.371920351148152;
      frexp(l1norm / maxnorm, &squarings);
      if (squarings < 0) squarings = 0;
      MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings));
      matrix_exp_pade13(A, U, V);
    }
  }
};
  
template <typename MatrixType>
struct matrix_exp_computeUV<MatrixType, long double>
{
  template <typename ArgType>
  static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
  {
#if   LDBL_MANT_DIG == 53   // double precision
    matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings);
  
#else
  
    using std::frexp;
    using std::pow;
    const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
    squarings = 0;
  
#if LDBL_MANT_DIG <= 64   // extended precision
  
    if (l1norm < 4.1968497232266989671e-003L) {
      matrix_exp_pade3(arg, U, V);
    } else if (l1norm < 1.1848116734693823091e-001L) {
      matrix_exp_pade5(arg, U, V);
    } else if (l1norm < 5.5170388480686700274e-001L) {
      matrix_exp_pade7(arg, U, V);
    } else if (l1norm < 1.3759868875587845383e+000L) {
      matrix_exp_pade9(arg, U, V);
    } else {
      const long double maxnorm = 4.0246098906697353063L;
      frexp(l1norm / maxnorm, &squarings);
      if (squarings < 0) squarings = 0;
      MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
      matrix_exp_pade13(A, U, V);
    }
  
#elif LDBL_MANT_DIG <= 106  // double-double
  
    if (l1norm < 3.2787892205607026992947488108213e-005L) {
      matrix_exp_pade3(arg, U, V);
    } else if (l1norm < 6.4467025060072760084130906076332e-003L) {
      matrix_exp_pade5(arg, U, V);
    } else if (l1norm < 6.8988028496595374751374122881143e-002L) {
      matrix_exp_pade7(arg, U, V);
    } else if (l1norm < 2.7339737518502231741495857201670e-001L) {
      matrix_exp_pade9(arg, U, V);
    } else if (l1norm < 1.3203382096514474905666448850278e+000L) {
      matrix_exp_pade13(arg, U, V);
    } else {
      const long double maxnorm = 3.2579440895405400856599663723517L;
      frexp(l1norm / maxnorm, &squarings);
      if (squarings < 0) squarings = 0;
      MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
      matrix_exp_pade17(A, U, V);
    }
  
#elif LDBL_MANT_DIG <= 113  // quadruple precision
  
    if (l1norm < 1.639394610288918690547467954466970e-005L) {
      matrix_exp_pade3(arg, U, V);
    } else if (l1norm < 4.253237712165275566025884344433009e-003L) {
      matrix_exp_pade5(arg, U, V);
    } else if (l1norm < 5.125804063165764409885122032933142e-002L) {
      matrix_exp_pade7(arg, U, V);
    } else if (l1norm < 2.170000765161155195453205651889853e-001L) {
      matrix_exp_pade9(arg, U, V);
    } else if (l1norm < 1.125358383453143065081397882891878e+000L) {
      matrix_exp_pade13(arg, U, V);
    } else {
      const long double maxnorm = 2.884233277829519311757165057717815L;
      frexp(l1norm / maxnorm, &squarings);
      if (squarings < 0) squarings = 0;
      MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
      matrix_exp_pade17(A, U, V);
    }
  
#else
  
    // this case should be handled in compute()
    eigen_assert(false && "Bug in MatrixExponential"); 
  
#endif
#endif  // LDBL_MANT_DIG
  }
};

template<typename T> struct is_exp_known_type : false_type {};
template<> struct is_exp_known_type<float> : true_type {};
template<> struct is_exp_known_type<double> : true_type {};
#if LDBL_MANT_DIG <= 113
template<> struct is_exp_known_type<long double> : true_type {};
#endif

template <typename ArgType, typename ResultType>
void matrix_exp_compute(const ArgType& arg, ResultType &result, true_type) // natively supported scalar type
{
  typedef typename ArgType::PlainObject MatrixType;
  MatrixType U, V;
  int squarings;
  matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
  MatrixType numer = U + V;
  MatrixType denom = -U + V;
  result = denom.partialPivLu().solve(numer);
  for (int i=0; i<squarings; i++)
    result *= result;   // undo scaling by repeated squaring
}


/* Computes the matrix exponential
 *
 * \param arg    argument of matrix exponential (should be plain object)
 * \param result variable in which result will be stored
 */
template <typename ArgType, typename ResultType>
void matrix_exp_compute(const ArgType& arg, ResultType &result, false_type) // default
{
  typedef typename ArgType::PlainObject MatrixType;
  typedef typename traits<MatrixType>::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef typename std::complex<RealScalar> ComplexScalar;
  result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
}

} // end namespace Eigen::internal

/** \ingroup MatrixFunctions_Module
  *
  * \brief Proxy for the matrix exponential of some matrix (expression).
  *
  * \tparam Derived  Type of the argument to the matrix exponential.
  *
  * This class holds the argument to the matrix exponential until it is assigned or evaluated for
  * some other reason (so the argument should not be changed in the meantime). It is the return type
  * of MatrixBase::exp() and most of the time this is the only way it is used.
  */
template<typename Derived> struct MatrixExponentialReturnValue
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
{
  public:
    /** \brief Constructor.
      *
      * \param src %Matrix (expression) forming the argument of the matrix exponential.
      */
    MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }

    /** \brief Compute the matrix exponential.
      *
      * \param result the matrix exponential of \p src in the constructor.
      */
    template <typename ResultType>
    inline void evalTo(ResultType& result) const
    {
      const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
      internal::matrix_exp_compute(tmp, result, internal::is_exp_known_type<typename Derived::RealScalar>());
    }

    Index rows() const { return m_src.rows(); }
    Index cols() const { return m_src.cols(); }

  protected:
    const typename internal::ref_selector<Derived>::type m_src;
};

namespace internal {
template<typename Derived>
struct traits<MatrixExponentialReturnValue<Derived> >
{
  typedef typename Derived::PlainObject ReturnType;
};
}

template <typename Derived>
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
{
  eigen_assert(rows() == cols());
  return MatrixExponentialReturnValue<Derived>(derived());
}

} // end namespace Eigen

#endif // EIGEN_MATRIX_EXPONENTIAL