aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
blob: c744fc05f4e9dd3b727915736468f8533394d25e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_LOGARITHM
#define EIGEN_MATRIX_LOGARITHM

#ifndef M_PI
#define M_PI 3.141592653589793238462643383279503L
#endif

namespace Eigen { 

/** \ingroup MatrixFunctions_Module
  * \class MatrixLogarithmAtomic
  * \brief Helper class for computing matrix logarithm of atomic matrices.
  *
  * \internal
  * Here, an atomic matrix is a triangular matrix whose diagonal
  * entries are close to each other.
  *
  * \sa class MatrixFunctionAtomic, MatrixBase::log()
  */
template <typename MatrixType>
class MatrixLogarithmAtomic
{
public:

  typedef typename MatrixType::Scalar Scalar;
  // typedef typename MatrixType::Index Index;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  // typedef typename internal::stem_function<Scalar>::type StemFunction;
  // typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  /** \brief Constructor. */
  MatrixLogarithmAtomic() { }

  /** \brief Compute matrix logarithm of atomic matrix
    * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic
    * \returns  The logarithm of \p A.
    */
  MatrixType compute(const MatrixType& A);

private:

  void compute2x2(const MatrixType& A, MatrixType& result);
  void computeBig(const MatrixType& A, MatrixType& result);
  int getPadeDegree(float normTminusI);
  int getPadeDegree(double normTminusI);
  int getPadeDegree(long double normTminusI);
  void computePade(MatrixType& result, const MatrixType& T, int degree);
  void computePade3(MatrixType& result, const MatrixType& T);
  void computePade4(MatrixType& result, const MatrixType& T);
  void computePade5(MatrixType& result, const MatrixType& T);
  void computePade6(MatrixType& result, const MatrixType& T);
  void computePade7(MatrixType& result, const MatrixType& T);
  void computePade8(MatrixType& result, const MatrixType& T);
  void computePade9(MatrixType& result, const MatrixType& T);
  void computePade10(MatrixType& result, const MatrixType& T);
  void computePade11(MatrixType& result, const MatrixType& T);

  static const int minPadeDegree = 3;
  static const int maxPadeDegree = std::numeric_limits<RealScalar>::digits<= 24?  5:  // single precision
                                   std::numeric_limits<RealScalar>::digits<= 53?  7:  // double precision
                                   std::numeric_limits<RealScalar>::digits<= 64?  8:  // extended precision
                                   std::numeric_limits<RealScalar>::digits<=106? 10:  // double-double
                                                                                 11;  // quadruple precision

  // Prevent copying
  MatrixLogarithmAtomic(const MatrixLogarithmAtomic&);
  MatrixLogarithmAtomic& operator=(const MatrixLogarithmAtomic&);
};

/** \brief Compute logarithm of triangular matrix with clustered eigenvalues. */
template <typename MatrixType>
MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
{
  using std::log;
  MatrixType result(A.rows(), A.rows());
  if (A.rows() == 1)
    result(0,0) = log(A(0,0));
  else if (A.rows() == 2)
    compute2x2(A, result);
  else
    computeBig(A, result);
  return result;
}

/** \brief Compute logarithm of 2x2 triangular matrix. */
template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixType& result)
{
  using std::abs;
  using std::ceil;
  using std::imag;
  using std::log;

  Scalar logA00 = log(A(0,0));
  Scalar logA11 = log(A(1,1));

  result(0,0) = logA00;
  result(1,0) = Scalar(0);
  result(1,1) = logA11;

  if (A(0,0) == A(1,1)) {
    result(0,1) = A(0,1) / A(0,0);
  } else if ((abs(A(0,0)) < 0.5*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) {
    result(0,1) = A(0,1) * (logA11 - logA00) / (A(1,1) - A(0,0));
  } else {
    // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
    int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - M_PI) / (2*M_PI)));
    Scalar y = A(1,1) - A(0,0), x = A(1,1) + A(0,0);
    result(0,1) = A(0,1) * (Scalar(2) * numext::atanh2(y,x) + Scalar(0,2*M_PI*unwindingNumber)) / y;
  }
}

/** \brief Compute logarithm of triangular matrices with size > 2. 
  * \details This uses a inverse scale-and-square algorithm. */
template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixType& result)
{
  using std::pow;
  int numberOfSquareRoots = 0;
  int numberOfExtraSquareRoots = 0;
  int degree;
  MatrixType T = A, sqrtT;
  const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1:                     // single precision
                                    maxPadeDegree<= 7? 2.6429608311114350e-1:                     // double precision
                                    maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision
                                    maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double
                                                       1.1880960220216759245467951592883642e-1L;  // quadruple precision

  while (true) {
    RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
    if (normTminusI < maxNormForPade) {
      degree = getPadeDegree(normTminusI);
      int degree2 = getPadeDegree(normTminusI / RealScalar(2));
      if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1)) 
        break;
      ++numberOfExtraSquareRoots;
    }
    MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
    T = sqrtT.template triangularView<Upper>();
    ++numberOfSquareRoots;
  }

  computePade(result, T, degree);
  result *= pow(RealScalar(2), numberOfSquareRoots);
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
template <typename MatrixType>
int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI)
{
  const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
            5.3149729967117310e-1 };
  int degree = 3;
  for (; degree <= maxPadeDegree; ++degree) 
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
template <typename MatrixType>
int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI)
{
  const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
            1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
  int degree = 3;
  for (; degree <= maxPadeDegree; ++degree)
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
template <typename MatrixType>
int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI)
{
#if   LDBL_MANT_DIG == 53         // double precision
  const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
            1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
#elif LDBL_MANT_DIG <= 64         // extended precision
  const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
            5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
            2.32777776523703892094e-1L };
#elif LDBL_MANT_DIG <= 106        // double-double
  const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
            9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
            1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
            4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
            1.05026503471351080481093652651105e-1L };
#else                             // quadruple precision
  const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
            5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
            8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
            3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
            8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
#endif
  int degree = 3;
  for (; degree <= maxPadeDegree; ++degree)
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Compute Pade approximation to matrix logarithm */
template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade(MatrixType& result, const MatrixType& T, int degree)
{
  switch (degree) {
    case 3:  computePade3(result, T);  break;
    case 4:  computePade4(result, T);  break;
    case 5:  computePade5(result, T);  break;
    case 6:  computePade6(result, T);  break;
    case 7:  computePade7(result, T);  break;
    case 8:  computePade8(result, T);  break;
    case 9:  computePade9(result, T);  break;
    case 10: computePade10(result, T); break;
    case 11: computePade11(result, T); break;
    default: assert(false); // should never happen
  }
} 

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade3(MatrixType& result, const MatrixType& T)
{
  const int degree = 3;
  const RealScalar nodes[]   = { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,
            0.8872983346207416885179265399782400L };
  const RealScalar weights[] = { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,
            0.2777777777777777777777777777777778L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade4(MatrixType& result, const MatrixType& T)
{
  const int degree = 4;
  const RealScalar nodes[]   = { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,
            0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L };
  const RealScalar weights[] = { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,
            0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade5(MatrixType& result, const MatrixType& T)
{
  const int degree = 5;
  const RealScalar nodes[]   = { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,
            0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
            0.9530899229693319963988134391496965L };
  const RealScalar weights[] = { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,
            0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
            0.1184634425280945437571320203599587L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade6(MatrixType& result, const MatrixType& T)
{
  const int degree = 6;
  const RealScalar nodes[]   = { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,
            0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
            0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L };
  const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,
            0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
            0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade7(MatrixType& result, const MatrixType& T)
{
  const int degree = 7;
  const RealScalar nodes[]   = { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,
            0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
            0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
            0.9745539561713792622630948420239256L };
  const RealScalar weights[] = { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,
            0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
            0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
            0.0647424830844348466353057163395410L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade8(MatrixType& result, const MatrixType& T)
{
  const int degree = 8;
  const RealScalar nodes[]   = { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,
            0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
            0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
            0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L };
  const RealScalar weights[] = { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,
            0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
            0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
            0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade9(MatrixType& result, const MatrixType& T)
{
  const int degree = 9;
  const RealScalar nodes[]   = { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,
            0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
            0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
            0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
            0.9840801197538130449177881014518364L };
  const RealScalar weights[] = { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,
            0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
            0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
            0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
            0.0406371941807872059859460790552618L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade10(MatrixType& result, const MatrixType& T)
{
  const int degree = 10;
  const RealScalar nodes[]   = { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,
            0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
            0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
            0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
            0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L };
  const RealScalar weights[] = { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,
            0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
            0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
            0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
            0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade11(MatrixType& result, const MatrixType& T)
{
  const int degree = 11;
  const RealScalar nodes[]   = { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,
            0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
            0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
            0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
            0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
            0.9891143290730284964019690005614287L };
  const RealScalar weights[] = { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,
            0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
            0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
            0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
            0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
            0.0278342835580868332413768602212743L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

/** \ingroup MatrixFunctions_Module
  *
  * \brief Proxy for the matrix logarithm of some matrix (expression).
  *
  * \tparam Derived  Type of the argument to the matrix function.
  *
  * This class holds the argument to the matrix function until it is
  * assigned or evaluated for some other reason (so the argument
  * should not be changed in the meantime). It is the return type of
  * MatrixBase::log() and most of the time this is the only way it
  * is used.
  */
template<typename Derived> class MatrixLogarithmReturnValue
: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
{
public:

  typedef typename Derived::Scalar Scalar;
  typedef typename Derived::Index Index;

  /** \brief Constructor.
    *
    * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm.
    */
  MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
  
  /** \brief Compute the matrix logarithm.
    *
    * \param[out]  result  Logarithm of \p A, where \A is as specified in the constructor.
    */
  template <typename ResultType>
  inline void evalTo(ResultType& result) const
  {
    typedef typename Derived::PlainObject PlainObject;
    typedef internal::traits<PlainObject> Traits;
    static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
    static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
    static const int Options = PlainObject::Options;
    typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
    typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
    typedef MatrixLogarithmAtomic<DynMatrixType> AtomicType;
    AtomicType atomic;
    
    const PlainObject Aevaluated = m_A.eval();
    MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
    mf.compute(result);
  }

  Index rows() const { return m_A.rows(); }
  Index cols() const { return m_A.cols(); }
  
private:
  typename internal::nested<Derived>::type m_A;
  
  MatrixLogarithmReturnValue& operator=(const MatrixLogarithmReturnValue&);
};

namespace internal {
  template<typename Derived>
  struct traits<MatrixLogarithmReturnValue<Derived> >
  {
    typedef typename Derived::PlainObject ReturnType;
  };
}


/********** MatrixBase method **********/


template <typename Derived>
const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
{
  eigen_assert(rows() == cols());
  return MatrixLogarithmReturnValue<Derived>(derived());
}

} // end namespace Eigen

#endif // EIGEN_MATRIX_LOGARITHM