aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
blob: ff8f6e732c7f102f9df3e22feda590dcc46e5e57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_LOGARITHM
#define EIGEN_MATRIX_LOGARITHM

namespace Eigen { 

namespace internal { 

template <typename Scalar>
struct matrix_log_min_pade_degree 
{
  static const int value = 3;
};

template <typename Scalar>
struct matrix_log_max_pade_degree 
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static const int value = std::numeric_limits<RealScalar>::digits<= 24?  5:  // single precision
                           std::numeric_limits<RealScalar>::digits<= 53?  7:  // double precision
                           std::numeric_limits<RealScalar>::digits<= 64?  8:  // extended precision
                           std::numeric_limits<RealScalar>::digits<=106? 10:  // double-double
                                                                         11;  // quadruple precision
};

/** \brief Compute logarithm of 2x2 triangular matrix. */
template <typename MatrixType>
void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  using std::abs;
  using std::ceil;
  using std::imag;
  using std::log;

  Scalar logA00 = log(A(0,0));
  Scalar logA11 = log(A(1,1));

  result(0,0) = logA00;
  result(1,0) = Scalar(0);
  result(1,1) = logA11;

  Scalar y = A(1,1) - A(0,0);
  if (y==Scalar(0))
  {
    result(0,1) = A(0,1) / A(0,0);
  }
  else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1))))
  {
    result(0,1) = A(0,1) * (logA11 - logA00) / y;
  }
  else
  {
    // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
    int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI)));
    result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y;
  }
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
inline int matrix_log_get_pade_degree(float normTminusI)
{
  const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
            5.3149729967117310e-1 };
  const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
  const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
  int degree = minPadeDegree;
  for (; degree <= maxPadeDegree; ++degree) 
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
inline int matrix_log_get_pade_degree(double normTminusI)
{
  const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
            1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
  const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
  const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
  int degree = minPadeDegree;
  for (; degree <= maxPadeDegree; ++degree)
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
inline int matrix_log_get_pade_degree(long double normTminusI)
{
#if   LDBL_MANT_DIG == 53         // double precision
  const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
            1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
#elif LDBL_MANT_DIG <= 64         // extended precision
  const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
            5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
            2.32777776523703892094e-1L };
#elif LDBL_MANT_DIG <= 106        // double-double
  const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
            9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
            1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
            4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
            1.05026503471351080481093652651105e-1L };
#else                             // quadruple precision
  const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
            5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
            8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
            3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
            8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
#endif
  const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
  const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
  int degree = minPadeDegree;
  for (; degree <= maxPadeDegree; ++degree)
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Compute Pade approximation to matrix logarithm */
template <typename MatrixType>
void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree)
{
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  const int minPadeDegree = 3;
  const int maxPadeDegree = 11;
  assert(degree >= minPadeDegree && degree <= maxPadeDegree);

  const RealScalar nodes[][maxPadeDegree] = { 
    { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,  // degree 3
      0.8872983346207416885179265399782400L }, 
    { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,  // degree 4
      0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L },
    { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,  // degree 5
      0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
      0.9530899229693319963988134391496965L },
    { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,  // degree 6
      0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
      0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L },
    { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,  // degree 7
      0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
      0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
      0.9745539561713792622630948420239256L },
    { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,  // degree 8
      0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
      0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
      0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L },
    { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,  // degree 9
      0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
      0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
      0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
      0.9840801197538130449177881014518364L },
    { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,  // degree 10
      0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
      0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
      0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
      0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L },
    { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,  // degree 11
      0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
      0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
      0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
      0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
      0.9891143290730284964019690005614287L } };

  const RealScalar weights[][maxPadeDegree] = { 
    { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,  // degree 3
      0.2777777777777777777777777777777778L },
    { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,  // degree 4
      0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L },
    { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,  // degree 5
      0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
      0.1184634425280945437571320203599587L },
    { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,  // degree 6
      0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
      0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L },
    { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,  // degree 7
      0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
      0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
      0.0647424830844348466353057163395410L },
    { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,  // degree 8
      0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
      0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
      0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L },
    { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,  // degree 9
      0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
      0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
      0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
      0.0406371941807872059859460790552618L },
    { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,  // degree 10
      0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
      0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
      0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
      0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L },
    { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,  // degree 11
      0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
      0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
      0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
      0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
      0.0278342835580868332413768602212743L } };

  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k) {
    RealScalar weight = weights[degree-minPadeDegree][k];
    RealScalar node = nodes[degree-minPadeDegree][k];
    result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI)
                       .template triangularView<Upper>().solve(TminusI);
  }
} 

/** \brief Compute logarithm of triangular matrices with size > 2. 
  * \details This uses a inverse scale-and-square algorithm. */
template <typename MatrixType>
void matrix_log_compute_big(const MatrixType& A, MatrixType& result)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  using std::pow;

  int numberOfSquareRoots = 0;
  int numberOfExtraSquareRoots = 0;
  int degree;
  MatrixType T = A, sqrtT;

  int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
  const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L:                    // single precision
                                    maxPadeDegree<= 7? 2.6429608311114350e-1L:                    // double precision
                                    maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision
                                    maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double
                                                       1.1880960220216759245467951592883642e-1L;  // quadruple precision

  while (true) {
    RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
    if (normTminusI < maxNormForPade) {
      degree = matrix_log_get_pade_degree(normTminusI);
      int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
      if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1)) 
        break;
      ++numberOfExtraSquareRoots;
    }
    matrix_sqrt_triangular(T, sqrtT);
    T = sqrtT.template triangularView<Upper>();
    ++numberOfSquareRoots;
  }

  matrix_log_compute_pade(result, T, degree);
  result *= pow(RealScalar(2), numberOfSquareRoots);
}

/** \ingroup MatrixFunctions_Module
  * \class MatrixLogarithmAtomic
  * \brief Helper class for computing matrix logarithm of atomic matrices.
  *
  * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other.
  *
  * \sa class MatrixFunctionAtomic, MatrixBase::log()
  */
template <typename MatrixType>
class MatrixLogarithmAtomic
{
public:
  /** \brief Compute matrix logarithm of atomic matrix
    * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic
    * \returns  The logarithm of \p A.
    */
  MatrixType compute(const MatrixType& A);
};

template <typename MatrixType>
MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
{
  using std::log;
  MatrixType result(A.rows(), A.rows());
  if (A.rows() == 1)
    result(0,0) = log(A(0,0));
  else if (A.rows() == 2)
    matrix_log_compute_2x2(A, result);
  else
    matrix_log_compute_big(A, result);
  return result;
}

} // end of namespace internal

/** \ingroup MatrixFunctions_Module
  *
  * \brief Proxy for the matrix logarithm of some matrix (expression).
  *
  * \tparam Derived  Type of the argument to the matrix function.
  *
  * This class holds the argument to the matrix function until it is
  * assigned or evaluated for some other reason (so the argument
  * should not be changed in the meantime). It is the return type of
  * MatrixBase::log() and most of the time this is the only way it
  * is used.
  */
template<typename Derived> class MatrixLogarithmReturnValue
: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
{
public:
  typedef typename Derived::Scalar Scalar;
  typedef typename Derived::Index Index;

protected:
  typedef typename internal::ref_selector<Derived>::type DerivedNested;

public:

  /** \brief Constructor.
    *
    * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm.
    */
  explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
  
  /** \brief Compute the matrix logarithm.
    *
    * \param[out]  result  Logarithm of \p A, where \A is as specified in the constructor.
    */
  template <typename ResultType>
  inline void evalTo(ResultType& result) const
  {
    typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
    typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean;
    typedef internal::traits<DerivedEvalTypeClean> Traits;
    static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
    static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
    typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
    typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
    typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType;
    AtomicType atomic;
    
    internal::matrix_function_compute<typename DerivedEvalTypeClean::PlainObject>::run(m_A, atomic, result);
  }

  Index rows() const { return m_A.rows(); }
  Index cols() const { return m_A.cols(); }
  
private:
  const DerivedNested m_A;
};

namespace internal {
  template<typename Derived>
  struct traits<MatrixLogarithmReturnValue<Derived> >
  {
    typedef typename Derived::PlainObject ReturnType;
  };
}


/********** MatrixBase method **********/


template <typename Derived>
const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
{
  eigen_assert(rows() == cols());
  return MatrixLogarithmReturnValue<Derived>(derived());
}

} // end namespace Eigen

#endif // EIGEN_MATRIX_LOGARITHM