aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
blob: 78a307e9662b7b9f5a547459d8fce0168ced81bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_POWER
#define EIGEN_MATRIX_POWER

namespace Eigen {

template<typename MatrixType> class MatrixPower;

template<typename MatrixType>
class MatrixPowerRetval : public ReturnByValue< MatrixPowerRetval<MatrixType> >
{
  public:
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;

    MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
    { }

    template<typename ResultType>
    inline void evalTo(ResultType& res) const
    { m_pow.compute(res, m_p); }

    Index rows() const { return m_pow.rows(); }
    Index cols() const { return m_pow.cols(); }

  private:
    MatrixPower<MatrixType>& m_pow;
    const RealScalar m_p;
    MatrixPowerRetval& operator=(const MatrixPowerRetval&);
};

template<typename MatrixType>
class MatrixPowerAtomic
{
  private:
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef std::complex<RealScalar> ComplexScalar;
    typedef typename MatrixType::Index Index;
    typedef Array<Scalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> ArrayType;

    const MatrixType& m_A;
    RealScalar m_p;

    void computePade(int degree, const MatrixType& IminusT, MatrixType& res) const;
    void compute2x2(MatrixType& res, RealScalar p) const;
    void computeBig(MatrixType& res) const;
    static int getPadeDegree(float normIminusT);
    static int getPadeDegree(double normIminusT);
    static int getPadeDegree(long double normIminusT);
    static ComplexScalar computeSuperDiag(const ComplexScalar&, const ComplexScalar&, RealScalar p);
    static RealScalar computeSuperDiag(RealScalar, RealScalar, RealScalar p);

  public:
    MatrixPowerAtomic(const MatrixType& T, RealScalar p);
    void compute(MatrixType& res) const;
};

template<typename MatrixType>
MatrixPowerAtomic<MatrixType>::MatrixPowerAtomic(const MatrixType& T, RealScalar p) :
  m_A(T), m_p(p)
{ eigen_assert(T.rows() == T.cols()); }

template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::compute(MatrixType& res) const
{
  res.resizeLike(m_A);
  switch (m_A.rows()) {
    case 0:
      break;
    case 1:
      res(0,0) = std::pow(m_A(0,0), m_p);
      break;
    case 2:
      compute2x2(res, m_p);
      break;
    default:
      computeBig(res);
  }
}

template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res) const
{
  int i = degree<<1;
  res = (m_p-degree) / ((i-1)<<1) * IminusT;
  for (--i; i; --i) {
    res = (MatrixType::Identity(IminusT.rows(), IminusT.cols()) + res).template triangularView<Upper>()
	.solve((i==1 ? -m_p : i&1 ? (-m_p-(i>>1))/(i<<1) : (m_p-(i>>1))/((i-1)<<1)) * IminusT).eval();
  }
  res += MatrixType::Identity(IminusT.rows(), IminusT.cols());
}

// This function assumes that res has the correct size (see bug 614)
template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
{
  using std::abs;
  using std::pow;
  
  res.coeffRef(0,0) = pow(m_A.coeff(0,0), p);

  for (Index i=1; i < m_A.cols(); ++i) {
    res.coeffRef(i,i) = pow(m_A.coeff(i,i), p);
    if (m_A.coeff(i-1,i-1) == m_A.coeff(i,i))
      res.coeffRef(i-1,i) = p * pow(m_A.coeff(i,i), p-1);
    else if (2*abs(m_A.coeff(i-1,i-1)) < abs(m_A.coeff(i,i)) || 2*abs(m_A.coeff(i,i)) < abs(m_A.coeff(i-1,i-1)))
      res.coeffRef(i-1,i) = (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_A.coeff(i,i)-m_A.coeff(i-1,i-1));
    else
      res.coeffRef(i-1,i) = computeSuperDiag(m_A.coeff(i,i), m_A.coeff(i-1,i-1), p);
    res.coeffRef(i-1,i) *= m_A.coeff(i-1,i);
  }
}

template<typename MatrixType>
void MatrixPowerAtomic<MatrixType>::computeBig(MatrixType& res) const
{
  const int digits = std::numeric_limits<RealScalar>::digits;
  const RealScalar maxNormForPade = digits <=  24? 4.3386528e-1f:                           // sigle precision
				    digits <=  53? 2.789358995219730e-1:                    // double precision
				    digits <=  64? 2.4471944416607995472e-1L:               // extended precision
				    digits <= 106? 1.1016843812851143391275867258512e-1L:   // double-double
						   9.134603732914548552537150753385375e-2L; // quadruple precision
  MatrixType IminusT, sqrtT, T = m_A.template triangularView<Upper>();
  RealScalar normIminusT;
  int degree, degree2, numberOfSquareRoots = 0;
  bool hasExtraSquareRoot = false;

  /* FIXME
   * For singular T, norm(I - T) >= 1 but maxNormForPade < 1, leads to infinite
   * loop.  We should move 0 eigenvalues to bottom right corner.  We need not
   * worry about tiny values (e.g. 1e-300) because they will reach 1 if
   * repetitively sqrt'ed.
   *
   * If the 0 eigenvalues are semisimple, they can form a 0 matrix at the
   * bottom right corner.
   *
   * [ T  A ]^p   [ T^p  (T^-1 T^p A) ]
   * [      ]   = [                   ]
   * [ 0  0 ]     [  0         0      ]
   */
  for (Index i=0; i < m_A.cols(); ++i)
    eigen_assert(m_A(i,i) != RealScalar(0));

  while (true) {
    IminusT = MatrixType::Identity(m_A.rows(), m_A.cols()) - T;
    normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
    if (normIminusT < maxNormForPade) {
      degree = getPadeDegree(normIminusT);
      degree2 = getPadeDegree(normIminusT/2);
      if (degree - degree2 <= 1 || hasExtraSquareRoot)
	break;
      hasExtraSquareRoot = true;
    }
    MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
    T = sqrtT.template triangularView<Upper>();
    ++numberOfSquareRoots;
  }
  computePade(degree, IminusT, res);

  for (; numberOfSquareRoots; --numberOfSquareRoots) {
    compute2x2(res, std::ldexp(m_p, -numberOfSquareRoots));
    res = res.template triangularView<Upper>() * res;
  }
  compute2x2(res, m_p);
}
  
template<typename MatrixType>
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(float normIminusT)
{
  const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
  int degree = 3;
  for (; degree <= 4; ++degree)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}

template<typename MatrixType>
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(double normIminusT)
{
  const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
      1.999045567181744e-1, 2.789358995219730e-1 };
  int degree = 3;
  for (; degree <= 7; ++degree)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}

template<typename MatrixType>
inline int MatrixPowerAtomic<MatrixType>::getPadeDegree(long double normIminusT)
{
#if   LDBL_MANT_DIG == 53
  const int maxPadeDegree = 7;
  const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
      1.999045567181744e-1L, 2.789358995219730e-1L };
#elif LDBL_MANT_DIG <= 64
  const int maxPadeDegree = 8;
  const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
      6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
#elif LDBL_MANT_DIG <= 106
  const int maxPadeDegree = 10;
  const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
      1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
      2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
      1.1016843812851143391275867258512e-1L };
#else
  const int maxPadeDegree = 10;
  const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
      6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
      9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
      3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
      9.134603732914548552537150753385375e-2L };
#endif
  int degree = 3;
  for (; degree <= maxPadeDegree; ++degree)
    if (normIminusT <= maxNormForPade[degree - 3])
      break;
  return degree;
}

template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::ComplexScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(const ComplexScalar& curr, const ComplexScalar& prev, RealScalar p)
{
  ComplexScalar logCurr = std::log(curr);
  ComplexScalar logPrev = std::log(prev);
  int unwindingNumber = std::ceil((numext::imag(logCurr - logPrev) - M_PI) / (2*M_PI));
  ComplexScalar w = numext::atanh2(curr - prev, curr + prev) + ComplexScalar(0, M_PI*unwindingNumber);
  return RealScalar(2) * std::exp(RealScalar(0.5) * p * (logCurr + logPrev)) * std::sinh(p * w) / (curr - prev);
}

template<typename MatrixType>
inline typename MatrixPowerAtomic<MatrixType>::RealScalar
MatrixPowerAtomic<MatrixType>::computeSuperDiag(RealScalar curr, RealScalar prev, RealScalar p)
{
  RealScalar w = numext::atanh2(curr - prev, curr + prev);
  return 2 * std::exp(p * (std::log(curr) + std::log(prev)) / 2) * std::sinh(p * w) / (curr - prev);
}

/**
 * \ingroup MatrixFunctions_Module
 *
 * \brief Class for computing matrix powers.
 *
 * \tparam MatrixType  type of the base, expected to be an instantiation
 * of the Matrix class template.
 *
 * This class is capable of computing real/complex matrices raised to
 * an arbitrary real power. Meanwhile, it saves the result of Schur
 * decomposition if an non-integral power has even been calculated.
 * Therefore, if you want to compute multiple (>= 2) matrix powers
 * for the same matrix, using the class directly is more efficient than
 * calling MatrixBase::pow().
 *
 * Example:
 * \include MatrixPower_optimal.cpp
 * Output: \verbinclude MatrixPower_optimal.out
 */
template<typename MatrixType>
class MatrixPower
{
  private:
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;

  public:
    /**
     * \brief Constructor.
     *
     * \param[in] A  the base of the matrix power.
     *
     * The class stores a reference to A, so it should not be changed
     * (or destroyed) before evaluation.
     */
    explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0)
    { eigen_assert(A.rows() == A.cols()); }

    /**
     * \brief Returns the matrix power.
     *
     * \param[in] p  exponent, a real scalar.
     * \return The expression \f$ A^p \f$, where A is specified in the
     * constructor.
     */
    const MatrixPowerRetval<MatrixType> operator()(RealScalar p)
    { return MatrixPowerRetval<MatrixType>(*this, p); }

    /**
     * \brief Compute the matrix power.
     *
     * \param[in]  p    exponent, a real scalar.
     * \param[out] res  \f$ A^p \f$ where A is specified in the
     * constructor.
     */
    template<typename ResultType>
    void compute(ResultType& res, RealScalar p);
    
    Index rows() const { return m_A.rows(); }
    Index cols() const { return m_A.cols(); }

  private:
    typedef std::complex<RealScalar> ComplexScalar;
    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, MatrixType::Options,
              MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrix;

    typename MatrixType::Nested m_A;
    MatrixType m_tmp;
    ComplexMatrix m_T, m_U, m_fT;
    RealScalar m_conditionNumber;

    RealScalar modfAndInit(RealScalar, RealScalar*);

    template<typename ResultType>
    void computeIntPower(ResultType&, RealScalar);

    template<typename ResultType>
    void computeFracPower(ResultType&, RealScalar);

    template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
    static void revertSchur(
        Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
        const ComplexMatrix& T,
        const ComplexMatrix& U);

    template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
    static void revertSchur(
        Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
        const ComplexMatrix& T,
        const ComplexMatrix& U);
};

template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p)
{
  switch (cols()) {
    case 0:
      break;
    case 1:
      res(0,0) = std::pow(m_A.coeff(0,0), p);
      break;
    default:
      RealScalar intpart, x = modfAndInit(p, &intpart);
      computeIntPower(res, intpart);
      computeFracPower(res, x);
  }
}

template<typename MatrixType>
typename MatrixPower<MatrixType>::RealScalar
MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
{
  typedef Array<RealScalar, RowsAtCompileTime, 1, ColMajor, MaxRowsAtCompileTime> RealArray;

  *intpart = std::floor(x);
  RealScalar res = x - *intpart;

  if (!m_conditionNumber && res) {
    const ComplexSchur<MatrixType> schurOfA(m_A);
    m_T = schurOfA.matrixT();
    m_U = schurOfA.matrixU();
    
    const RealArray absTdiag = m_T.diagonal().array().abs();
    m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
  }

  if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
    --res;
    ++*intpart;
  }
  return res;
}

template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
{
  RealScalar pp = std::abs(p);

  if (p<0)  m_tmp = m_A.inverse();
  else      m_tmp = m_A;

  res = MatrixType::Identity(rows(), cols());
  while (pp >= 1) {
    if (std::fmod(pp, 2) >= 1)
      res = m_tmp * res;
    m_tmp *= m_tmp;
    pp /= 2;
  }
}

template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
{
  if (p) {
    eigen_assert(m_conditionNumber);
    MatrixPowerAtomic<ComplexMatrix>(m_T, p).compute(m_fT);
    revertSchur(m_tmp, m_fT, m_U);
    res = m_tmp * res;
  }
}

template<typename MatrixType>
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
inline void MatrixPower<MatrixType>::revertSchur(
    Matrix<ComplexScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
    const ComplexMatrix& T,
    const ComplexMatrix& U)
{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }

template<typename MatrixType>
template<int Rows, int Cols, int Options, int MaxRows, int MaxCols>
inline void MatrixPower<MatrixType>::revertSchur(
    Matrix<RealScalar, Rows, Cols, Options, MaxRows, MaxCols>& res,
    const ComplexMatrix& T,
    const ComplexMatrix& U)
{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }

/**
 * \ingroup MatrixFunctions_Module
 *
 * \brief Proxy for the matrix power of some matrix (expression).
 *
 * \tparam Derived  type of the base, a matrix (expression).
 *
 * This class holds the arguments to the matrix power until it is
 * assigned or evaluated for some other reason (so the argument
 * should not be changed in the meantime). It is the return type of
 * MatrixBase::pow() and related functions and most of the
 * time this is the only way it is used.
 */
template<typename Derived>
class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Derived> >
{
  public:
    typedef typename Derived::PlainObject PlainObject;
    typedef typename Derived::RealScalar RealScalar;
    typedef typename Derived::Index Index;

    /**
     * \brief Constructor.
     *
     * \param[in] A  %Matrix (expression), the base of the matrix power.
     * \param[in] p  scalar, the exponent of the matrix power.
     */
    MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
    { }

    /**
     * \brief Compute the matrix power.
     *
     * \param[out] result  \f$ A^p \f$ where \p A and \p p are as in the
     * constructor.
     */
    template<typename ResultType>
    inline void evalTo(ResultType& res) const
    { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); }

    Index rows() const { return m_A.rows(); }
    Index cols() const { return m_A.cols(); }

  private:
    const Derived& m_A;
    const RealScalar m_p;
    MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
};

namespace internal {

template<typename MatrixPowerType>
struct traits< MatrixPowerRetval<MatrixPowerType> >
{ typedef typename MatrixPowerType::PlainObject ReturnType; };

template<typename Derived>
struct traits< MatrixPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };

}

template<typename Derived>
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(const RealScalar& p) const
{ return MatrixPowerReturnValue<Derived>(derived(), p); }

} // namespace Eigen

#endif // EIGEN_MATRIX_POWER