aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
blob: 10319fa17db4403552b4e85ed3b0d33f2ef869de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_SQUARE_ROOT
#define EIGEN_MATRIX_SQUARE_ROOT

namespace Eigen { 

/** \ingroup MatrixFunctions_Module
  * \brief Class for computing matrix square roots of upper quasi-triangular matrices.
  * \tparam  MatrixType  type of the argument of the matrix square root,
  *                      expected to be an instantiation of the Matrix class template.
  *
  * This class computes the square root of the upper quasi-triangular
  * matrix stored in the upper Hessenberg part of the matrix passed to
  * the constructor.
  *
  * \sa MatrixSquareRoot, MatrixSquareRootTriangular
  */
template <typename MatrixType>
class MatrixSquareRootQuasiTriangular
{
  public:

    /** \brief Constructor. 
      *
      * \param[in]  A  upper quasi-triangular matrix whose square root 
      *                is to be computed.
      *
      * The class stores a reference to \p A, so it should not be
      * changed (or destroyed) before compute() is called.
      */
    MatrixSquareRootQuasiTriangular(const MatrixType& A) 
      : m_A(A) 
    {
      eigen_assert(A.rows() == A.cols());
    }
    
    /** \brief Compute the matrix square root
      *
      * \param[out] result  square root of \p A, as specified in the constructor.
      *
      * Only the upper Hessenberg part of \p result is updated, the
      * rest is not touched.  See MatrixBase::sqrt() for details on
      * how this computation is implemented.
      */
    template <typename ResultType> void compute(ResultType &result);    
    
  private:
    typedef typename MatrixType::Index Index;
    typedef typename MatrixType::Scalar Scalar;
    
    void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
    void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
    void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
    void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
  				  typename MatrixType::Index i, typename MatrixType::Index j);
    void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
  				  typename MatrixType::Index i, typename MatrixType::Index j);
    void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
  				  typename MatrixType::Index i, typename MatrixType::Index j);
    void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
  				  typename MatrixType::Index i, typename MatrixType::Index j);
  
    template <typename SmallMatrixType>
    static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A, 
  				     const SmallMatrixType& B, const SmallMatrixType& C);
  
    const MatrixType& m_A;
};

template <typename MatrixType>
template <typename ResultType> 
void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
{
  // Compute Schur decomposition of m_A
  const RealSchur<MatrixType> schurOfA(m_A);  
  const MatrixType& T = schurOfA.matrixT();
  const MatrixType& U = schurOfA.matrixU();

  // Compute square root of T
  MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows());
  computeDiagonalPartOfSqrt(sqrtT, T);
  computeOffDiagonalPartOfSqrt(sqrtT, T);

  // Compute square root of m_A
  result = U * sqrtT * U.adjoint();
}

// pre:  T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT, 
									  const MatrixType& T)
{
  const Index size = m_A.rows();
  for (Index i = 0; i < size; i++) {
    if (i == size - 1 || T.coeff(i+1, i) == 0) {
      eigen_assert(T(i,i) > 0);
      sqrtT.coeffRef(i,i) = internal::sqrt(T.coeff(i,i));
    }
    else {
      compute2x2diagonalBlock(sqrtT, T, i);
      ++i;
    }
  }
}

// pre:  T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
// post: sqrtT is the square root of T.
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, 
									     const MatrixType& T)
{
  const Index size = m_A.rows();
  for (Index j = 1; j < size; j++) {
      if (T.coeff(j, j-1) != 0)  // if T(j-1:j, j-1:j) is a 2-by-2 block
	continue;
    for (Index i = j-1; i >= 0; i--) {
      if (i > 0 && T.coeff(i, i-1) != 0)  // if T(i-1:i, i-1:i) is a 2-by-2 block
	continue;
      bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
      bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
      if (iBlockIs2x2 && jBlockIs2x2) 
	compute2x2offDiagonalBlock(sqrtT, T, i, j);
      else if (iBlockIs2x2 && !jBlockIs2x2) 
	compute2x1offDiagonalBlock(sqrtT, T, i, j);
      else if (!iBlockIs2x2 && jBlockIs2x2) 
	compute1x2offDiagonalBlock(sqrtT, T, i, j);
      else if (!iBlockIs2x2 && !jBlockIs2x2) 
	compute1x1offDiagonalBlock(sqrtT, T, i, j);
    }
  }
}

// pre:  T.block(i,i,2,2) has complex conjugate eigenvalues
// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
{
  // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
  //       in EigenSolver. If we expose it, we could call it directly from here.
  Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
  EigenSolver<Matrix<Scalar,2,2> > es(block);
  sqrtT.template block<2,2>(i,i)
    = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
}

// pre:  block structure of T is such that (i,j) is a 1x1 block,
//       all blocks of sqrtT to left of and below (i,j) are correct
// post: sqrtT(i,j) has the correct value
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j)
{
  Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
  sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
}

// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j)
{
  Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
  if (j-i > 1)
    rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
  Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
  A += sqrtT.template block<2,2>(j,j).transpose();
  sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
}

// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j)
{
  Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
  if (j-i > 2)
    rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
  Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
  A += sqrtT.template block<2,2>(i,i);
  sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
}

// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j)
{
  Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
  Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
  Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
  if (j-i > 2)
    C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
  Matrix<Scalar,2,2> X;
  solveAuxiliaryEquation(X, A, B, C);
  sqrtT.template block<2,2>(i,j) = X;
}

// solves the equation A X + X B = C where all matrices are 2-by-2
template <typename MatrixType>
template <typename SmallMatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
			      const SmallMatrixType& B, const SmallMatrixType& C)
{
  EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
		      EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);

  Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
  coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
  coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
  coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
  coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
  coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
  coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
  coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
  coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
  coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
  coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
  coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
  coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
  
  Matrix<Scalar,4,1> rhs;
  rhs.coeffRef(0) = C.coeff(0,0);
  rhs.coeffRef(1) = C.coeff(0,1);
  rhs.coeffRef(2) = C.coeff(1,0);
  rhs.coeffRef(3) = C.coeff(1,1);
  
  Matrix<Scalar,4,1> result;
  result = coeffMatrix.fullPivLu().solve(rhs);

  X.coeffRef(0,0) = result.coeff(0);
  X.coeffRef(0,1) = result.coeff(1);
  X.coeffRef(1,0) = result.coeff(2);
  X.coeffRef(1,1) = result.coeff(3);
}


/** \ingroup MatrixFunctions_Module
  * \brief Class for computing matrix square roots of upper triangular matrices.
  * \tparam  MatrixType  type of the argument of the matrix square root,
  *                      expected to be an instantiation of the Matrix class template.
  *
  * This class computes the square root of the upper triangular matrix
  * stored in the upper triangular part (including the diagonal) of
  * the matrix passed to the constructor.
  *
  * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
  */
template <typename MatrixType>
class MatrixSquareRootTriangular
{
  public:
    MatrixSquareRootTriangular(const MatrixType& A) 
      : m_A(A) 
    {
      eigen_assert(A.rows() == A.cols());
    }

    /** \brief Compute the matrix square root
      *
      * \param[out] result  square root of \p A, as specified in the constructor.
      *
      * Only the upper triangular part (including the diagonal) of 
      * \p result is updated, the rest is not touched.  See
      * MatrixBase::sqrt() for details on how this computation is
      * implemented.
      */
    template <typename ResultType> void compute(ResultType &result);    

 private:
    const MatrixType& m_A;
};

template <typename MatrixType>
template <typename ResultType> 
void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
{
  // Compute Schur decomposition of m_A
  const ComplexSchur<MatrixType> schurOfA(m_A);  
  const MatrixType& T = schurOfA.matrixT();
  const MatrixType& U = schurOfA.matrixU();

  // Compute square root of T and store it in upper triangular part of result
  // This uses that the square root of triangular matrices can be computed directly.
  result.resize(m_A.rows(), m_A.cols());
  typedef typename MatrixType::Index Index;
  for (Index i = 0; i < m_A.rows(); i++) {
    result.coeffRef(i,i) = internal::sqrt(T.coeff(i,i));
  }
  for (Index j = 1; j < m_A.cols(); j++) {
    for (Index i = j-1; i >= 0; i--) {
      typedef typename MatrixType::Scalar Scalar;
      // if i = j-1, then segment has length 0 so tmp = 0
      Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
      // denominator may be zero if original matrix is singular
      result.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
    }
  }

  // Compute square root of m_A as U * result * U.adjoint()
  MatrixType tmp;
  tmp.noalias() = U * result.template triangularView<Upper>();
  result.noalias() = tmp * U.adjoint();
}


/** \ingroup MatrixFunctions_Module
  * \brief Class for computing matrix square roots of general matrices.
  * \tparam  MatrixType  type of the argument of the matrix square root,
  *                      expected to be an instantiation of the Matrix class template.
  *
  * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
  */
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
class MatrixSquareRoot
{
  public:

    /** \brief Constructor. 
      *
      * \param[in]  A  matrix whose square root is to be computed.
      *
      * The class stores a reference to \p A, so it should not be
      * changed (or destroyed) before compute() is called.
      */
    MatrixSquareRoot(const MatrixType& A); 
    
    /** \brief Compute the matrix square root
      *
      * \param[out] result  square root of \p A, as specified in the constructor.
      *
      * See MatrixBase::sqrt() for details on how this computation is
      * implemented.
      */
    template <typename ResultType> void compute(ResultType &result);    
};


// ********** Partial specialization for real matrices **********

template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 0>
{
  public:

    MatrixSquareRoot(const MatrixType& A) 
      : m_A(A) 
    {  
      eigen_assert(A.rows() == A.cols());
    }
  
    template <typename ResultType> void compute(ResultType &result)
    {
      // Compute Schur decomposition of m_A
      const RealSchur<MatrixType> schurOfA(m_A);  
      const MatrixType& T = schurOfA.matrixT();
      const MatrixType& U = schurOfA.matrixU();
    
      // Compute square root of T
      MatrixSquareRootQuasiTriangular<MatrixType> tmp(T);
      MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows());
      tmp.compute(sqrtT);
    
      // Compute square root of m_A
      result = U * sqrtT * U.adjoint();
    }
    
  private:
    const MatrixType& m_A;
};


// ********** Partial specialization for complex matrices **********

template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 1>
{
  public:

    MatrixSquareRoot(const MatrixType& A) 
      : m_A(A) 
    {  
      eigen_assert(A.rows() == A.cols());
    }
  
    template <typename ResultType> void compute(ResultType &result)
    {
      // Compute Schur decomposition of m_A
      const ComplexSchur<MatrixType> schurOfA(m_A);  
      const MatrixType& T = schurOfA.matrixT();
      const MatrixType& U = schurOfA.matrixU();
    
      // Compute square root of T
      MatrixSquareRootTriangular<MatrixType> tmp(T);
      MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows());
      tmp.compute(sqrtT);
    
      // Compute square root of m_A
      result = U * sqrtT * U.adjoint();
    }
    
  private:
    const MatrixType& m_A;
};


/** \ingroup MatrixFunctions_Module
  *
  * \brief Proxy for the matrix square root of some matrix (expression).
  *
  * \tparam Derived  Type of the argument to the matrix square root.
  *
  * This class holds the argument to the matrix square root until it
  * is assigned or evaluated for some other reason (so the argument
  * should not be changed in the meantime). It is the return type of
  * MatrixBase::sqrt() and most of the time this is the only way it is
  * used.
  */
template<typename Derived> class MatrixSquareRootReturnValue
: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
{
    typedef typename Derived::Index Index;
  public:
    /** \brief Constructor.
      *
      * \param[in]  src  %Matrix (expression) forming the argument of the
      * matrix square root.
      */
    MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }

    /** \brief Compute the matrix square root.
      *
      * \param[out]  result  the matrix square root of \p src in the
      * constructor.
      */
    template <typename ResultType>
    inline void evalTo(ResultType& result) const
    {
      const typename Derived::PlainObject srcEvaluated = m_src.eval();
      MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
      me.compute(result);
    }

    Index rows() const { return m_src.rows(); }
    Index cols() const { return m_src.cols(); }

  protected:
    const Derived& m_src;
  private:
    MatrixSquareRootReturnValue& operator=(const MatrixSquareRootReturnValue&);
};

namespace internal {
template<typename Derived>
struct traits<MatrixSquareRootReturnValue<Derived> >
{
  typedef typename Derived::PlainObject ReturnType;
};
}

template <typename Derived>
const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
{
  eigen_assert(rows() == cols());
  return MatrixSquareRootReturnValue<Derived>(derived());
}

} // end namespace Eigen

#endif // EIGEN_MATRIX_FUNCTION