aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/NonLinearOptimization/lmpar.h
blob: 4c17d4cdf4396532b7fceaab597cd749e63c2cd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
namespace Eigen { 

namespace internal {

template <typename Scalar>
void lmpar(
        Matrix< Scalar, Dynamic, Dynamic > &r,
        const VectorXi &ipvt,
        const Matrix< Scalar, Dynamic, 1 >  &diag,
        const Matrix< Scalar, Dynamic, 1 >  &qtb,
        Scalar delta,
        Scalar &par,
        Matrix< Scalar, Dynamic, 1 >  &x)
{
    using std::abs;
    using std::sqrt;
    typedef DenseIndex Index;

    /* Local variables */
    Index i, j, l;
    Scalar fp;
    Scalar parc, parl;
    Index iter;
    Scalar temp, paru;
    Scalar gnorm;
    Scalar dxnorm;


    /* Function Body */
    const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
    const Index n = r.cols();
    eigen_assert(n==diag.size());
    eigen_assert(n==qtb.size());
    eigen_assert(n==x.size());

    Matrix< Scalar, Dynamic, 1 >  wa1, wa2;

    /* compute and store in x the gauss-newton direction. if the */
    /* jacobian is rank-deficient, obtain a least squares solution. */
    Index nsing = n-1;
    wa1 = qtb;
    for (j = 0; j < n; ++j) {
        if (r(j,j) == 0. && nsing == n-1)
            nsing = j - 1;
        if (nsing < n-1)
            wa1[j] = 0.;
    }
    for (j = nsing; j>=0; --j) {
        wa1[j] /= r(j,j);
        temp = wa1[j];
        for (i = 0; i < j ; ++i)
            wa1[i] -= r(i,j) * temp;
    }

    for (j = 0; j < n; ++j)
        x[ipvt[j]] = wa1[j];

    /* initialize the iteration counter. */
    /* evaluate the function at the origin, and test */
    /* for acceptance of the gauss-newton direction. */
    iter = 0;
    wa2 = diag.cwiseProduct(x);
    dxnorm = wa2.blueNorm();
    fp = dxnorm - delta;
    if (fp <= Scalar(0.1) * delta) {
        par = 0;
        return;
    }

    /* if the jacobian is not rank deficient, the newton */
    /* step provides a lower bound, parl, for the zero of */
    /* the function. otherwise set this bound to zero. */
    parl = 0.;
    if (nsing >= n-1) {
        for (j = 0; j < n; ++j) {
            l = ipvt[j];
            wa1[j] = diag[l] * (wa2[l] / dxnorm);
        }
        // it's actually a triangularView.solveInplace(), though in a weird
        // way:
        for (j = 0; j < n; ++j) {
            Scalar sum = 0.;
            for (i = 0; i < j; ++i)
                sum += r(i,j) * wa1[i];
            wa1[j] = (wa1[j] - sum) / r(j,j);
        }
        temp = wa1.blueNorm();
        parl = fp / delta / temp / temp;
    }

    /* calculate an upper bound, paru, for the zero of the function. */
    for (j = 0; j < n; ++j)
        wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]];

    gnorm = wa1.stableNorm();
    paru = gnorm / delta;
    if (paru == 0.)
        paru = dwarf / (std::min)(delta,Scalar(0.1));

    /* if the input par lies outside of the interval (parl,paru), */
    /* set par to the closer endpoint. */
    par = (std::max)(par,parl);
    par = (std::min)(par,paru);
    if (par == 0.)
        par = gnorm / dxnorm;

    /* beginning of an iteration. */
    while (true) {
        ++iter;

        /* evaluate the function at the current value of par. */
        if (par == 0.)
            par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
        wa1 = sqrt(par)* diag;

        Matrix< Scalar, Dynamic, 1 > sdiag(n);
        qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag);

        wa2 = diag.cwiseProduct(x);
        dxnorm = wa2.blueNorm();
        temp = fp;
        fp = dxnorm - delta;

        /* if the function is small enough, accept the current value */
        /* of par. also test for the exceptional cases where parl */
        /* is zero or the number of iterations has reached 10. */
        if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
            break;

        /* compute the newton correction. */
        for (j = 0; j < n; ++j) {
            l = ipvt[j];
            wa1[j] = diag[l] * (wa2[l] / dxnorm);
        }
        for (j = 0; j < n; ++j) {
            wa1[j] /= sdiag[j];
            temp = wa1[j];
            for (i = j+1; i < n; ++i)
                wa1[i] -= r(i,j) * temp;
        }
        temp = wa1.blueNorm();
        parc = fp / delta / temp / temp;

        /* depending on the sign of the function, update parl or paru. */
        if (fp > 0.)
            parl = (std::max)(parl,par);
        if (fp < 0.)
            paru = (std::min)(paru,par);

        /* compute an improved estimate for par. */
        /* Computing MAX */
        par = (std::max)(parl,par+parc);

        /* end of an iteration. */
    }

    /* termination. */
    if (iter == 0)
        par = 0.;
    return;
}

template <typename Scalar>
void lmpar2(
        const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr,
        const Matrix< Scalar, Dynamic, 1 >  &diag,
        const Matrix< Scalar, Dynamic, 1 >  &qtb,
        Scalar delta,
        Scalar &par,
        Matrix< Scalar, Dynamic, 1 >  &x)

{
    using std::sqrt;
    using std::abs;
    typedef DenseIndex Index;

    /* Local variables */
    Index j;
    Scalar fp;
    Scalar parc, parl;
    Index iter;
    Scalar temp, paru;
    Scalar gnorm;
    Scalar dxnorm;


    /* Function Body */
    const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
    const Index n = qr.matrixQR().cols();
    eigen_assert(n==diag.size());
    eigen_assert(n==qtb.size());

    Matrix< Scalar, Dynamic, 1 >  wa1, wa2;

    /* compute and store in x the gauss-newton direction. if the */
    /* jacobian is rank-deficient, obtain a least squares solution. */

//    const Index rank = qr.nonzeroPivots(); // exactly double(0.)
    const Index rank = qr.rank(); // use a threshold
    wa1 = qtb;
    wa1.tail(n-rank).setZero();
    qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));

    x = qr.colsPermutation()*wa1;

    /* initialize the iteration counter. */
    /* evaluate the function at the origin, and test */
    /* for acceptance of the gauss-newton direction. */
    iter = 0;
    wa2 = diag.cwiseProduct(x);
    dxnorm = wa2.blueNorm();
    fp = dxnorm - delta;
    if (fp <= Scalar(0.1) * delta) {
        par = 0;
        return;
    }

    /* if the jacobian is not rank deficient, the newton */
    /* step provides a lower bound, parl, for the zero of */
    /* the function. otherwise set this bound to zero. */
    parl = 0.;
    if (rank==n) {
        wa1 = qr.colsPermutation().inverse() *  diag.cwiseProduct(wa2)/dxnorm;
        qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
        temp = wa1.blueNorm();
        parl = fp / delta / temp / temp;
    }

    /* calculate an upper bound, paru, for the zero of the function. */
    for (j = 0; j < n; ++j)
        wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];

    gnorm = wa1.stableNorm();
    paru = gnorm / delta;
    if (paru == 0.)
        paru = dwarf / (std::min)(delta,Scalar(0.1));

    /* if the input par lies outside of the interval (parl,paru), */
    /* set par to the closer endpoint. */
    par = (std::max)(par,parl);
    par = (std::min)(par,paru);
    if (par == 0.)
        par = gnorm / dxnorm;

    /* beginning of an iteration. */
    Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR();
    while (true) {
        ++iter;

        /* evaluate the function at the current value of par. */
        if (par == 0.)
            par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
        wa1 = sqrt(par)* diag;

        Matrix< Scalar, Dynamic, 1 > sdiag(n);
        qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag);

        wa2 = diag.cwiseProduct(x);
        dxnorm = wa2.blueNorm();
        temp = fp;
        fp = dxnorm - delta;

        /* if the function is small enough, accept the current value */
        /* of par. also test for the exceptional cases where parl */
        /* is zero or the number of iterations has reached 10. */
        if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
            break;

        /* compute the newton correction. */
        wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
        // we could almost use this here, but the diagonal is outside qr, in sdiag[]
        // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
        for (j = 0; j < n; ++j) {
            wa1[j] /= sdiag[j];
            temp = wa1[j];
            for (Index i = j+1; i < n; ++i)
                wa1[i] -= s(i,j) * temp;
        }
        temp = wa1.blueNorm();
        parc = fp / delta / temp / temp;

        /* depending on the sign of the function, update parl or paru. */
        if (fp > 0.)
            parl = (std::max)(parl,par);
        if (fp < 0.)
            paru = (std::min)(paru,par);

        /* compute an improved estimate for par. */
        par = (std::max)(parl,par+parc);
    }
    if (iter == 0)
        par = 0.;
    return;
}

} // end namespace internal

} // end namespace Eigen