/** * f2fs_format.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * Dual licensed under the GPL or LGPL version 2 licenses. */ #include #include #include #include #include #include #include #ifdef HAVE_SYS_STAT_H #include #endif #ifdef HAVE_SYS_MOUNT_H #include #endif #include #ifdef HAVE_UUID_UUID_H #include #endif #ifndef HAVE_LIBUUID #define uuid_parse(a, b) -1 #define uuid_generate(a) #define uuid_unparse(a, b) -1 #endif #include "quota.h" #include "f2fs_format_utils.h" extern struct f2fs_configuration c; struct f2fs_super_block raw_sb; struct f2fs_super_block *sb = &raw_sb; struct f2fs_checkpoint *cp; /* Return first segment number of each area */ #define prev_zone(cur) (c.cur_seg[cur] - c.segs_per_zone) #define next_zone(cur) (c.cur_seg[cur] + c.segs_per_zone) #define last_zone(cur) ((cur - 1) * c.segs_per_zone) #define last_section(cur) (cur + (c.secs_per_zone - 1) * c.segs_per_sec) /* Return time fixed by the user or current time by default */ #define mkfs_time ((c.fixed_time == -1) ? time(NULL) : c.fixed_time) const char *media_ext_lists[] = { /* common prefix */ "mp", // Covers mp3, mp4, mpeg, mpg "wm", // Covers wma, wmb, wmv "og", // Covers oga, ogg, ogm, ogv "jp", // Covers jpg, jpeg, jp2 /* video */ "avi", "m4v", "m4p", "mkv", "mov", "webm", /* audio */ "wav", "m4a", "3gp", "opus", "flac", /* image */ "gif", "png", "svg", "webp", /* archives */ "jar", "deb", "iso", "gz", "xz", "zst", /* others */ "pdf", "pyc", // Python bytecode "ttc", "ttf", "exe", /* android */ "apk", "cnt", // Image alias "exo", // YouTube "odex", // Android RunTime "vdex", // Android RunTime "so", NULL }; const char *hot_ext_lists[] = { "db", #ifndef WITH_ANDROID /* Virtual machines */ "vmdk", // VMware or VirtualBox "vdi", // VirtualBox "qcow2", // QEMU #endif NULL }; const char **default_ext_list[] = { media_ext_lists, hot_ext_lists }; static bool is_extension_exist(const char *name) { int i; for (i = 0; i < F2FS_MAX_EXTENSION; i++) { char *ext = (char *)sb->extension_list[i]; if (!strcmp(ext, name)) return 1; } return 0; } static void cure_extension_list(void) { const char **extlist; char *ext_str; char *ue; int name_len; int i, pos = 0; set_sb(extension_count, 0); memset(sb->extension_list, 0, sizeof(sb->extension_list)); for (i = 0; i < 2; i++) { ext_str = c.extension_list[i]; extlist = default_ext_list[i]; while (*extlist) { name_len = strlen(*extlist); memcpy(sb->extension_list[pos++], *extlist, name_len); extlist++; } if (i == 0) set_sb(extension_count, pos); else sb->hot_ext_count = pos - get_sb(extension_count);; if (!ext_str) continue; /* add user ext list */ ue = strtok(ext_str, ", "); while (ue != NULL) { name_len = strlen(ue); if (name_len >= F2FS_EXTENSION_LEN) { MSG(0, "\tWarn: Extension name (%s) is too long\n", ue); goto next; } if (!is_extension_exist(ue)) memcpy(sb->extension_list[pos++], ue, name_len); next: ue = strtok(NULL, ", "); if (pos >= F2FS_MAX_EXTENSION) break; } if (i == 0) set_sb(extension_count, pos); else sb->hot_ext_count = pos - get_sb(extension_count); free(c.extension_list[i]); } } static void verify_cur_segs(void) { int i, j; int reorder = 0; for (i = 0; i < NR_CURSEG_TYPE; i++) { for (j = i + 1; j < NR_CURSEG_TYPE; j++) { if (c.cur_seg[i] == c.cur_seg[j]) { reorder = 1; break; } } } if (!reorder) return; c.cur_seg[0] = 0; for (i = 1; i < NR_CURSEG_TYPE; i++) c.cur_seg[i] = next_zone(i - 1); } static int f2fs_prepare_super_block(void) { uint32_t blk_size_bytes; uint32_t log_sectorsize, log_sectors_per_block; uint32_t log_blocksize, log_blks_per_seg; uint32_t segment_size_bytes, zone_size_bytes; uint32_t sit_segments, nat_segments; uint32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa; uint32_t total_valid_blks_available; uint64_t zone_align_start_offset, diff; uint64_t total_meta_zones, total_meta_segments; uint32_t sit_bitmap_size, max_sit_bitmap_size; uint32_t max_nat_bitmap_size, max_nat_segments; uint32_t total_zones, avail_zones; enum quota_type qtype; int i; set_sb(magic, F2FS_SUPER_MAGIC); set_sb(major_ver, F2FS_MAJOR_VERSION); set_sb(minor_ver, F2FS_MINOR_VERSION); log_sectorsize = log_base_2(c.sector_size); log_sectors_per_block = log_base_2(c.sectors_per_blk); log_blocksize = log_sectorsize + log_sectors_per_block; log_blks_per_seg = log_base_2(c.blks_per_seg); set_sb(log_sectorsize, log_sectorsize); set_sb(log_sectors_per_block, log_sectors_per_block); set_sb(log_blocksize, log_blocksize); set_sb(log_blocks_per_seg, log_blks_per_seg); set_sb(segs_per_sec, c.segs_per_sec); set_sb(secs_per_zone, c.secs_per_zone); blk_size_bytes = 1 << log_blocksize; segment_size_bytes = blk_size_bytes * c.blks_per_seg; zone_size_bytes = blk_size_bytes * c.secs_per_zone * c.segs_per_sec * c.blks_per_seg; set_sb(checksum_offset, 0); set_sb(block_count, c.total_sectors >> log_sectors_per_block); zone_align_start_offset = ((uint64_t) c.start_sector * DEFAULT_SECTOR_SIZE + 2 * F2FS_BLKSIZE + zone_size_bytes - 1) / zone_size_bytes * zone_size_bytes - (uint64_t) c.start_sector * DEFAULT_SECTOR_SIZE; if (c.feature & F2FS_FEATURE_RO) zone_align_start_offset = 8192; if (c.start_sector % DEFAULT_SECTORS_PER_BLOCK) { MSG(1, "\t%s: Align start sector number to the page unit\n", c.zoned_mode ? "FAIL" : "WARN"); MSG(1, "\ti.e., start sector: %d, ofs:%d (sects/page: %d)\n", c.start_sector, c.start_sector % DEFAULT_SECTORS_PER_BLOCK, DEFAULT_SECTORS_PER_BLOCK); if (c.zoned_mode) return -1; } if (c.zoned_mode && c.ndevs > 1) zone_align_start_offset += (c.devices[0].total_sectors * c.sector_size) % zone_size_bytes; set_sb(segment0_blkaddr, zone_align_start_offset / blk_size_bytes); sb->cp_blkaddr = sb->segment0_blkaddr; MSG(0, "Info: zone aligned segment0 blkaddr: %u\n", get_sb(segment0_blkaddr)); if (c.zoned_mode && ((c.ndevs == 1 && (get_sb(segment0_blkaddr) + c.start_sector / DEFAULT_SECTORS_PER_BLOCK) % c.zone_blocks) || (c.ndevs > 1 && c.devices[1].start_blkaddr % c.zone_blocks))) { MSG(1, "\tError: Unaligned segment0 block address %u\n", get_sb(segment0_blkaddr)); return -1; } for (i = 0; i < c.ndevs; i++) { if (i == 0) { c.devices[i].total_segments = (c.devices[i].total_sectors * c.sector_size - zone_align_start_offset) / segment_size_bytes; c.devices[i].start_blkaddr = 0; c.devices[i].end_blkaddr = c.devices[i].total_segments * c.blks_per_seg - 1 + sb->segment0_blkaddr; } else { c.devices[i].total_segments = c.devices[i].total_sectors / (c.sectors_per_blk * c.blks_per_seg); c.devices[i].start_blkaddr = c.devices[i - 1].end_blkaddr + 1; c.devices[i].end_blkaddr = c.devices[i].start_blkaddr + c.devices[i].total_segments * c.blks_per_seg - 1; } if (c.ndevs > 1) { memcpy(sb->devs[i].path, c.devices[i].path, MAX_PATH_LEN); sb->devs[i].total_segments = cpu_to_le32(c.devices[i].total_segments); } c.total_segments += c.devices[i].total_segments; } set_sb(segment_count, (c.total_segments / c.segs_per_zone * c.segs_per_zone)); set_sb(segment_count_ckpt, F2FS_NUMBER_OF_CHECKPOINT_PACK); set_sb(sit_blkaddr, get_sb(segment0_blkaddr) + get_sb(segment_count_ckpt) * c.blks_per_seg); blocks_for_sit = SIZE_ALIGN(get_sb(segment_count), SIT_ENTRY_PER_BLOCK); sit_segments = SEG_ALIGN(blocks_for_sit); set_sb(segment_count_sit, sit_segments * 2); set_sb(nat_blkaddr, get_sb(sit_blkaddr) + get_sb(segment_count_sit) * c.blks_per_seg); total_valid_blks_available = (get_sb(segment_count) - (get_sb(segment_count_ckpt) + get_sb(segment_count_sit))) * c.blks_per_seg; blocks_for_nat = SIZE_ALIGN(total_valid_blks_available, NAT_ENTRY_PER_BLOCK); if (c.large_nat_bitmap) { nat_segments = SEG_ALIGN(blocks_for_nat) * DEFAULT_NAT_ENTRY_RATIO / 100; set_sb(segment_count_nat, nat_segments ? nat_segments : 1); max_nat_bitmap_size = (get_sb(segment_count_nat) << log_blks_per_seg) / 8; set_sb(segment_count_nat, get_sb(segment_count_nat) * 2); } else { set_sb(segment_count_nat, SEG_ALIGN(blocks_for_nat)); max_nat_bitmap_size = 0; } /* * The number of node segments should not be exceeded a "Threshold". * This number resizes NAT bitmap area in a CP page. * So the threshold is determined not to overflow one CP page */ sit_bitmap_size = ((get_sb(segment_count_sit) / 2) << log_blks_per_seg) / 8; if (sit_bitmap_size > MAX_SIT_BITMAP_SIZE) max_sit_bitmap_size = MAX_SIT_BITMAP_SIZE; else max_sit_bitmap_size = sit_bitmap_size; if (c.large_nat_bitmap) { /* use cp_payload if free space of f2fs_checkpoint is not enough */ if (max_sit_bitmap_size + max_nat_bitmap_size > MAX_BITMAP_SIZE_IN_CKPT) { uint32_t diff = max_sit_bitmap_size + max_nat_bitmap_size - MAX_BITMAP_SIZE_IN_CKPT; set_sb(cp_payload, F2FS_BLK_ALIGN(diff)); } else { set_sb(cp_payload, 0); } } else { /* * It should be reserved minimum 1 segment for nat. * When sit is too large, we should expand cp area. * It requires more pages for cp. */ if (max_sit_bitmap_size > MAX_SIT_BITMAP_SIZE_IN_CKPT) { max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT; set_sb(cp_payload, F2FS_BLK_ALIGN(max_sit_bitmap_size)); } else { max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT - max_sit_bitmap_size; set_sb(cp_payload, 0); } max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg; if (get_sb(segment_count_nat) > max_nat_segments) set_sb(segment_count_nat, max_nat_segments); set_sb(segment_count_nat, get_sb(segment_count_nat) * 2); } set_sb(ssa_blkaddr, get_sb(nat_blkaddr) + get_sb(segment_count_nat) * c.blks_per_seg); total_valid_blks_available = (get_sb(segment_count) - (get_sb(segment_count_ckpt) + get_sb(segment_count_sit) + get_sb(segment_count_nat))) * c.blks_per_seg; if (c.feature & F2FS_FEATURE_RO) blocks_for_ssa = 0; else blocks_for_ssa = total_valid_blks_available / c.blks_per_seg + 1; set_sb(segment_count_ssa, SEG_ALIGN(blocks_for_ssa)); total_meta_segments = get_sb(segment_count_ckpt) + get_sb(segment_count_sit) + get_sb(segment_count_nat) + get_sb(segment_count_ssa); diff = total_meta_segments % (c.segs_per_zone); if (diff) set_sb(segment_count_ssa, get_sb(segment_count_ssa) + (c.segs_per_zone - diff)); total_meta_zones = ZONE_ALIGN(total_meta_segments * c.blks_per_seg); set_sb(main_blkaddr, get_sb(segment0_blkaddr) + total_meta_zones * c.segs_per_zone * c.blks_per_seg); if (c.zoned_mode) { /* * Make sure there is enough randomly writeable * space at the beginning of the disk. */ unsigned long main_blkzone = get_sb(main_blkaddr) / c.zone_blocks; if (c.devices[0].zoned_model == F2FS_ZONED_HM && c.devices[0].nr_rnd_zones < main_blkzone) { MSG(0, "\tError: Device does not have enough random " "write zones for F2FS volume (%lu needed)\n", main_blkzone); return -1; } /* * Check if conventional device has enough space * to accommodate all metadata, zoned device should * not overlap to metadata area. */ for (i = 1; i < c.ndevs; i++) { if (c.devices[i].zoned_model != F2FS_ZONED_NONE && c.devices[i].start_blkaddr < get_sb(main_blkaddr)) { MSG(0, "\tError: Conventional device %s is too small," " (%"PRIu64" MiB needed).\n", c.devices[0].path, (get_sb(main_blkaddr) - c.devices[i].start_blkaddr) >> 8); return -1; } } } total_zones = get_sb(segment_count) / (c.segs_per_zone) - total_meta_zones; if (total_zones == 0) goto too_small; set_sb(section_count, total_zones * c.secs_per_zone); set_sb(segment_count_main, get_sb(section_count) * c.segs_per_sec); /* * Let's determine the best reserved and overprovisioned space. * For Zoned device, if zone capacity less than zone size, the segments * starting after the zone capacity are unusable in each zone. So get * overprovision ratio and reserved seg count based on avg usable * segs_per_sec. */ if (c.overprovision == 0) c.overprovision = get_best_overprovision(sb); c.reserved_segments = get_reserved(sb, c.overprovision); if (c.feature & F2FS_FEATURE_RO) { c.overprovision = 0; c.reserved_segments = 0; } if ((!(c.feature & F2FS_FEATURE_RO) && c.overprovision == 0) || c.total_segments < F2FS_MIN_SEGMENTS || (c.devices[0].total_sectors * c.sector_size < zone_align_start_offset) || (get_sb(segment_count_main) - NR_CURSEG_TYPE) < c.reserved_segments) { goto too_small; } if (c.vol_uuid) { if (uuid_parse(c.vol_uuid, sb->uuid)) { MSG(0, "\tError: supplied string is not a valid UUID\n"); return -1; } } else { uuid_generate(sb->uuid); } /* precompute checksum seed for metadata */ if (c.feature & F2FS_FEATURE_INODE_CHKSUM) c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid)); utf8_to_utf16((char *)sb->volume_name, (const char *)c.vol_label, MAX_VOLUME_NAME, strlen(c.vol_label)); set_sb(node_ino, 1); set_sb(meta_ino, 2); set_sb(root_ino, 3); c.next_free_nid = 4; for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) { if (!((1 << qtype) & c.quota_bits)) continue; sb->qf_ino[qtype] = cpu_to_le32(c.next_free_nid++); MSG(0, "Info: add quota type = %u => %u\n", qtype, c.next_free_nid - 1); } if (c.feature & F2FS_FEATURE_LOST_FOUND) c.lpf_ino = c.next_free_nid++; if (c.feature & F2FS_FEATURE_RO) avail_zones = 2; else avail_zones = 6; if (total_zones <= avail_zones) { MSG(1, "\tError: %d zones: Need more zones " "by shrinking zone size\n", total_zones); return -1; } if (c.feature & F2FS_FEATURE_RO) { c.cur_seg[CURSEG_HOT_NODE] = last_section(last_zone(total_zones)); c.cur_seg[CURSEG_WARM_NODE] = 0; c.cur_seg[CURSEG_COLD_NODE] = 0; c.cur_seg[CURSEG_HOT_DATA] = 0; c.cur_seg[CURSEG_COLD_DATA] = 0; c.cur_seg[CURSEG_WARM_DATA] = 0; } else if (c.zoned_mode) { c.cur_seg[CURSEG_HOT_NODE] = 0; if (c.zoned_model == F2FS_ZONED_HM) { uint32_t conv_zones = c.devices[0].total_segments / c.segs_per_zone - total_meta_zones; if (total_zones - conv_zones >= avail_zones) c.cur_seg[CURSEG_HOT_NODE] = (c.devices[1].start_blkaddr - get_sb(main_blkaddr)) / c.blks_per_seg; } c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE); c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE); c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE); c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_HOT_DATA); c.cur_seg[CURSEG_COLD_DATA] = next_zone(CURSEG_WARM_DATA); } else { c.cur_seg[CURSEG_HOT_NODE] = 0; c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE); c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE); c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE); c.cur_seg[CURSEG_COLD_DATA] = max(last_zone((total_zones >> 2)), next_zone(CURSEG_HOT_DATA)); c.cur_seg[CURSEG_WARM_DATA] = max(last_zone((total_zones >> 1)), next_zone(CURSEG_COLD_DATA)); } /* if there is redundancy, reassign it */ if (!(c.feature & F2FS_FEATURE_RO)) verify_cur_segs(); cure_extension_list(); /* get kernel version */ if (c.kd >= 0) { dev_read_version(c.version, 0, VERSION_LEN); get_kernel_version(c.version); } else { get_kernel_uname_version(c.version); } MSG(0, "Info: format version with\n \"%s\"\n", c.version); memcpy(sb->version, c.version, VERSION_LEN); memcpy(sb->init_version, c.version, VERSION_LEN); if (c.feature & F2FS_FEATURE_CASEFOLD) { set_sb(s_encoding, c.s_encoding); set_sb(s_encoding_flags, c.s_encoding_flags); } sb->feature = cpu_to_le32(c.feature); if (c.feature & F2FS_FEATURE_SB_CHKSUM) { set_sb(checksum_offset, SB_CHKSUM_OFFSET); set_sb(crc, f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb, SB_CHKSUM_OFFSET)); MSG(1, "Info: SB CRC is set: offset (%d), crc (0x%x)\n", get_sb(checksum_offset), get_sb(crc)); } return 0; too_small: MSG(0, "\tError: Device size is not sufficient for F2FS volume\n"); return -1; } static int f2fs_init_sit_area(void) { uint32_t blk_size, seg_size; uint32_t index = 0; uint64_t sit_seg_addr = 0; uint8_t *zero_buf = NULL; blk_size = 1 << get_sb(log_blocksize); seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size; zero_buf = calloc(sizeof(uint8_t), seg_size); if(zero_buf == NULL) { MSG(1, "\tError: Calloc Failed for sit_zero_buf!!!\n"); return -1; } sit_seg_addr = get_sb(sit_blkaddr); sit_seg_addr *= blk_size; DBG(1, "\tFilling sit area at offset 0x%08"PRIx64"\n", sit_seg_addr); for (index = 0; index < (get_sb(segment_count_sit) / 2); index++) { if (dev_fill(zero_buf, sit_seg_addr, seg_size)) { MSG(1, "\tError: While zeroing out the sit area " "on disk!!!\n"); free(zero_buf); return -1; } sit_seg_addr += seg_size; } free(zero_buf); return 0 ; } static int f2fs_init_nat_area(void) { uint32_t blk_size, seg_size; uint32_t index = 0; uint64_t nat_seg_addr = 0; uint8_t *nat_buf = NULL; blk_size = 1 << get_sb(log_blocksize); seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size; nat_buf = calloc(sizeof(uint8_t), seg_size); if (nat_buf == NULL) { MSG(1, "\tError: Calloc Failed for nat_zero_blk!!!\n"); return -1; } nat_seg_addr = get_sb(nat_blkaddr); nat_seg_addr *= blk_size; DBG(1, "\tFilling nat area at offset 0x%08"PRIx64"\n", nat_seg_addr); for (index = 0; index < get_sb(segment_count_nat) / 2; index++) { if (dev_fill(nat_buf, nat_seg_addr, seg_size)) { MSG(1, "\tError: While zeroing out the nat area " "on disk!!!\n"); free(nat_buf); return -1; } nat_seg_addr = nat_seg_addr + (2 * seg_size); } free(nat_buf); return 0 ; } static int f2fs_write_check_point_pack(void) { struct f2fs_summary_block *sum; struct f2fs_journal *journal; uint32_t blk_size_bytes; uint32_t nat_bits_bytes, nat_bits_blocks; unsigned char *nat_bits = NULL, *empty_nat_bits; uint64_t cp_seg_blk = 0; uint32_t crc = 0, flags; unsigned int i; char *cp_payload = NULL; char *sum_compact, *sum_compact_p; struct f2fs_summary *sum_entry; unsigned short vblocks; int ret = -1; cp = calloc(F2FS_BLKSIZE, 1); if (cp == NULL) { MSG(1, "\tError: Calloc failed for f2fs_checkpoint!!!\n"); return ret; } sum = calloc(F2FS_BLKSIZE, 1); if (sum == NULL) { MSG(1, "\tError: Calloc failed for summary_node!!!\n"); goto free_cp; } sum_compact = calloc(F2FS_BLKSIZE, 1); if (sum_compact == NULL) { MSG(1, "\tError: Calloc failed for summary buffer!!!\n"); goto free_sum; } sum_compact_p = sum_compact; nat_bits_bytes = get_sb(segment_count_nat) << 5; nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 + F2FS_BLKSIZE - 1); nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks); if (nat_bits == NULL) { MSG(1, "\tError: Calloc failed for nat bits buffer!!!\n"); goto free_sum_compact; } cp_payload = calloc(F2FS_BLKSIZE, 1); if (cp_payload == NULL) { MSG(1, "\tError: Calloc failed for cp_payload!!!\n"); goto free_nat_bits; } /* 1. cp page 1 of checkpoint pack 1 */ srand((c.fake_seed) ? 0 : time(NULL)); cp->checkpoint_ver = cpu_to_le64(rand() | 0x1); set_cp(cur_node_segno[0], c.cur_seg[CURSEG_HOT_NODE]); set_cp(cur_node_segno[1], c.cur_seg[CURSEG_WARM_NODE]); set_cp(cur_node_segno[2], c.cur_seg[CURSEG_COLD_NODE]); set_cp(cur_data_segno[0], c.cur_seg[CURSEG_HOT_DATA]); set_cp(cur_data_segno[1], c.cur_seg[CURSEG_WARM_DATA]); set_cp(cur_data_segno[2], c.cur_seg[CURSEG_COLD_DATA]); for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) { set_cp(cur_node_segno[i], 0xffffffff); set_cp(cur_data_segno[i], 0xffffffff); } set_cp(cur_node_blkoff[0], c.curseg_offset[CURSEG_HOT_NODE]); set_cp(cur_data_blkoff[0], c.curseg_offset[CURSEG_HOT_DATA]); set_cp(valid_block_count, c.curseg_offset[CURSEG_HOT_NODE] + c.curseg_offset[CURSEG_HOT_DATA]); set_cp(rsvd_segment_count, c.reserved_segments); /* * For zoned devices, if zone capacity less than zone size, get * overprovision segment count based on usable segments in the device. */ set_cp(overprov_segment_count, (f2fs_get_usable_segments(sb) - get_cp(rsvd_segment_count)) * c.overprovision / 100); if (!(c.conf_reserved_sections) && get_cp(overprov_segment_count) < get_cp(rsvd_segment_count)) set_cp(overprov_segment_count, get_cp(rsvd_segment_count)); /* * If conf_reserved_sections has a non zero value, overprov_segment_count * is set to overprov_segment_count + rsvd_segment_count. */ if (c.conf_reserved_sections) { /* * Overprovision segments must be bigger than two sections. * In non configurable reserved section case, overprovision * segments are always bigger than two sections. */ if (get_cp(overprov_segment_count) < 2 * get_sb(segs_per_sec)) { MSG(0, "\tError: Not enough overprovision segments (%u)\n", get_cp(overprov_segment_count)); goto free_cp_payload; } set_cp(overprov_segment_count, get_cp(overprov_segment_count) + get_cp(rsvd_segment_count)); } else { set_cp(overprov_segment_count, get_cp(overprov_segment_count) + 2 * get_sb(segs_per_sec)); } if (f2fs_get_usable_segments(sb) <= get_cp(overprov_segment_count)) { MSG(0, "\tError: Not enough segments to create F2FS Volume\n"); goto free_cp_payload; } MSG(0, "Info: Overprovision ratio = %.3lf%%\n", c.overprovision); MSG(0, "Info: Overprovision segments = %u (GC reserved = %u)\n", get_cp(overprov_segment_count), c.reserved_segments); /* main segments - reserved segments - (node + data segments) */ if (c.feature & F2FS_FEATURE_RO) { set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 2); set_cp(user_block_count, ((get_cp(free_segment_count) + 2 - get_cp(overprov_segment_count)) * c.blks_per_seg)); } else { set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 6); set_cp(user_block_count, ((get_cp(free_segment_count) + 6 - get_cp(overprov_segment_count)) * c.blks_per_seg)); } /* cp page (2), data summaries (1), node summaries (3) */ set_cp(cp_pack_total_block_count, 6 + get_sb(cp_payload)); flags = CP_UMOUNT_FLAG | CP_COMPACT_SUM_FLAG; if (get_cp(cp_pack_total_block_count) <= (1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks) flags |= CP_NAT_BITS_FLAG; if (c.trimmed) flags |= CP_TRIMMED_FLAG; if (c.large_nat_bitmap) flags |= CP_LARGE_NAT_BITMAP_FLAG; set_cp(ckpt_flags, flags); set_cp(cp_pack_start_sum, 1 + get_sb(cp_payload)); set_cp(valid_node_count, c.curseg_offset[CURSEG_HOT_NODE]); set_cp(valid_inode_count, c.curseg_offset[CURSEG_HOT_NODE]); set_cp(next_free_nid, c.next_free_nid); set_cp(sit_ver_bitmap_bytesize, ((get_sb(segment_count_sit) / 2) << get_sb(log_blocks_per_seg)) / 8); set_cp(nat_ver_bitmap_bytesize, ((get_sb(segment_count_nat) / 2) << get_sb(log_blocks_per_seg)) / 8); if (c.large_nat_bitmap) set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET); else set_cp(checksum_offset, CP_CHKSUM_OFFSET); crc = f2fs_checkpoint_chksum(cp); *((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) = cpu_to_le32(crc); blk_size_bytes = 1 << get_sb(log_blocksize); if (blk_size_bytes != F2FS_BLKSIZE) { MSG(1, "\tError: Wrong block size %d / %d!!!\n", blk_size_bytes, F2FS_BLKSIZE); goto free_cp_payload; } cp_seg_blk = get_sb(segment0_blkaddr); DBG(1, "\tWriting main segments, cp at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(cp, cp_seg_blk)) { MSG(1, "\tError: While writing the cp to disk!!!\n"); goto free_cp_payload; } for (i = 0; i < get_sb(cp_payload); i++) { cp_seg_blk++; if (dev_fill_block(cp_payload, cp_seg_blk)) { MSG(1, "\tError: While zeroing out the sit bitmap area " "on disk!!!\n"); goto free_cp_payload; } } /* Prepare and write Segment summary for HOT/WARM/COLD DATA * * The structure of compact summary * +-------------------+ * | nat_journal | * +-------------------+ * | sit_journal | * +-------------------+ * | hot data summary | * +-------------------+ * | warm data summary | * +-------------------+ * | cold data summary | * +-------------------+ */ /* nat_sjournal */ journal = &c.nat_jnl; memcpy(sum_compact_p, &journal->n_nats, SUM_JOURNAL_SIZE); sum_compact_p += SUM_JOURNAL_SIZE; /* sit_journal */ journal = &c.sit_jnl; if (c.feature & F2FS_FEATURE_RO) { i = CURSEG_RO_HOT_DATA; vblocks = le16_to_cpu(journal->sit_j.entries[i].se.vblocks); journal->sit_j.entries[i].segno = cp->cur_data_segno[0]; journal->sit_j.entries[i].se.vblocks = cpu_to_le16(vblocks | (CURSEG_HOT_DATA << 10)); i = CURSEG_RO_HOT_NODE; vblocks = le16_to_cpu(journal->sit_j.entries[i].se.vblocks); journal->sit_j.entries[i].segno = cp->cur_node_segno[0]; journal->sit_j.entries[i].se.vblocks |= cpu_to_le16(vblocks | (CURSEG_HOT_NODE << 10)); journal->n_sits = cpu_to_le16(2); } else { for (i = CURSEG_HOT_DATA; i < NR_CURSEG_TYPE; i++) { if (i < NR_CURSEG_DATA_TYPE) journal->sit_j.entries[i].segno = cp->cur_data_segno[i]; else journal->sit_j.entries[i].segno = cp->cur_node_segno[i - NR_CURSEG_DATA_TYPE]; vblocks = le16_to_cpu(journal->sit_j.entries[i].se.vblocks); journal->sit_j.entries[i].se.vblocks = cpu_to_le16(vblocks | (i << 10)); } journal->n_sits = cpu_to_le16(6); } memcpy(sum_compact_p, &journal->n_sits, SUM_JOURNAL_SIZE); sum_compact_p += SUM_JOURNAL_SIZE; /* hot data summary */ memset(sum, 0, F2FS_BLKSIZE); SET_SUM_TYPE(sum, SUM_TYPE_DATA); sum_entry = (struct f2fs_summary *)sum_compact_p; memcpy(sum_entry, c.sum[CURSEG_HOT_DATA], sizeof(struct f2fs_summary) * MAX_CACHE_SUMS); /* warm data summary, nothing to do */ /* cold data summary, nothing to do */ cp_seg_blk++; DBG(1, "\tWriting Segment summary for HOT/WARM/COLD_DATA, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(sum_compact, cp_seg_blk)) { MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); goto free_cp_payload; } /* Prepare and write Segment summary for HOT_NODE */ memset(sum, 0, F2FS_BLKSIZE); SET_SUM_TYPE(sum, SUM_TYPE_NODE); memcpy(sum->entries, c.sum[CURSEG_HOT_NODE], sizeof(struct f2fs_summary) * MAX_CACHE_SUMS); cp_seg_blk++; DBG(1, "\tWriting Segment summary for HOT_NODE, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(sum, cp_seg_blk)) { MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); goto free_cp_payload; } /* Fill segment summary for WARM_NODE to zero. */ memset(sum, 0, F2FS_BLKSIZE); SET_SUM_TYPE(sum, SUM_TYPE_NODE); cp_seg_blk++; DBG(1, "\tWriting Segment summary for WARM_NODE, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(sum, cp_seg_blk)) { MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); goto free_cp_payload; } /* Fill segment summary for COLD_NODE to zero. */ memset(sum, 0, F2FS_BLKSIZE); SET_SUM_TYPE(sum, SUM_TYPE_NODE); cp_seg_blk++; DBG(1, "\tWriting Segment summary for COLD_NODE, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(sum, cp_seg_blk)) { MSG(1, "\tError: While writing the sum_blk to disk!!!\n"); goto free_cp_payload; } /* cp page2 */ cp_seg_blk++; DBG(1, "\tWriting cp page2, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(cp, cp_seg_blk)) { MSG(1, "\tError: While writing the cp to disk!!!\n"); goto free_cp_payload; } /* write NAT bits, if possible */ if (flags & CP_NAT_BITS_FLAG) { uint32_t i; *(__le64 *)nat_bits = get_cp_crc(cp); empty_nat_bits = nat_bits + 8 + nat_bits_bytes; memset(empty_nat_bits, 0xff, nat_bits_bytes); test_and_clear_bit_le(0, empty_nat_bits); /* write the last blocks in cp pack */ cp_seg_blk = get_sb(segment0_blkaddr) + (1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks; DBG(1, "\tWriting NAT bits pages, at offset 0x%08"PRIx64"\n", cp_seg_blk); for (i = 0; i < nat_bits_blocks; i++) { if (dev_write_block(nat_bits + i * F2FS_BLKSIZE, cp_seg_blk + i)) { MSG(1, "\tError: write NAT bits to disk!!!\n"); goto free_cp_payload; } } } /* cp page 1 of check point pack 2 * Initialize other checkpoint pack with version zero */ cp->checkpoint_ver = 0; crc = f2fs_checkpoint_chksum(cp); *((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) = cpu_to_le32(crc); cp_seg_blk = get_sb(segment0_blkaddr) + c.blks_per_seg; DBG(1, "\tWriting cp page 1 of checkpoint pack 2, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(cp, cp_seg_blk)) { MSG(1, "\tError: While writing the cp to disk!!!\n"); goto free_cp_payload; } for (i = 0; i < get_sb(cp_payload); i++) { cp_seg_blk++; if (dev_fill_block(cp_payload, cp_seg_blk)) { MSG(1, "\tError: While zeroing out the sit bitmap area " "on disk!!!\n"); goto free_cp_payload; } } /* cp page 2 of check point pack 2 */ cp_seg_blk += (le32_to_cpu(cp->cp_pack_total_block_count) - get_sb(cp_payload) - 1); DBG(1, "\tWriting cp page 2 of checkpoint pack 2, at offset 0x%08"PRIx64"\n", cp_seg_blk); if (dev_write_block(cp, cp_seg_blk)) { MSG(1, "\tError: While writing the cp to disk!!!\n"); goto free_cp_payload; } ret = 0; free_cp_payload: free(cp_payload); free_nat_bits: free(nat_bits); free_sum_compact: free(sum_compact); free_sum: free(sum); free_cp: free(cp); return ret; } static int f2fs_write_super_block(void) { int index; uint8_t *zero_buff; zero_buff = calloc(F2FS_BLKSIZE, 1); if (zero_buff == NULL) { MSG(1, "\tError: Calloc Failed for super_blk_zero_buf!!!\n"); return -1; } memcpy(zero_buff + F2FS_SUPER_OFFSET, sb, sizeof(*sb)); DBG(1, "\tWriting super block, at offset 0x%08x\n", 0); for (index = 0; index < 2; index++) { if (dev_write_block(zero_buff, index)) { MSG(1, "\tError: While while writing super_blk " "on disk!!! index : %d\n", index); free(zero_buff); return -1; } } free(zero_buff); return 0; } #ifndef WITH_ANDROID static int f2fs_discard_obsolete_dnode(void) { struct f2fs_node *raw_node; uint64_t next_blkaddr = 0, offset; u64 end_blkaddr = (get_sb(segment_count_main) << get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr); uint64_t start_inode_pos = get_sb(main_blkaddr); uint64_t last_inode_pos; if (c.zoned_mode || c.feature & F2FS_FEATURE_RO) return 0; raw_node = calloc(F2FS_BLKSIZE, 1); if (raw_node == NULL) { MSG(1, "\tError: Calloc Failed for discard_raw_node!!!\n"); return -1; } /* avoid power-off-recovery based on roll-forward policy */ offset = get_sb(main_blkaddr); offset += c.cur_seg[CURSEG_WARM_NODE] * c.blks_per_seg; last_inode_pos = start_inode_pos + c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg + c.curseg_offset[CURSEG_COLD_NODE] - 1; do { if (offset < get_sb(main_blkaddr) || offset >= end_blkaddr) break; if (dev_read_block(raw_node, offset)) { MSG(1, "\tError: While traversing direct node!!!\n"); free(raw_node); return -1; } next_blkaddr = le32_to_cpu(F2FS_NODE_FOOTER(raw_node)->next_blkaddr); memset(raw_node, 0, F2FS_BLKSIZE); DBG(1, "\tDiscard dnode, at offset 0x%08"PRIx64"\n", offset); if (dev_write_block(raw_node, offset)) { MSG(1, "\tError: While discarding direct node!!!\n"); free(raw_node); return -1; } offset = next_blkaddr; /* should avoid recursive chain due to stale data */ if (offset >= start_inode_pos || offset <= last_inode_pos) break; } while (1); free(raw_node); return 0; } #endif static block_t alloc_next_free_block(int curseg_type) { block_t blkaddr; blkaddr = get_sb(main_blkaddr) + c.cur_seg[curseg_type] * c.blks_per_seg + c.curseg_offset[curseg_type]; c.curseg_offset[curseg_type]++; return blkaddr; } void update_sit_journal(int curseg_type) { struct f2fs_journal *sit_jnl = &c.sit_jnl; unsigned short vblocks; int idx = curseg_type; if (c.feature & F2FS_FEATURE_RO) { if (curseg_type < NR_CURSEG_DATA_TYPE) idx = CURSEG_RO_HOT_DATA; else idx = CURSEG_RO_HOT_NODE; } f2fs_set_bit(c.curseg_offset[curseg_type] - 1, (char *)sit_jnl->sit_j.entries[idx].se.valid_map); vblocks = le16_to_cpu(sit_jnl->sit_j.entries[idx].se.vblocks); sit_jnl->sit_j.entries[idx].se.vblocks = cpu_to_le16(vblocks + 1); } void update_nat_journal(nid_t nid, block_t blkaddr) { struct f2fs_journal *nat_jnl = &c.nat_jnl; unsigned short n_nats = le16_to_cpu(nat_jnl->n_nats); nat_jnl->nat_j.entries[n_nats].nid = cpu_to_le32(nid); nat_jnl->nat_j.entries[n_nats].ne.version = 0; nat_jnl->nat_j.entries[n_nats].ne.ino = cpu_to_le32(nid); nat_jnl->nat_j.entries[n_nats].ne.block_addr = cpu_to_le32(blkaddr); nat_jnl->n_nats = cpu_to_le16(n_nats + 1); } void update_summary_entry(int curseg_type, nid_t nid, unsigned short ofs_in_node) { struct f2fs_summary *sum; unsigned int curofs = c.curseg_offset[curseg_type] - 1; assert(curofs < MAX_CACHE_SUMS); sum = c.sum[curseg_type] + curofs; sum->nid = cpu_to_le32(nid); sum->ofs_in_node = cpu_to_le16(ofs_in_node); } static block_t f2fs_add_default_dentry_root(void) { struct f2fs_dentry_block *dent_blk = NULL; block_t data_blkaddr; dent_blk = calloc(F2FS_BLKSIZE, 1); if(dent_blk == NULL) { MSG(1, "\tError: Calloc Failed for dent_blk!!!\n"); return 0; } F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).hash_code = 0; F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).ino = sb->root_ino; F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).name_len = cpu_to_le16(1); F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).file_type = F2FS_FT_DIR; memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 0), ".", 1); F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).hash_code = 0; F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).ino = sb->root_ino; F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).name_len = cpu_to_le16(2); F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).file_type = F2FS_FT_DIR; memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 1), "..", 2); /* bitmap for . and .. */ test_and_set_bit_le(0, dent_blk->dentry_bitmap); test_and_set_bit_le(1, dent_blk->dentry_bitmap); if (c.lpf_ino) { int len = strlen(LPF); f2fs_hash_t hash = f2fs_dentry_hash(0, 0, (unsigned char *)LPF, len); F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 2).hash_code = cpu_to_le32(hash); F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 2).ino = cpu_to_le32(c.lpf_ino); F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 2).name_len = cpu_to_le16(len); F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 2).file_type = F2FS_FT_DIR; memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 2), LPF, F2FS_SLOT_LEN); memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 3), &LPF[F2FS_SLOT_LEN], len - F2FS_SLOT_LEN); test_and_set_bit_le(2, dent_blk->dentry_bitmap); test_and_set_bit_le(3, dent_blk->dentry_bitmap); } data_blkaddr = alloc_next_free_block(CURSEG_HOT_DATA); DBG(1, "\tWriting default dentry root, at offset 0x%x\n", data_blkaddr); if (dev_write_block(dent_blk, data_blkaddr)) { MSG(1, "\tError: While writing the dentry_blk to disk!!!\n"); free(dent_blk); return 0; } update_sit_journal(CURSEG_HOT_DATA); update_summary_entry(CURSEG_HOT_DATA, le32_to_cpu(sb->root_ino), 0); free(dent_blk); return data_blkaddr; } static int f2fs_write_root_inode(void) { struct f2fs_node *raw_node = NULL; block_t data_blkaddr; block_t node_blkaddr; raw_node = calloc(F2FS_BLKSIZE, 1); if (raw_node == NULL) { MSG(1, "\tError: Calloc Failed for raw_node!!!\n"); return -1; } f2fs_init_inode(sb, raw_node, le32_to_cpu(sb->root_ino), mkfs_time, 0x41ed); if (c.lpf_ino) raw_node->i.i_links = cpu_to_le32(3); data_blkaddr = f2fs_add_default_dentry_root(); if (data_blkaddr == 0) { MSG(1, "\tError: Failed to add default dentries for root!!!\n"); free(raw_node); return -1; } raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blkaddr); node_blkaddr = alloc_next_free_block(CURSEG_HOT_NODE); F2FS_NODE_FOOTER(raw_node)->next_blkaddr = cpu_to_le32(node_blkaddr + 1); DBG(1, "\tWriting root inode (hot node), offset 0x%x\n", node_blkaddr); if (write_inode(raw_node, node_blkaddr) < 0) { MSG(1, "\tError: While writing the raw_node to disk!!!\n"); free(raw_node); return -1; } update_nat_journal(le32_to_cpu(sb->root_ino), node_blkaddr); update_sit_journal(CURSEG_HOT_NODE); update_summary_entry(CURSEG_HOT_NODE, le32_to_cpu(sb->root_ino), 0); free(raw_node); return 0; } static int f2fs_write_default_quota(int qtype, __le32 raw_id) { char *filebuf = calloc(F2FS_BLKSIZE, 2); int file_magics[] = INITQMAGICS; struct v2_disk_dqheader ddqheader; struct v2_disk_dqinfo ddqinfo; struct v2r1_disk_dqblk dqblk; block_t blkaddr; int i; if (filebuf == NULL) { MSG(1, "\tError: Calloc Failed for filebuf!!!\n"); return 0; } /* Write basic quota header */ ddqheader.dqh_magic = cpu_to_le32(file_magics[qtype]); /* only support QF_VFSV1 */ ddqheader.dqh_version = cpu_to_le32(1); memcpy(filebuf, &ddqheader, sizeof(ddqheader)); /* Fill Initial quota file content */ ddqinfo.dqi_bgrace = cpu_to_le32(MAX_DQ_TIME); ddqinfo.dqi_igrace = cpu_to_le32(MAX_IQ_TIME); ddqinfo.dqi_flags = cpu_to_le32(0); ddqinfo.dqi_blocks = cpu_to_le32(QT_TREEOFF + 5); ddqinfo.dqi_free_blk = cpu_to_le32(0); ddqinfo.dqi_free_entry = cpu_to_le32(5); memcpy(filebuf + V2_DQINFOOFF, &ddqinfo, sizeof(ddqinfo)); filebuf[1024] = 2; filebuf[2048] = 3; filebuf[3072] = 4; filebuf[4096] = 5; filebuf[5120 + 8] = 1; dqblk.dqb_id = raw_id; dqblk.dqb_pad = cpu_to_le32(0); dqblk.dqb_ihardlimit = cpu_to_le64(0); dqblk.dqb_isoftlimit = cpu_to_le64(0); if (c.lpf_ino) dqblk.dqb_curinodes = cpu_to_le64(2); else dqblk.dqb_curinodes = cpu_to_le64(1); dqblk.dqb_bhardlimit = cpu_to_le64(0); dqblk.dqb_bsoftlimit = cpu_to_le64(0); if (c.lpf_ino) dqblk.dqb_curspace = cpu_to_le64(F2FS_BLKSIZE * 2); else dqblk.dqb_curspace = cpu_to_le64(F2FS_BLKSIZE); dqblk.dqb_btime = cpu_to_le64(0); dqblk.dqb_itime = cpu_to_le64(0); memcpy(filebuf + 5136, &dqblk, sizeof(struct v2r1_disk_dqblk)); /* Write quota blocks */ for (i = 0; i < QUOTA_DATA; i++) { blkaddr = alloc_next_free_block(CURSEG_HOT_DATA); if (dev_write_block(filebuf + i * F2FS_BLKSIZE, blkaddr)) { MSG(1, "\tError: While writing the quota_blk to disk!!!\n"); free(filebuf); return 0; } update_sit_journal(CURSEG_HOT_DATA); update_summary_entry(CURSEG_HOT_DATA, le32_to_cpu(sb->qf_ino[qtype]), i); DBG(1, "\tWriting quota data, at offset %08x (%d/%d)\n", blkaddr, i + 1, QUOTA_DATA); } free(filebuf); return blkaddr + 1 - QUOTA_DATA; } static int f2fs_write_qf_inode(int qtype) { struct f2fs_node *raw_node = NULL; block_t data_blkaddr; block_t node_blkaddr; __le32 raw_id; int i; raw_node = calloc(F2FS_BLKSIZE, 1); if (raw_node == NULL) { MSG(1, "\tError: Calloc Failed for raw_node!!!\n"); return -1; } f2fs_init_inode(sb, raw_node, le32_to_cpu(sb->qf_ino[qtype]), mkfs_time, 0x8180); raw_node->i.i_size = cpu_to_le64(1024 * 6); raw_node->i.i_blocks = cpu_to_le64(1 + QUOTA_DATA); raw_node->i.i_flags = F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; node_blkaddr = alloc_next_free_block(CURSEG_HOT_NODE); F2FS_NODE_FOOTER(raw_node)->next_blkaddr = cpu_to_le32(node_blkaddr + 1); if (qtype == 0) raw_id = raw_node->i.i_uid; else if (qtype == 1) raw_id = raw_node->i.i_gid; else if (qtype == 2) raw_id = raw_node->i.i_projid; else ASSERT(0); /* write quota blocks */ data_blkaddr = f2fs_write_default_quota(qtype, raw_id); if (data_blkaddr == 0) { free(raw_node); return -1; } for (i = 0; i < QUOTA_DATA; i++) raw_node->i.i_addr[get_extra_isize(raw_node) + i] = cpu_to_le32(data_blkaddr + i); DBG(1, "\tWriting quota inode (hot node), offset 0x%x\n", node_blkaddr); if (write_inode(raw_node, node_blkaddr) < 0) { MSG(1, "\tError: While writing the raw_node to disk!!!\n"); free(raw_node); return -1; } update_nat_journal(le32_to_cpu(sb->qf_ino[qtype]), node_blkaddr); update_sit_journal(CURSEG_HOT_NODE); update_summary_entry(CURSEG_HOT_NODE, le32_to_cpu(sb->qf_ino[qtype]), 0); free(raw_node); return 0; } static int f2fs_update_nat_default(void) { struct f2fs_nat_block *nat_blk = NULL; uint64_t nat_seg_blk_offset = 0; nat_blk = calloc(F2FS_BLKSIZE, 1); if(nat_blk == NULL) { MSG(1, "\tError: Calloc Failed for nat_blk!!!\n"); return -1; } /* update node nat */ nat_blk->entries[get_sb(node_ino)].block_addr = cpu_to_le32(1); nat_blk->entries[get_sb(node_ino)].ino = sb->node_ino; /* update meta nat */ nat_blk->entries[get_sb(meta_ino)].block_addr = cpu_to_le32(1); nat_blk->entries[get_sb(meta_ino)].ino = sb->meta_ino; nat_seg_blk_offset = get_sb(nat_blkaddr); DBG(1, "\tWriting nat root, at offset 0x%08"PRIx64"\n", nat_seg_blk_offset); if (dev_write_block(nat_blk, nat_seg_blk_offset)) { MSG(1, "\tError: While writing the nat_blk set0 to disk!\n"); free(nat_blk); return -1; } free(nat_blk); return 0; } static block_t f2fs_add_default_dentry_lpf(void) { struct f2fs_dentry_block *dent_blk; block_t data_blkaddr; dent_blk = calloc(F2FS_BLKSIZE, 1); if (dent_blk == NULL) { MSG(1, "\tError: Calloc Failed for dent_blk!!!\n"); return 0; } F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).hash_code = 0; F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).ino = cpu_to_le32(c.lpf_ino); F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).name_len = cpu_to_le16(1); F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 0).file_type = F2FS_FT_DIR; memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 0), ".", 1); F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).hash_code = 0; F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).ino = sb->root_ino; F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).name_len = cpu_to_le16(2); F2FS_DENTRY_BLOCK_DENTRY(dent_blk, 1).file_type = F2FS_FT_DIR; memcpy(F2FS_DENTRY_BLOCK_FILENAME(dent_blk, 1), "..", 2); test_and_set_bit_le(0, dent_blk->dentry_bitmap); test_and_set_bit_le(1, dent_blk->dentry_bitmap); data_blkaddr = alloc_next_free_block(CURSEG_HOT_DATA); DBG(1, "\tWriting default dentry lost+found, at offset 0x%x\n", data_blkaddr); if (dev_write_block(dent_blk, data_blkaddr)) { MSG(1, "\tError While writing the dentry_blk to disk!!!\n"); free(dent_blk); return 0; } update_sit_journal(CURSEG_HOT_DATA); update_summary_entry(CURSEG_HOT_DATA, c.lpf_ino, 0); free(dent_blk); return data_blkaddr; } static int f2fs_write_lpf_inode(void) { struct f2fs_node *raw_node; block_t data_blkaddr; block_t node_blkaddr; int err = 0; ASSERT(c.lpf_ino); raw_node = calloc(F2FS_BLKSIZE, 1); if (raw_node == NULL) { MSG(1, "\tError: Calloc Failed for raw_node!!!\n"); return -1; } f2fs_init_inode(sb, raw_node, c.lpf_ino, mkfs_time, 0x41c0); raw_node->i.i_pino = le32_to_cpu(sb->root_ino); raw_node->i.i_namelen = le32_to_cpu(strlen(LPF)); memcpy(raw_node->i.i_name, LPF, strlen(LPF)); node_blkaddr = alloc_next_free_block(CURSEG_HOT_NODE); F2FS_NODE_FOOTER(raw_node)->next_blkaddr = cpu_to_le32(node_blkaddr + 1); data_blkaddr = f2fs_add_default_dentry_lpf(); if (data_blkaddr == 0) { MSG(1, "\tError: Failed to add default dentries for lost+found!!!\n"); err = -1; goto exit; } raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blkaddr); DBG(1, "\tWriting lost+found inode (hot node), offset 0x%x\n", node_blkaddr); if (write_inode(raw_node, node_blkaddr) < 0) { MSG(1, "\tError: While writing the raw_node to disk!!!\n"); err = -1; goto exit; } update_nat_journal(c.lpf_ino, node_blkaddr); update_sit_journal(CURSEG_HOT_NODE); update_summary_entry(CURSEG_HOT_NODE, c.lpf_ino, 0); exit: free(raw_node); return err; } static int f2fs_create_root_dir(void) { enum quota_type qtype; int err = 0; err = f2fs_write_root_inode(); if (err < 0) { MSG(1, "\tError: Failed to write root inode!!!\n"); goto exit; } for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) { if (!((1 << qtype) & c.quota_bits)) continue; err = f2fs_write_qf_inode(qtype); if (err < 0) { MSG(1, "\tError: Failed to write quota inode!!!\n"); goto exit; } } if (c.feature & F2FS_FEATURE_LOST_FOUND) { err = f2fs_write_lpf_inode(); if (err < 0) { MSG(1, "\tError: Failed to write lost+found inode!!!\n"); goto exit; } } #ifndef WITH_ANDROID err = f2fs_discard_obsolete_dnode(); if (err < 0) { MSG(1, "\tError: Failed to discard obsolete dnode!!!\n"); goto exit; } #endif err = f2fs_update_nat_default(); if (err < 0) { MSG(1, "\tError: Failed to update NAT for root!!!\n"); goto exit; } exit: if (err) MSG(1, "\tError: Could not create the root directory!!!\n"); return err; } int f2fs_format_device(void) { int err = 0; err= f2fs_prepare_super_block(); if (err < 0) { MSG(0, "\tError: Failed to prepare a super block!!!\n"); goto exit; } if (c.trim) { err = f2fs_trim_devices(); if (err < 0) { MSG(0, "\tError: Failed to trim whole device!!!\n"); goto exit; } } err = f2fs_init_sit_area(); if (err < 0) { MSG(0, "\tError: Failed to initialise the SIT AREA!!!\n"); goto exit; } err = f2fs_init_nat_area(); if (err < 0) { MSG(0, "\tError: Failed to initialise the NAT AREA!!!\n"); goto exit; } err = f2fs_create_root_dir(); if (err < 0) { MSG(0, "\tError: Failed to create the root directory!!!\n"); goto exit; } err = f2fs_write_check_point_pack(); if (err < 0) { MSG(0, "\tError: Failed to write the check point pack!!!\n"); goto exit; } err = f2fs_write_super_block(); if (err < 0) { MSG(0, "\tError: Failed to write the super block!!!\n"); goto exit; } exit: if (err) MSG(0, "\tError: Could not format the device!!!\n"); return err; }