/* * Copyright (c) 2019, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _APPS_REMOTECTL_SKEL_H #define _APPS_REMOTECTL_SKEL_H #include "apps_remotectl.h" #include "remote.h" #include #ifndef ALLOCATOR_H #define ALLOCATOR_H #include #include typedef struct _heap _heap; struct _heap { _heap* pPrev; const char* loc; uint64_t buf; }; typedef struct allocator { _heap* pheap; uint8_t* stack; uint8_t* stackEnd; int nSize; } allocator; static __inline int _heap_alloc(_heap** ppa, const char* loc, int size, void** ppbuf) { _heap* pn = 0; pn = malloc(size + sizeof(_heap) - sizeof(uint64_t)); if(pn != 0) { pn->pPrev = *ppa; pn->loc = loc; *ppa = pn; *ppbuf = (void*)&(pn->buf); return 0; } else { return -1; } } #define _ALIGN_SIZE(x, y) (((x) + (y-1)) & ~(y-1)) static __inline int allocator_alloc(allocator* me, const char* loc, int size, unsigned int al, void** ppbuf) { if(size < 0) { return -1; } else if (size == 0) { *ppbuf = 0; return 0; } if((_ALIGN_SIZE((uintptr_t)me->stackEnd, al) + size) < (uintptr_t)me->stack + me->nSize) { *ppbuf = (uint8_t*)_ALIGN_SIZE((uintptr_t)me->stackEnd, al); me->stackEnd = (uint8_t*)_ALIGN_SIZE((uintptr_t)me->stackEnd, al) + size; return 0; } else { return _heap_alloc(&me->pheap, loc, size, ppbuf); } } static __inline void allocator_deinit(allocator* me) { _heap* pa = me->pheap; while(pa != 0) { _heap* pn = pa; const char* loc = pn->loc; (void)loc; pa = pn->pPrev; free(pn); } } static __inline void allocator_init(allocator* me, uint8_t* stack, int stackSize) { me->stack = stack; me->stackEnd = stack + stackSize; me->nSize = stackSize; me->pheap = 0; } #endif // ALLOCATOR_H #ifndef SLIM_H #define SLIM_H #include //a C data structure for the idl types that can be used to implement //static and dynamic language bindings fairly efficiently. // //the goal is to have a minimal ROM and RAM footprint and without //doing too many allocations. A good way to package these things seemed //like the module boundary, so all the idls within one module can share //all the type references. #define PARAMETER_IN 0x0 #define PARAMETER_OUT 0x1 #define PARAMETER_INOUT 0x2 #define PARAMETER_ROUT 0x3 #define PARAMETER_INROUT 0x4 //the types that we get from idl #define TYPE_OBJECT 0x0 #define TYPE_INTERFACE 0x1 #define TYPE_PRIMITIVE 0x2 #define TYPE_ENUM 0x3 #define TYPE_STRING 0x4 #define TYPE_WSTRING 0x5 #define TYPE_STRUCTURE 0x6 #define TYPE_UNION 0x7 #define TYPE_ARRAY 0x8 #define TYPE_SEQUENCE 0x9 //these require the pack/unpack to recurse //so it's a hint to those languages that can optimize in cases where //recursion isn't necessary. #define TYPE_COMPLEX_STRUCTURE (0x10 | TYPE_STRUCTURE) #define TYPE_COMPLEX_UNION (0x10 | TYPE_UNION) #define TYPE_COMPLEX_ARRAY (0x10 | TYPE_ARRAY) #define TYPE_COMPLEX_SEQUENCE (0x10 | TYPE_SEQUENCE) typedef struct Type Type; #define INHERIT_TYPE\ int32_t nativeSize; /*in the simple case its the same as wire size and alignment*/\ union {\ struct {\ const uintptr_t p1;\ const uintptr_t p2;\ } _cast;\ struct {\ uint32_t iid;\ uint32_t bNotNil;\ } object;\ struct {\ const Type *arrayType;\ int32_t nItems;\ } array;\ struct {\ const Type *seqType;\ int32_t nMaxLen;\ } seqSimple; \ struct {\ uint32_t bFloating;\ uint32_t bSigned;\ } prim; \ const SequenceType* seqComplex;\ const UnionType *unionType;\ const StructType *structType;\ int32_t stringMaxLen;\ uint8_t bInterfaceNotNil;\ } param;\ uint8_t type;\ uint8_t nativeAlignment\ typedef struct UnionType UnionType; typedef struct StructType StructType; typedef struct SequenceType SequenceType; struct Type { INHERIT_TYPE; }; struct SequenceType { const Type * seqType; uint32_t nMaxLen; uint32_t inSize; uint32_t routSizePrimIn; uint32_t routSizePrimROut; }; //byte offset from the start of the case values for //this unions case value array. it MUST be aligned //at the alignment requrements for the descriptor // //if negative it means that the unions cases are //simple enumerators, so the value read from the descriptor //can be used directly to find the correct case typedef union CaseValuePtr CaseValuePtr; union CaseValuePtr { const uint8_t* value8s; const uint16_t* value16s; const uint32_t* value32s; const uint64_t* value64s; }; //these are only used in complex cases //so I pulled them out of the type definition as references to make //the type smaller struct UnionType { const Type *descriptor; uint32_t nCases; const CaseValuePtr caseValues; const Type * const *cases; int32_t inSize; int32_t routSizePrimIn; int32_t routSizePrimROut; uint8_t inAlignment; uint8_t routAlignmentPrimIn; uint8_t routAlignmentPrimROut; uint8_t inCaseAlignment; uint8_t routCaseAlignmentPrimIn; uint8_t routCaseAlignmentPrimROut; uint8_t nativeCaseAlignment; uint8_t bDefaultCase; }; struct StructType { uint32_t nMembers; const Type * const *members; int32_t inSize; int32_t routSizePrimIn; int32_t routSizePrimROut; uint8_t inAlignment; uint8_t routAlignmentPrimIn; uint8_t routAlignmentPrimROut; }; typedef struct Parameter Parameter; struct Parameter { INHERIT_TYPE; uint8_t mode; uint8_t bNotNil; }; #define SLIM_SCALARS_IS_DYNAMIC(u) (((u) & 0x00ffffff) == 0x00ffffff) typedef struct Method Method; struct Method { uint32_t uScalars; //no method index int32_t primInSize; int32_t primROutSize; int maxArgs; int numParams; const Parameter * const *params; uint8_t primInAlignment; uint8_t primROutAlignment; }; typedef struct Interface Interface; struct Interface { int nMethods; const Method * const *methodArray; int nIIds; const uint32_t *iids; const uint16_t* methodStringArray; const uint16_t* methodStrings; const char* strings; }; #endif //SLIM_H #ifndef _APPS_REMOTECTL_SLIM_H #define _APPS_REMOTECTL_SLIM_H #include "remote.h" #include #ifndef __QAIC_SLIM #define __QAIC_SLIM(ff) ff #endif #ifndef __QAIC_SLIM_EXPORT #define __QAIC_SLIM_EXPORT #endif static const Type types[1]; static const Type types[1] = {{0x1,{{(const uintptr_t)0,(const uintptr_t)0}}, 2,0x1}}; static const Parameter parameters[4] = {{0x8,{{(const uintptr_t)0x0,0}}, 4,0x4,0,0},{0x4,{{(const uintptr_t)0,(const uintptr_t)1}}, 2,0x4,3,0},{0x8,{{(const uintptr_t)&(types[0]),(const uintptr_t)0x0}}, 9,0x4,3,0},{0x4,{{(const uintptr_t)0,(const uintptr_t)1}}, 2,0x4,0,0}}; static const Parameter* const parameterArrays[7] = {(&(parameters[0])),(&(parameters[1])),(&(parameters[2])),(&(parameters[1])),(&(parameters[3])),(&(parameters[2])),(&(parameters[1]))}; static const Method methods[2] = {{REMOTE_SCALARS_MAKEX(0,0,0x2,0x2,0x0,0x0),0x8,0x8,6,4,(&(parameterArrays[0])),0x4,0x4},{REMOTE_SCALARS_MAKEX(0,0,0x1,0x2,0x0,0x0),0x8,0x4,5,3,(&(parameterArrays[4])),0x4,0x4}}; static const Method* const methodArrays[2] = {&(methods[0]),&(methods[1])}; static const char strings[36] = "dlerror\0handle\0close\0nErr\0name\0open\0"; static const uint16_t methodStrings[9] = {31,26,8,0,21,15,8,0,21}; static const uint16_t methodStringsArrays[2] = {0,5}; __QAIC_SLIM_EXPORT const Interface __QAIC_SLIM(apps_remotectl_slim) = {2,&(methodArrays[0]),0,0,&(methodStringsArrays [0]),methodStrings,strings}; #endif //_APPS_REMOTECTL_SLIM_H #ifdef __GNUC__ #pragma GCC diagnostic ignored "-Wpragmas" #pragma GCC diagnostic ignored "-Wuninitialized" #pragma GCC diagnostic ignored "-Wunused-parameter" #endif #ifndef __QAIC_REMOTE #define __QAIC_REMOTE(ff) ff #endif //__QAIC_REMOTE #ifndef __QAIC_HEADER #define __QAIC_HEADER(ff) ff #endif //__QAIC_HEADER #ifndef __QAIC_HEADER_EXPORT #define __QAIC_HEADER_EXPORT #endif // __QAIC_HEADER_EXPORT #ifndef __QAIC_HEADER_ATTRIBUTE #define __QAIC_HEADER_ATTRIBUTE #endif // __QAIC_HEADER_ATTRIBUTE #ifndef __QAIC_IMPL #define __QAIC_IMPL(ff) ff #endif //__QAIC_IMPL #ifndef __QAIC_IMPL_EXPORT #define __QAIC_IMPL_EXPORT #endif // __QAIC_IMPL_EXPORT #ifndef __QAIC_IMPL_ATTRIBUTE #define __QAIC_IMPL_ATTRIBUTE #endif // __QAIC_IMPL_ATTRIBUTE #ifndef __QAIC_STUB #define __QAIC_STUB(ff) ff #endif //__QAIC_STUB #ifndef __QAIC_STUB_EXPORT #define __QAIC_STUB_EXPORT #endif // __QAIC_STUB_EXPORT #ifndef __QAIC_STUB_ATTRIBUTE #define __QAIC_STUB_ATTRIBUTE #endif // __QAIC_STUB_ATTRIBUTE #ifndef __QAIC_SKEL #define __QAIC_SKEL(ff) ff #endif //__QAIC_SKEL__ #ifndef __QAIC_SKEL_EXPORT #define __QAIC_SKEL_EXPORT #endif // __QAIC_SKEL_EXPORT #ifndef __QAIC_SKEL_ATTRIBUTE #define __QAIC_SKEL_ATTRIBUTE #endif // __QAIC_SKEL_ATTRIBUTE #ifdef __QAIC_DEBUG__ #ifndef __QAIC_DBG_PRINTF__ #define __QAIC_DBG_PRINTF__( ee ) do { printf ee ; } while(0) #endif #else #define __QAIC_DBG_PRINTF__( ee ) (void)0 #endif #define _OFFSET(src, sof) ((void*)(((char*)(src)) + (sof))) #define _COPY(dst, dof, src, sof, sz) \ do {\ struct __copy { \ char ar[sz]; \ };\ *(struct __copy*)_OFFSET(dst, dof) = *(struct __copy*)_OFFSET(src, sof);\ } while (0) #define _ASSIGN(dst, src, sof) \ do {\ dst = OFFSET(src, sof); \ } while (0) #define _STD_STRLEN_IF(str) (str == 0 ? 0 : strlen(str)) #include "AEEStdErr.h" #define _TRY(ee, func) \ do { \ if (AEE_SUCCESS != ((ee) = func)) {\ __QAIC_DBG_PRINTF__((__FILE_LINE__ ": error: %d\n", (int)(ee)));\ goto ee##bail;\ } \ } while (0) #define _CATCH(exception) exception##bail: if (exception != AEE_SUCCESS) #define _ASSERT(nErr, ff) _TRY(nErr, 0 == (ff) ? AEE_EBADPARM : AEE_SUCCESS) #ifdef __QAIC_DEBUG__ #define _ALLOCATE(nErr, pal, size, alignment, pv) _TRY(nErr, allocator_alloc(pal, __FILE_LINE__, size, alignment, (void**)&pv)) #else #define _ALLOCATE(nErr, pal, size, alignment, pv) _TRY(nErr, allocator_alloc(pal, 0, size, alignment, (void**)&pv)) #endif #ifdef __cplusplus extern "C" { #endif static __inline int _skel_method(int (*_pfn)(uint32_t, char*, uint32_t, uint32_t*), uint32_t _sc, remote_arg* _pra) { remote_arg* _praEnd; uint32_t _in0[1]; char* _rout1[1]; uint32_t _rout1Len[1]; uint32_t _rout2[1]; uint32_t* _primIn; int _numIn[1]; uint32_t* _primROut; remote_arg* _praIn; remote_arg* _praROut; int _nErr = 0; _praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc)); _ASSERT(_nErr, (_pra + 3) <= _praEnd); _numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1); _ASSERT(_nErr, _pra[0].buf.nLen >= 8); _primIn = _pra[0].buf.pv; _ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 4); _primROut = _pra[(_numIn[0] + 1)].buf.pv; _COPY(_in0, 0, _primIn, 0, 4); _COPY(_rout1Len, 0, _primIn, 4, 4); _praIn = (_pra + 1); _praROut = (_praIn + _numIn[0] + 1); _ASSERT(_nErr, (int)((_praROut[0].buf.nLen / 1)) >= (int)(_rout1Len[0])); _rout1[0] = _praROut[0].buf.pv; _TRY(_nErr, _pfn(*_in0, *_rout1, *_rout1Len, _rout2)); _COPY(_primROut, 0, _rout2, 0, 4); _CATCH(_nErr) {} return _nErr; } static __inline int _skel_method_1(int (*_pfn)(char*, uint32_t*, char*, uint32_t, uint32_t*), uint32_t _sc, remote_arg* _pra) { remote_arg* _praEnd; char* _in0[1]; uint32_t _in0Len[1]; uint32_t _rout1[1]; char* _rout2[1]; uint32_t _rout2Len[1]; uint32_t _rout3[1]; uint32_t* _primIn; int _numIn[1]; uint32_t* _primROut; remote_arg* _praIn; remote_arg* _praROut; int _nErr = 0; _praEnd = ((_pra + REMOTE_SCALARS_INBUFS(_sc)) + REMOTE_SCALARS_OUTBUFS(_sc)); _ASSERT(_nErr, (_pra + 4) <= _praEnd); _numIn[0] = (REMOTE_SCALARS_INBUFS(_sc) - 1); _ASSERT(_nErr, _pra[0].buf.nLen >= 8); _primIn = _pra[0].buf.pv; _ASSERT(_nErr, _pra[(_numIn[0] + 1)].buf.nLen >= 8); _primROut = _pra[(_numIn[0] + 1)].buf.pv; _COPY(_in0Len, 0, _primIn, 0, 4); _praIn = (_pra + 1); _ASSERT(_nErr, (int)((_praIn[0].buf.nLen / 1)) >= (int)(_in0Len[0])); _in0[0] = _praIn[0].buf.pv; if(_in0Len[0] > 0) { _in0[0][(_in0Len[0] - 1)] = 0; } _COPY(_rout2Len, 0, _primIn, 4, 4); _praROut = (_praIn + _numIn[0] + 1); _ASSERT(_nErr, (int)((_praROut[0].buf.nLen / 1)) >= (int)(_rout2Len[0])); _rout2[0] = _praROut[0].buf.pv; _TRY(_nErr, _pfn(*_in0, _rout1, *_rout2, *_rout2Len, _rout3)); _COPY(_primROut, 0, _rout1, 0, 4); _COPY(_primROut, 4, _rout3, 0, 4); _CATCH(_nErr) {} return _nErr; } __QAIC_SKEL_EXPORT int __QAIC_SKEL(apps_remotectl_skel_invoke)(uint32_t _sc, remote_arg* _pra) __QAIC_SKEL_ATTRIBUTE { switch(REMOTE_SCALARS_METHOD(_sc)) { case 0: return _skel_method_1((void*)__QAIC_IMPL(apps_remotectl_open), _sc, _pra); case 1: return _skel_method((void*)__QAIC_IMPL(apps_remotectl_close), _sc, _pra); } return AEE_EUNSUPPORTED; } #ifdef __cplusplus } #endif #endif //_APPS_REMOTECTL_SKEL_H