/* * fio - the flexible io tester * * Copyright (C) 2005 Jens Axboe * Copyright (C) 2006-2012 Jens Axboe * * The license below covers all files distributed with fio unless otherwise * noted in the file itself. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fio.h" #ifndef FIO_NO_HAVE_SHM_H #include #endif #include "hash.h" #include "smalloc.h" #include "verify.h" #include "trim.h" #include "diskutil.h" #include "cgroup.h" #include "profile.h" #include "lib/rand.h" #include "memalign.h" #include "server.h" #include "lib/getrusage.h" #include "idletime.h" #include "err.h" #include "lib/tp.h" static pthread_t helper_thread; static pthread_mutex_t helper_lock; pthread_cond_t helper_cond; int helper_do_stat = 0; static struct fio_mutex *startup_mutex; static struct flist_head *cgroup_list; static char *cgroup_mnt; static int exit_value; static volatile int fio_abort; static unsigned int nr_process = 0; static unsigned int nr_thread = 0; struct io_log *agg_io_log[DDIR_RWDIR_CNT]; int groupid = 0; unsigned int thread_number = 0; unsigned int stat_number = 0; int shm_id = 0; int temp_stall_ts; unsigned long done_secs = 0; volatile int helper_exit = 0; #define PAGE_ALIGN(buf) \ (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask) #define JOB_START_TIMEOUT (5 * 1000) static void sig_int(int sig) { if (threads) { if (is_backend) fio_server_got_signal(sig); else { log_info("\nfio: terminating on signal %d\n", sig); log_info_flush(); exit_value = 128; } fio_terminate_threads(TERMINATE_ALL); } } static void sig_show_status(int sig) { show_running_run_stats(); } static void set_sig_handlers(void) { struct sigaction act; memset(&act, 0, sizeof(act)); act.sa_handler = sig_int; act.sa_flags = SA_RESTART; sigaction(SIGINT, &act, NULL); memset(&act, 0, sizeof(act)); act.sa_handler = sig_int; act.sa_flags = SA_RESTART; sigaction(SIGTERM, &act, NULL); /* Windows uses SIGBREAK as a quit signal from other applications */ #ifdef WIN32 memset(&act, 0, sizeof(act)); act.sa_handler = sig_int; act.sa_flags = SA_RESTART; sigaction(SIGBREAK, &act, NULL); #endif memset(&act, 0, sizeof(act)); act.sa_handler = sig_show_status; act.sa_flags = SA_RESTART; sigaction(SIGUSR1, &act, NULL); if (is_backend) { memset(&act, 0, sizeof(act)); act.sa_handler = sig_int; act.sa_flags = SA_RESTART; sigaction(SIGPIPE, &act, NULL); } } /* * Check if we are above the minimum rate given. */ static int __check_min_rate(struct thread_data *td, struct timeval *now, enum fio_ddir ddir) { unsigned long long bytes = 0; unsigned long iops = 0; unsigned long spent; unsigned long rate; unsigned int ratemin = 0; unsigned int rate_iops = 0; unsigned int rate_iops_min = 0; assert(ddir_rw(ddir)); if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir]) return 0; /* * allow a 2 second settle period in the beginning */ if (mtime_since(&td->start, now) < 2000) return 0; iops += td->this_io_blocks[ddir]; bytes += td->this_io_bytes[ddir]; ratemin += td->o.ratemin[ddir]; rate_iops += td->o.rate_iops[ddir]; rate_iops_min += td->o.rate_iops_min[ddir]; /* * if rate blocks is set, sample is running */ if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) { spent = mtime_since(&td->lastrate[ddir], now); if (spent < td->o.ratecycle) return 0; if (td->o.rate[ddir]) { /* * check bandwidth specified rate */ if (bytes < td->rate_bytes[ddir]) { log_err("%s: min rate %u not met\n", td->o.name, ratemin); return 1; } else { if (spent) rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent; else rate = 0; if (rate < ratemin || bytes < td->rate_bytes[ddir]) { log_err("%s: min rate %u not met, got" " %luKB/sec\n", td->o.name, ratemin, rate); return 1; } } } else { /* * checks iops specified rate */ if (iops < rate_iops) { log_err("%s: min iops rate %u not met\n", td->o.name, rate_iops); return 1; } else { if (spent) rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent; else rate = 0; if (rate < rate_iops_min || iops < td->rate_blocks[ddir]) { log_err("%s: min iops rate %u not met," " got %lu\n", td->o.name, rate_iops_min, rate); } } } } td->rate_bytes[ddir] = bytes; td->rate_blocks[ddir] = iops; memcpy(&td->lastrate[ddir], now, sizeof(*now)); return 0; } static int check_min_rate(struct thread_data *td, struct timeval *now, uint64_t *bytes_done) { int ret = 0; if (bytes_done[DDIR_READ]) ret |= __check_min_rate(td, now, DDIR_READ); if (bytes_done[DDIR_WRITE]) ret |= __check_min_rate(td, now, DDIR_WRITE); if (bytes_done[DDIR_TRIM]) ret |= __check_min_rate(td, now, DDIR_TRIM); return ret; } /* * When job exits, we can cancel the in-flight IO if we are using async * io. Attempt to do so. */ static void cleanup_pending_aio(struct thread_data *td) { int r; /* * get immediately available events, if any */ r = io_u_queued_complete(td, 0, NULL); if (r < 0) return; /* * now cancel remaining active events */ if (td->io_ops->cancel) { struct io_u *io_u; int i; io_u_qiter(&td->io_u_all, io_u, i) { if (io_u->flags & IO_U_F_FLIGHT) { r = td->io_ops->cancel(td, io_u); if (!r) put_io_u(td, io_u); } } } if (td->cur_depth) r = io_u_queued_complete(td, td->cur_depth, NULL); } /* * Helper to handle the final sync of a file. Works just like the normal * io path, just does everything sync. */ static int fio_io_sync(struct thread_data *td, struct fio_file *f) { struct io_u *io_u = __get_io_u(td); int ret; if (!io_u) return 1; io_u->ddir = DDIR_SYNC; io_u->file = f; if (td_io_prep(td, io_u)) { put_io_u(td, io_u); return 1; } requeue: ret = td_io_queue(td, io_u); if (ret < 0) { td_verror(td, io_u->error, "td_io_queue"); put_io_u(td, io_u); return 1; } else if (ret == FIO_Q_QUEUED) { if (io_u_queued_complete(td, 1, NULL) < 0) return 1; } else if (ret == FIO_Q_COMPLETED) { if (io_u->error) { td_verror(td, io_u->error, "td_io_queue"); return 1; } if (io_u_sync_complete(td, io_u, NULL) < 0) return 1; } else if (ret == FIO_Q_BUSY) { if (td_io_commit(td)) return 1; goto requeue; } return 0; } static int fio_file_fsync(struct thread_data *td, struct fio_file *f) { int ret; if (fio_file_open(f)) return fio_io_sync(td, f); if (td_io_open_file(td, f)) return 1; ret = fio_io_sync(td, f); td_io_close_file(td, f); return ret; } static inline void __update_tv_cache(struct thread_data *td) { fio_gettime(&td->tv_cache, NULL); } static inline void update_tv_cache(struct thread_data *td) { if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask) __update_tv_cache(td); } static inline int runtime_exceeded(struct thread_data *td, struct timeval *t) { if (in_ramp_time(td)) return 0; if (!td->o.timeout) return 0; if (utime_since(&td->epoch, t) >= td->o.timeout) return 1; return 0; } static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir, int *retptr) { int ret = *retptr; if (ret < 0 || td->error) { int err = td->error; enum error_type_bit eb; if (ret < 0) err = -ret; eb = td_error_type(ddir, err); if (!(td->o.continue_on_error & (1 << eb))) return 1; if (td_non_fatal_error(td, eb, err)) { /* * Continue with the I/Os in case of * a non fatal error. */ update_error_count(td, err); td_clear_error(td); *retptr = 0; return 0; } else if (td->o.fill_device && err == ENOSPC) { /* * We expect to hit this error if * fill_device option is set. */ td_clear_error(td); fio_mark_td_terminate(td); return 1; } else { /* * Stop the I/O in case of a fatal * error. */ update_error_count(td, err); return 1; } } return 0; } static void check_update_rusage(struct thread_data *td) { if (td->update_rusage) { td->update_rusage = 0; update_rusage_stat(td); fio_mutex_up(td->rusage_sem); } } static int wait_for_completions(struct thread_data *td, struct timeval *time, uint64_t *bytes_done) { const int full = queue_full(td); int min_evts = 0; int ret; /* * if the queue is full, we MUST reap at least 1 event */ min_evts = min(td->o.iodepth_batch_complete, td->cur_depth); if (full && !min_evts) min_evts = 1; if (time && (__should_check_rate(td, DDIR_READ) || __should_check_rate(td, DDIR_WRITE) || __should_check_rate(td, DDIR_TRIM))) fio_gettime(time, NULL); do { ret = io_u_queued_complete(td, min_evts, bytes_done); if (ret < 0) break; } while (full && (td->cur_depth > td->o.iodepth_low)); return ret; } /* * The main verify engine. Runs over the writes we previously submitted, * reads the blocks back in, and checks the crc/md5 of the data. */ static void do_verify(struct thread_data *td, uint64_t verify_bytes) { uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 }; struct fio_file *f; struct io_u *io_u; int ret, min_events; unsigned int i; dprint(FD_VERIFY, "starting loop\n"); /* * sync io first and invalidate cache, to make sure we really * read from disk. */ for_each_file(td, f, i) { if (!fio_file_open(f)) continue; if (fio_io_sync(td, f)) break; if (file_invalidate_cache(td, f)) break; } check_update_rusage(td); if (td->error) return; td_set_runstate(td, TD_VERIFYING); io_u = NULL; while (!td->terminate) { enum fio_ddir ddir; int ret2, full; update_tv_cache(td); check_update_rusage(td); if (runtime_exceeded(td, &td->tv_cache)) { __update_tv_cache(td); if (runtime_exceeded(td, &td->tv_cache)) { fio_mark_td_terminate(td); break; } } if (flow_threshold_exceeded(td)) continue; if (!td->o.experimental_verify) { io_u = __get_io_u(td); if (!io_u) break; if (get_next_verify(td, io_u)) { put_io_u(td, io_u); break; } if (td_io_prep(td, io_u)) { put_io_u(td, io_u); break; } } else { if (ddir_rw_sum(bytes_done) + td->o.rw_min_bs > verify_bytes) break; while ((io_u = get_io_u(td)) != NULL) { if (IS_ERR(io_u)) { io_u = NULL; ret = FIO_Q_BUSY; goto reap; } /* * We are only interested in the places where * we wrote or trimmed IOs. Turn those into * reads for verification purposes. */ if (io_u->ddir == DDIR_READ) { /* * Pretend we issued it for rwmix * accounting */ td->io_issues[DDIR_READ]++; put_io_u(td, io_u); continue; } else if (io_u->ddir == DDIR_TRIM) { io_u->ddir = DDIR_READ; io_u->flags |= IO_U_F_TRIMMED; break; } else if (io_u->ddir == DDIR_WRITE) { io_u->ddir = DDIR_READ; break; } else { put_io_u(td, io_u); continue; } } if (!io_u) break; } if (verify_state_should_stop(td, io_u)) { put_io_u(td, io_u); break; } if (td->o.verify_async) io_u->end_io = verify_io_u_async; else io_u->end_io = verify_io_u; ddir = io_u->ddir; if (!td->o.disable_slat) fio_gettime(&io_u->start_time, NULL); ret = td_io_queue(td, io_u); switch (ret) { case FIO_Q_COMPLETED: if (io_u->error) { ret = -io_u->error; clear_io_u(td, io_u); } else if (io_u->resid) { int bytes = io_u->xfer_buflen - io_u->resid; /* * zero read, fail */ if (!bytes) { td_verror(td, EIO, "full resid"); put_io_u(td, io_u); break; } io_u->xfer_buflen = io_u->resid; io_u->xfer_buf += bytes; io_u->offset += bytes; if (ddir_rw(io_u->ddir)) td->ts.short_io_u[io_u->ddir]++; f = io_u->file; if (io_u->offset == f->real_file_size) goto sync_done; requeue_io_u(td, &io_u); } else { sync_done: ret = io_u_sync_complete(td, io_u, bytes_done); if (ret < 0) break; } continue; case FIO_Q_QUEUED: break; case FIO_Q_BUSY: requeue_io_u(td, &io_u); ret2 = td_io_commit(td); if (ret2 < 0) ret = ret2; break; default: assert(ret < 0); td_verror(td, -ret, "td_io_queue"); break; } if (break_on_this_error(td, ddir, &ret)) break; /* * if we can queue more, do so. but check if there are * completed io_u's first. Note that we can get BUSY even * without IO queued, if the system is resource starved. */ reap: full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth); if (full || !td->o.iodepth_batch_complete) ret = wait_for_completions(td, NULL, bytes_done); if (ret < 0) break; } check_update_rusage(td); if (!td->error) { min_events = td->cur_depth; if (min_events) ret = io_u_queued_complete(td, min_events, NULL); } else cleanup_pending_aio(td); td_set_runstate(td, TD_RUNNING); dprint(FD_VERIFY, "exiting loop\n"); } static unsigned int exceeds_number_ios(struct thread_data *td) { unsigned long long number_ios; if (!td->o.number_ios) return 0; number_ios = ddir_rw_sum(td->io_blocks); number_ios += td->io_u_queued + td->io_u_in_flight; return number_ios >= (td->o.number_ios * td->loops); } static int io_issue_bytes_exceeded(struct thread_data *td) { unsigned long long bytes, limit; if (td_rw(td)) bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE]; else if (td_write(td)) bytes = td->io_issue_bytes[DDIR_WRITE]; else if (td_read(td)) bytes = td->io_issue_bytes[DDIR_READ]; else bytes = td->io_issue_bytes[DDIR_TRIM]; if (td->o.io_limit) limit = td->o.io_limit; else limit = td->o.size; limit *= td->loops; return bytes >= limit || exceeds_number_ios(td); } static int io_complete_bytes_exceeded(struct thread_data *td) { unsigned long long bytes, limit; if (td_rw(td)) bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE]; else if (td_write(td)) bytes = td->this_io_bytes[DDIR_WRITE]; else if (td_read(td)) bytes = td->this_io_bytes[DDIR_READ]; else bytes = td->this_io_bytes[DDIR_TRIM]; if (td->o.io_limit) limit = td->o.io_limit; else limit = td->o.size; limit *= td->loops; return bytes >= limit || exceeds_number_ios(td); } /* * Main IO worker function. It retrieves io_u's to process and queues * and reaps them, checking for rate and errors along the way. * * Returns number of bytes written and trimmed. */ static uint64_t do_io(struct thread_data *td) { uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 }; unsigned int i; int ret = 0; uint64_t total_bytes, bytes_issued = 0; if (in_ramp_time(td)) td_set_runstate(td, TD_RAMP); else td_set_runstate(td, TD_RUNNING); lat_target_init(td); total_bytes = td->o.size; /* * Allow random overwrite workloads to write up to io_limit * before starting verification phase as 'size' doesn't apply. */ if (td_write(td) && td_random(td) && td->o.norandommap) total_bytes = max(total_bytes, (uint64_t) td->o.io_limit); /* * If verify_backlog is enabled, we'll run the verify in this * handler as well. For that case, we may need up to twice the * amount of bytes. */ if (td->o.verify != VERIFY_NONE && (td_write(td) && td->o.verify_backlog)) total_bytes += td->o.size; while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) || (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) || td->o.time_based) { struct timeval comp_time; struct io_u *io_u; int ret2, full; enum fio_ddir ddir; check_update_rusage(td); if (td->terminate || td->done) break; update_tv_cache(td); if (runtime_exceeded(td, &td->tv_cache)) { __update_tv_cache(td); if (runtime_exceeded(td, &td->tv_cache)) { fio_mark_td_terminate(td); break; } } if (flow_threshold_exceeded(td)) continue; if (bytes_issued >= total_bytes) break; io_u = get_io_u(td); if (IS_ERR_OR_NULL(io_u)) { int err = PTR_ERR(io_u); io_u = NULL; if (err == -EBUSY) { ret = FIO_Q_BUSY; goto reap; } if (td->o.latency_target) goto reap; break; } ddir = io_u->ddir; /* * Add verification end_io handler if: * - Asked to verify (!td_rw(td)) * - Or the io_u is from our verify list (mixed write/ver) */ if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ && ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) { if (!td->o.verify_pattern_bytes) { io_u->rand_seed = __rand(&td->verify_state); if (sizeof(int) != sizeof(long *)) io_u->rand_seed *= __rand(&td->verify_state); } if (verify_state_should_stop(td, io_u)) { put_io_u(td, io_u); break; } if (td->o.verify_async) io_u->end_io = verify_io_u_async; else io_u->end_io = verify_io_u; td_set_runstate(td, TD_VERIFYING); } else if (in_ramp_time(td)) td_set_runstate(td, TD_RAMP); else td_set_runstate(td, TD_RUNNING); /* * Always log IO before it's issued, so we know the specific * order of it. The logged unit will track when the IO has * completed. */ if (td_write(td) && io_u->ddir == DDIR_WRITE && td->o.do_verify && td->o.verify != VERIFY_NONE && !td->o.experimental_verify) log_io_piece(td, io_u); ret = td_io_queue(td, io_u); switch (ret) { case FIO_Q_COMPLETED: if (io_u->error) { ret = -io_u->error; unlog_io_piece(td, io_u); clear_io_u(td, io_u); } else if (io_u->resid) { int bytes = io_u->xfer_buflen - io_u->resid; struct fio_file *f = io_u->file; bytes_issued += bytes; trim_io_piece(td, io_u); /* * zero read, fail */ if (!bytes) { unlog_io_piece(td, io_u); td_verror(td, EIO, "full resid"); put_io_u(td, io_u); break; } io_u->xfer_buflen = io_u->resid; io_u->xfer_buf += bytes; io_u->offset += bytes; if (ddir_rw(io_u->ddir)) td->ts.short_io_u[io_u->ddir]++; if (io_u->offset == f->real_file_size) goto sync_done; requeue_io_u(td, &io_u); } else { sync_done: if (__should_check_rate(td, DDIR_READ) || __should_check_rate(td, DDIR_WRITE) || __should_check_rate(td, DDIR_TRIM)) fio_gettime(&comp_time, NULL); ret = io_u_sync_complete(td, io_u, bytes_done); if (ret < 0) break; bytes_issued += io_u->xfer_buflen; } break; case FIO_Q_QUEUED: /* * if the engine doesn't have a commit hook, * the io_u is really queued. if it does have such * a hook, it has to call io_u_queued() itself. */ if (td->io_ops->commit == NULL) io_u_queued(td, io_u); bytes_issued += io_u->xfer_buflen; break; case FIO_Q_BUSY: unlog_io_piece(td, io_u); requeue_io_u(td, &io_u); ret2 = td_io_commit(td); if (ret2 < 0) ret = ret2; break; default: assert(ret < 0); put_io_u(td, io_u); break; } if (break_on_this_error(td, ddir, &ret)) break; /* * See if we need to complete some commands. Note that we * can get BUSY even without IO queued, if the system is * resource starved. */ reap: full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth); if (full || !td->o.iodepth_batch_complete) ret = wait_for_completions(td, &comp_time, bytes_done); if (ret < 0) break; if (!ddir_rw_sum(bytes_done) && !(td->io_ops->flags & FIO_NOIO)) continue; if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) { if (check_min_rate(td, &comp_time, bytes_done)) { if (exitall_on_terminate) fio_terminate_threads(td->groupid); td_verror(td, EIO, "check_min_rate"); break; } } if (!in_ramp_time(td) && td->o.latency_target) lat_target_check(td); if (td->o.thinktime) { unsigned long long b; b = ddir_rw_sum(td->io_blocks); if (!(b % td->o.thinktime_blocks)) { int left; io_u_quiesce(td); if (td->o.thinktime_spin) usec_spin(td->o.thinktime_spin); left = td->o.thinktime - td->o.thinktime_spin; if (left) usec_sleep(td, left); } } } check_update_rusage(td); if (td->trim_entries) log_err("fio: %lu trim entries leaked?\n", td->trim_entries); if (td->o.fill_device && td->error == ENOSPC) { td->error = 0; fio_mark_td_terminate(td); } if (!td->error) { struct fio_file *f; i = td->cur_depth; if (i) { ret = io_u_queued_complete(td, i, bytes_done); if (td->o.fill_device && td->error == ENOSPC) td->error = 0; } if (should_fsync(td) && td->o.end_fsync) { td_set_runstate(td, TD_FSYNCING); for_each_file(td, f, i) { if (!fio_file_fsync(td, f)) continue; log_err("fio: end_fsync failed for file %s\n", f->file_name); } } } else cleanup_pending_aio(td); /* * stop job if we failed doing any IO */ if (!ddir_rw_sum(td->this_io_bytes)) td->done = 1; return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM]; } static void cleanup_io_u(struct thread_data *td) { struct io_u *io_u; while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) { if (td->io_ops->io_u_free) td->io_ops->io_u_free(td, io_u); fio_memfree(io_u, sizeof(*io_u)); } free_io_mem(td); io_u_rexit(&td->io_u_requeues); io_u_qexit(&td->io_u_freelist); io_u_qexit(&td->io_u_all); if (td->last_write_comp) sfree(td->last_write_comp); } static int init_io_u(struct thread_data *td) { struct io_u *io_u; unsigned int max_bs, min_write; int cl_align, i, max_units; int data_xfer = 1, err; char *p; max_units = td->o.iodepth; max_bs = td_max_bs(td); min_write = td->o.min_bs[DDIR_WRITE]; td->orig_buffer_size = (unsigned long long) max_bs * (unsigned long long) max_units; if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td))) data_xfer = 0; err = 0; err += io_u_rinit(&td->io_u_requeues, td->o.iodepth); err += io_u_qinit(&td->io_u_freelist, td->o.iodepth); err += io_u_qinit(&td->io_u_all, td->o.iodepth); if (err) { log_err("fio: failed setting up IO queues\n"); return 1; } /* * if we may later need to do address alignment, then add any * possible adjustment here so that we don't cause a buffer * overflow later. this adjustment may be too much if we get * lucky and the allocator gives us an aligned address. */ if (td->o.odirect || td->o.mem_align || td->o.oatomic || (td->io_ops->flags & FIO_RAWIO)) td->orig_buffer_size += page_mask + td->o.mem_align; if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) { unsigned long bs; bs = td->orig_buffer_size + td->o.hugepage_size - 1; td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1); } if (td->orig_buffer_size != (size_t) td->orig_buffer_size) { log_err("fio: IO memory too large. Reduce max_bs or iodepth\n"); return 1; } if (data_xfer && allocate_io_mem(td)) return 1; if (td->o.odirect || td->o.mem_align || td->o.oatomic || (td->io_ops->flags & FIO_RAWIO)) p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align; else p = td->orig_buffer; cl_align = os_cache_line_size(); for (i = 0; i < max_units; i++) { void *ptr; if (td->terminate) return 1; ptr = fio_memalign(cl_align, sizeof(*io_u)); if (!ptr) { log_err("fio: unable to allocate aligned memory\n"); break; } io_u = ptr; memset(io_u, 0, sizeof(*io_u)); INIT_FLIST_HEAD(&io_u->verify_list); dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i); if (data_xfer) { io_u->buf = p; dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf); if (td_write(td)) io_u_fill_buffer(td, io_u, min_write, max_bs); if (td_write(td) && td->o.verify_pattern_bytes) { /* * Fill the buffer with the pattern if we are * going to be doing writes. */ fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0); } } io_u->index = i; io_u->flags = IO_U_F_FREE; io_u_qpush(&td->io_u_freelist, io_u); /* * io_u never leaves this stack, used for iteration of all * io_u buffers. */ io_u_qpush(&td->io_u_all, io_u); if (td->io_ops->io_u_init) { int ret = td->io_ops->io_u_init(td, io_u); if (ret) { log_err("fio: failed to init engine data: %d\n", ret); return 1; } } p += max_bs; } if (td->o.verify != VERIFY_NONE) { td->last_write_comp = scalloc(max_units, sizeof(uint64_t)); if (!td->last_write_comp) { log_err("fio: failed to alloc write comp data\n"); return 1; } } return 0; } static int switch_ioscheduler(struct thread_data *td) { char tmp[256], tmp2[128]; FILE *f; int ret; if (td->io_ops->flags & FIO_DISKLESSIO) return 0; sprintf(tmp, "%s/queue/scheduler", td->sysfs_root); f = fopen(tmp, "r+"); if (!f) { if (errno == ENOENT) { log_err("fio: os or kernel doesn't support IO scheduler" " switching\n"); return 0; } td_verror(td, errno, "fopen iosched"); return 1; } /* * Set io scheduler. */ ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f); if (ferror(f) || ret != 1) { td_verror(td, errno, "fwrite"); fclose(f); return 1; } rewind(f); /* * Read back and check that the selected scheduler is now the default. */ ret = fread(tmp, sizeof(tmp), 1, f); if (ferror(f) || ret < 0) { td_verror(td, errno, "fread"); fclose(f); return 1; } tmp[sizeof(tmp) - 1] = '\0'; sprintf(tmp2, "[%s]", td->o.ioscheduler); if (!strstr(tmp, tmp2)) { log_err("fio: io scheduler %s not found\n", td->o.ioscheduler); td_verror(td, EINVAL, "iosched_switch"); fclose(f); return 1; } fclose(f); return 0; } static int keep_running(struct thread_data *td) { unsigned long long limit; if (td->done) return 0; if (td->o.time_based) return 1; if (td->o.loops) { td->o.loops--; return 1; } if (exceeds_number_ios(td)) return 0; if (td->o.io_limit) limit = td->o.io_limit; else limit = td->o.size; if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) { uint64_t diff; /* * If the difference is less than the minimum IO size, we * are done. */ diff = limit - ddir_rw_sum(td->io_bytes); if (diff < td_max_bs(td)) return 0; if (fio_files_done(td)) return 0; return 1; } return 0; } static int exec_string(struct thread_options *o, const char *string, const char *mode) { int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1; char *str; str = malloc(newlen); sprintf(str, "%s &> %s.%s.txt", string, o->name, mode); log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode); ret = system(str); if (ret == -1) log_err("fio: exec of cmd <%s> failed\n", str); free(str); return ret; } /* * Dry run to compute correct state of numberio for verification. */ static uint64_t do_dry_run(struct thread_data *td) { uint64_t bytes_done[DDIR_RWDIR_CNT] = { 0, 0, 0 }; td_set_runstate(td, TD_RUNNING); while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) || (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) { struct io_u *io_u; int ret; if (td->terminate || td->done) break; io_u = get_io_u(td); if (!io_u) break; io_u->flags |= IO_U_F_FLIGHT; io_u->error = 0; io_u->resid = 0; if (ddir_rw(acct_ddir(io_u))) td->io_issues[acct_ddir(io_u)]++; if (ddir_rw(io_u->ddir)) { io_u_mark_depth(td, 1); td->ts.total_io_u[io_u->ddir]++; } if (td_write(td) && io_u->ddir == DDIR_WRITE && td->o.do_verify && td->o.verify != VERIFY_NONE && !td->o.experimental_verify) log_io_piece(td, io_u); ret = io_u_sync_complete(td, io_u, bytes_done); (void) ret; } return bytes_done[DDIR_WRITE] + bytes_done[DDIR_TRIM]; } /* * Entry point for the thread based jobs. The process based jobs end up * here as well, after a little setup. */ static void *thread_main(void *data) { unsigned long long elapsed; struct thread_data *td = data; struct thread_options *o = &td->o; pthread_condattr_t attr; int clear_state; int ret; if (!o->use_thread) { setsid(); td->pid = getpid(); } else td->pid = gettid(); fio_local_clock_init(o->use_thread); dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid); if (is_backend) fio_server_send_start(td); INIT_FLIST_HEAD(&td->io_log_list); INIT_FLIST_HEAD(&td->io_hist_list); INIT_FLIST_HEAD(&td->verify_list); INIT_FLIST_HEAD(&td->trim_list); INIT_FLIST_HEAD(&td->next_rand_list); pthread_mutex_init(&td->io_u_lock, NULL); td->io_hist_tree = RB_ROOT; pthread_condattr_init(&attr); pthread_cond_init(&td->verify_cond, &attr); pthread_cond_init(&td->free_cond, &attr); td_set_runstate(td, TD_INITIALIZED); dprint(FD_MUTEX, "up startup_mutex\n"); fio_mutex_up(startup_mutex); dprint(FD_MUTEX, "wait on td->mutex\n"); fio_mutex_down(td->mutex); dprint(FD_MUTEX, "done waiting on td->mutex\n"); /* * A new gid requires privilege, so we need to do this before setting * the uid. */ if (o->gid != -1U && setgid(o->gid)) { td_verror(td, errno, "setgid"); goto err; } if (o->uid != -1U && setuid(o->uid)) { td_verror(td, errno, "setuid"); goto err; } /* * If we have a gettimeofday() thread, make sure we exclude that * thread from this job */ if (o->gtod_cpu) fio_cpu_clear(&o->cpumask, o->gtod_cpu); /* * Set affinity first, in case it has an impact on the memory * allocations. */ if (fio_option_is_set(o, cpumask)) { if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) { ret = fio_cpus_split(&o->cpumask, td->thread_number - 1); if (!ret) { log_err("fio: no CPUs set\n"); log_err("fio: Try increasing number of available CPUs\n"); td_verror(td, EINVAL, "cpus_split"); goto err; } } ret = fio_setaffinity(td->pid, o->cpumask); if (ret == -1) { td_verror(td, errno, "cpu_set_affinity"); goto err; } } #ifdef CONFIG_LIBNUMA /* numa node setup */ if (fio_option_is_set(o, numa_cpunodes) || fio_option_is_set(o, numa_memnodes)) { struct bitmask *mask; if (numa_available() < 0) { td_verror(td, errno, "Does not support NUMA API\n"); goto err; } if (fio_option_is_set(o, numa_cpunodes)) { mask = numa_parse_nodestring(o->numa_cpunodes); ret = numa_run_on_node_mask(mask); numa_free_nodemask(mask); if (ret == -1) { td_verror(td, errno, \ "numa_run_on_node_mask failed\n"); goto err; } } if (fio_option_is_set(o, numa_memnodes)) { mask = NULL; if (o->numa_memnodes) mask = numa_parse_nodestring(o->numa_memnodes); switch (o->numa_mem_mode) { case MPOL_INTERLEAVE: numa_set_interleave_mask(mask); break; case MPOL_BIND: numa_set_membind(mask); break; case MPOL_LOCAL: numa_set_localalloc(); break; case MPOL_PREFERRED: numa_set_preferred(o->numa_mem_prefer_node); break; case MPOL_DEFAULT: default: break; } if (mask) numa_free_nodemask(mask); } } #endif if (fio_pin_memory(td)) goto err; /* * May alter parameters that init_io_u() will use, so we need to * do this first. */ if (init_iolog(td)) goto err; if (init_io_u(td)) goto err; if (o->verify_async && verify_async_init(td)) goto err; if (fio_option_is_set(o, ioprio) || fio_option_is_set(o, ioprio_class)) { ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio); if (ret == -1) { td_verror(td, errno, "ioprio_set"); goto err; } } if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt)) goto err; errno = 0; if (nice(o->nice) == -1 && errno != 0) { td_verror(td, errno, "nice"); goto err; } if (o->ioscheduler && switch_ioscheduler(td)) goto err; if (!o->create_serialize && setup_files(td)) goto err; if (td_io_init(td)) goto err; if (init_random_map(td)) goto err; if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun")) goto err; if (o->pre_read) { if (pre_read_files(td) < 0) goto err; } if (td->flags & TD_F_COMPRESS_LOG) tp_init(&td->tp_data); fio_verify_init(td); fio_gettime(&td->epoch, NULL); fio_getrusage(&td->ru_start); clear_state = 0; while (keep_running(td)) { uint64_t verify_bytes; fio_gettime(&td->start, NULL); memcpy(&td->bw_sample_time, &td->start, sizeof(td->start)); memcpy(&td->iops_sample_time, &td->start, sizeof(td->start)); memcpy(&td->tv_cache, &td->start, sizeof(td->start)); if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] || o->ratemin[DDIR_TRIM]) { memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time, sizeof(td->bw_sample_time)); memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time, sizeof(td->bw_sample_time)); memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time, sizeof(td->bw_sample_time)); } if (clear_state) clear_io_state(td); prune_io_piece_log(td); if (td->o.verify_only && (td_write(td) || td_rw(td))) verify_bytes = do_dry_run(td); else verify_bytes = do_io(td); clear_state = 1; fio_mutex_down(stat_mutex); if (td_read(td) && td->io_bytes[DDIR_READ]) { elapsed = mtime_since_now(&td->start); td->ts.runtime[DDIR_READ] += elapsed; } if (td_write(td) && td->io_bytes[DDIR_WRITE]) { elapsed = mtime_since_now(&td->start); td->ts.runtime[DDIR_WRITE] += elapsed; } if (td_trim(td) && td->io_bytes[DDIR_TRIM]) { elapsed = mtime_since_now(&td->start); td->ts.runtime[DDIR_TRIM] += elapsed; } fio_gettime(&td->start, NULL); fio_mutex_up(stat_mutex); if (td->error || td->terminate) break; if (!o->do_verify || o->verify == VERIFY_NONE || (td->io_ops->flags & FIO_UNIDIR)) continue; clear_io_state(td); fio_gettime(&td->start, NULL); do_verify(td, verify_bytes); fio_mutex_down(stat_mutex); td->ts.runtime[DDIR_READ] += mtime_since_now(&td->start); fio_gettime(&td->start, NULL); fio_mutex_up(stat_mutex); if (td->error || td->terminate) break; } update_rusage_stat(td); td->ts.total_run_time = mtime_since_now(&td->epoch); td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ]; td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE]; td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM]; if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) && (td->o.verify != VERIFY_NONE && td_write(td))) { struct all_io_list *state; size_t sz; state = get_all_io_list(td->thread_number, &sz); if (state) { __verify_save_state(state, "local"); free(state); } } fio_unpin_memory(td); fio_writeout_logs(td); if (td->flags & TD_F_COMPRESS_LOG) tp_exit(&td->tp_data); if (o->exec_postrun) exec_string(o, o->exec_postrun, (const char *)"postrun"); if (exitall_on_terminate) fio_terminate_threads(td->groupid); err: if (td->error) log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error, td->verror); if (o->verify_async) verify_async_exit(td); close_and_free_files(td); cleanup_io_u(td); close_ioengine(td); cgroup_shutdown(td, &cgroup_mnt); verify_free_state(td); if (fio_option_is_set(o, cpumask)) { ret = fio_cpuset_exit(&o->cpumask); if (ret) td_verror(td, ret, "fio_cpuset_exit"); } /* * do this very late, it will log file closing as well */ if (o->write_iolog_file) write_iolog_close(td); fio_mutex_remove(td->mutex); td->mutex = NULL; td_set_runstate(td, TD_EXITED); /* * Do this last after setting our runstate to exited, so we * know that the stat thread is signaled. */ check_update_rusage(td); return (void *) (uintptr_t) td->error; } /* * We cannot pass the td data into a forked process, so attach the td and * pass it to the thread worker. */ static int fork_main(int shmid, int offset) { struct thread_data *td; void *data, *ret; #if !defined(__hpux) && !defined(CONFIG_NO_SHM) data = shmat(shmid, NULL, 0); if (data == (void *) -1) { int __err = errno; perror("shmat"); return __err; } #else /* * HP-UX inherits shm mappings? */ data = threads; #endif td = data + offset * sizeof(struct thread_data); ret = thread_main(td); shmdt(data); return (int) (uintptr_t) ret; } static void dump_td_info(struct thread_data *td) { log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to " "be stuck. Doing forceful exit of this job.\n", td->o.name, (unsigned long) time_since_now(&td->terminate_time)); } /* * Run over the job map and reap the threads that have exited, if any. */ static void reap_threads(unsigned int *nr_running, unsigned int *t_rate, unsigned int *m_rate) { struct thread_data *td; unsigned int cputhreads, realthreads, pending; int i, status, ret; /* * reap exited threads (TD_EXITED -> TD_REAPED) */ realthreads = pending = cputhreads = 0; for_each_td(td, i) { int flags = 0; /* * ->io_ops is NULL for a thread that has closed its * io engine */ if (td->io_ops && !strcmp(td->io_ops->name, "cpuio")) cputhreads++; else realthreads++; if (!td->pid) { pending++; continue; } if (td->runstate == TD_REAPED) continue; if (td->o.use_thread) { if (td->runstate == TD_EXITED) { td_set_runstate(td, TD_REAPED); goto reaped; } continue; } flags = WNOHANG; if (td->runstate == TD_EXITED) flags = 0; /* * check if someone quit or got killed in an unusual way */ ret = waitpid(td->pid, &status, flags); if (ret < 0) { if (errno == ECHILD) { log_err("fio: pid=%d disappeared %d\n", (int) td->pid, td->runstate); td->sig = ECHILD; td_set_runstate(td, TD_REAPED); goto reaped; } perror("waitpid"); } else if (ret == td->pid) { if (WIFSIGNALED(status)) { int sig = WTERMSIG(status); if (sig != SIGTERM && sig != SIGUSR2) log_err("fio: pid=%d, got signal=%d\n", (int) td->pid, sig); td->sig = sig; td_set_runstate(td, TD_REAPED); goto reaped; } if (WIFEXITED(status)) { if (WEXITSTATUS(status) && !td->error) td->error = WEXITSTATUS(status); td_set_runstate(td, TD_REAPED); goto reaped; } } /* * If the job is stuck, do a forceful timeout of it and * move on. */ if (td->terminate && time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) { dump_td_info(td); td_set_runstate(td, TD_REAPED); goto reaped; } /* * thread is not dead, continue */ pending++; continue; reaped: (*nr_running)--; (*m_rate) -= ddir_rw_sum(td->o.ratemin); (*t_rate) -= ddir_rw_sum(td->o.rate); if (!td->pid) pending--; if (td->error) exit_value++; done_secs += mtime_since_now(&td->epoch) / 1000; profile_td_exit(td); } if (*nr_running == cputhreads && !pending && realthreads) fio_terminate_threads(TERMINATE_ALL); } static int __check_trigger_file(void) { struct stat sb; if (!trigger_file) return 0; if (stat(trigger_file, &sb)) return 0; if (unlink(trigger_file) < 0) log_err("fio: failed to unlink %s: %s\n", trigger_file, strerror(errno)); return 1; } static int trigger_timedout(void) { if (trigger_timeout) return time_since_genesis() >= trigger_timeout; return 0; } void exec_trigger(const char *cmd) { int ret; if (!cmd) return; ret = system(cmd); if (ret == -1) log_err("fio: failed executing %s trigger\n", cmd); } void check_trigger_file(void) { if (__check_trigger_file() || trigger_timedout()) { if (nr_clients) fio_clients_send_trigger(trigger_remote_cmd); else { verify_save_state(); fio_terminate_threads(TERMINATE_ALL); exec_trigger(trigger_cmd); } } } static int fio_verify_load_state(struct thread_data *td) { int ret; if (!td->o.verify_state) return 0; if (is_backend) { void *data; ret = fio_server_get_verify_state(td->o.name, td->thread_number - 1, &data); if (!ret) verify_convert_assign_state(td, data); } else ret = verify_load_state(td, "local"); return ret; } static void do_usleep(unsigned int usecs) { check_for_running_stats(); check_trigger_file(); usleep(usecs); } /* * Main function for kicking off and reaping jobs, as needed. */ static void run_threads(void) { struct thread_data *td; unsigned int i, todo, nr_running, m_rate, t_rate, nr_started; uint64_t spent; if (fio_gtod_offload && fio_start_gtod_thread()) return; fio_idle_prof_init(); set_sig_handlers(); nr_thread = nr_process = 0; for_each_td(td, i) { if (td->o.use_thread) nr_thread++; else nr_process++; } if (output_format == FIO_OUTPUT_NORMAL) { log_info("Starting "); if (nr_thread) log_info("%d thread%s", nr_thread, nr_thread > 1 ? "s" : ""); if (nr_process) { if (nr_thread) log_info(" and "); log_info("%d process%s", nr_process, nr_process > 1 ? "es" : ""); } log_info("\n"); log_info_flush(); } todo = thread_number; nr_running = 0; nr_started = 0; m_rate = t_rate = 0; for_each_td(td, i) { print_status_init(td->thread_number - 1); if (!td->o.create_serialize) continue; if (fio_verify_load_state(td)) goto reap; /* * do file setup here so it happens sequentially, * we don't want X number of threads getting their * client data interspersed on disk */ if (setup_files(td)) { reap: exit_value++; if (td->error) log_err("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error, td->verror); td_set_runstate(td, TD_REAPED); todo--; } else { struct fio_file *f; unsigned int j; /* * for sharing to work, each job must always open * its own files. so close them, if we opened them * for creation */ for_each_file(td, f, j) { if (fio_file_open(f)) td_io_close_file(td, f); } } } /* start idle threads before io threads start to run */ fio_idle_prof_start(); set_genesis_time(); while (todo) { struct thread_data *map[REAL_MAX_JOBS]; struct timeval this_start; int this_jobs = 0, left; /* * create threads (TD_NOT_CREATED -> TD_CREATED) */ for_each_td(td, i) { if (td->runstate != TD_NOT_CREATED) continue; /* * never got a chance to start, killed by other * thread for some reason */ if (td->terminate) { todo--; continue; } if (td->o.start_delay) { spent = utime_since_genesis(); if (td->o.start_delay > spent) continue; } if (td->o.stonewall && (nr_started || nr_running)) { dprint(FD_PROCESS, "%s: stonewall wait\n", td->o.name); break; } init_disk_util(td); td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED); td->update_rusage = 0; /* * Set state to created. Thread will transition * to TD_INITIALIZED when it's done setting up. */ td_set_runstate(td, TD_CREATED); map[this_jobs++] = td; nr_started++; if (td->o.use_thread) { int ret; dprint(FD_PROCESS, "will pthread_create\n"); ret = pthread_create(&td->thread, NULL, thread_main, td); if (ret) { log_err("pthread_create: %s\n", strerror(ret)); nr_started--; break; } ret = pthread_detach(td->thread); if (ret) log_err("pthread_detach: %s", strerror(ret)); } else { pid_t pid; dprint(FD_PROCESS, "will fork\n"); pid = fork(); if (!pid) { int ret = fork_main(shm_id, i); _exit(ret); } else if (i == fio_debug_jobno) *fio_debug_jobp = pid; } dprint(FD_MUTEX, "wait on startup_mutex\n"); if (fio_mutex_down_timeout(startup_mutex, 10)) { log_err("fio: job startup hung? exiting.\n"); fio_terminate_threads(TERMINATE_ALL); fio_abort = 1; nr_started--; break; } dprint(FD_MUTEX, "done waiting on startup_mutex\n"); } /* * Wait for the started threads to transition to * TD_INITIALIZED. */ fio_gettime(&this_start, NULL); left = this_jobs; while (left && !fio_abort) { if (mtime_since_now(&this_start) > JOB_START_TIMEOUT) break; do_usleep(100000); for (i = 0; i < this_jobs; i++) { td = map[i]; if (!td) continue; if (td->runstate == TD_INITIALIZED) { map[i] = NULL; left--; } else if (td->runstate >= TD_EXITED) { map[i] = NULL; left--; todo--; nr_running++; /* work-around... */ } } } if (left) { log_err("fio: %d job%s failed to start\n", left, left > 1 ? "s" : ""); for (i = 0; i < this_jobs; i++) { td = map[i]; if (!td) continue; kill(td->pid, SIGTERM); } break; } /* * start created threads (TD_INITIALIZED -> TD_RUNNING). */ for_each_td(td, i) { if (td->runstate != TD_INITIALIZED) continue; if (in_ramp_time(td)) td_set_runstate(td, TD_RAMP); else td_set_runstate(td, TD_RUNNING); nr_running++; nr_started--; m_rate += ddir_rw_sum(td->o.ratemin); t_rate += ddir_rw_sum(td->o.rate); todo--; fio_mutex_up(td->mutex); } reap_threads(&nr_running, &t_rate, &m_rate); if (todo) do_usleep(100000); } while (nr_running) { reap_threads(&nr_running, &t_rate, &m_rate); do_usleep(10000); } fio_idle_prof_stop(); update_io_ticks(); } static void wait_for_helper_thread_exit(void) { void *ret; helper_exit = 1; pthread_cond_signal(&helper_cond); pthread_join(helper_thread, &ret); } static void free_disk_util(void) { disk_util_prune_entries(); pthread_cond_destroy(&helper_cond); } static void *helper_thread_main(void *data) { int ret = 0; fio_mutex_up(startup_mutex); while (!ret) { uint64_t sec = DISK_UTIL_MSEC / 1000; uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000; struct timespec ts; struct timeval tv; gettimeofday(&tv, NULL); ts.tv_sec = tv.tv_sec + sec; ts.tv_nsec = (tv.tv_usec * 1000) + nsec; if (ts.tv_nsec >= 1000000000ULL) { ts.tv_nsec -= 1000000000ULL; ts.tv_sec++; } pthread_cond_timedwait(&helper_cond, &helper_lock, &ts); ret = update_io_ticks(); if (helper_do_stat) { helper_do_stat = 0; __show_running_run_stats(); } if (!is_backend) print_thread_status(); } return NULL; } static int create_helper_thread(void) { int ret; setup_disk_util(); pthread_cond_init(&helper_cond, NULL); pthread_mutex_init(&helper_lock, NULL); ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL); if (ret) { log_err("Can't create helper thread: %s\n", strerror(ret)); return 1; } dprint(FD_MUTEX, "wait on startup_mutex\n"); fio_mutex_down(startup_mutex); dprint(FD_MUTEX, "done waiting on startup_mutex\n"); return 0; } int fio_backend(void) { struct thread_data *td; int i; if (exec_profile) { if (load_profile(exec_profile)) return 1; free(exec_profile); exec_profile = NULL; } if (!thread_number) return 0; if (write_bw_log) { struct log_params p = { .log_type = IO_LOG_TYPE_BW, }; setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log"); setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log"); setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log"); } startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED); if (startup_mutex == NULL) return 1; set_genesis_time(); stat_init(); create_helper_thread(); cgroup_list = smalloc(sizeof(*cgroup_list)); INIT_FLIST_HEAD(cgroup_list); run_threads(); wait_for_helper_thread_exit(); if (!fio_abort) { __show_run_stats(); if (write_bw_log) { for (i = 0; i < DDIR_RWDIR_CNT; i++) { struct io_log *log = agg_io_log[i]; flush_log(log); free_log(log); } } } for_each_td(td, i) { fio_options_free(td); if (td->rusage_sem) { fio_mutex_remove(td->rusage_sem); td->rusage_sem = NULL; } } free_disk_util(); cgroup_kill(cgroup_list); sfree(cgroup_list); sfree(cgroup_mnt); fio_mutex_remove(startup_mutex); stat_exit(); return exit_value; }