/* * This file contains job initialization and setup functions. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fio.h" #include "parse.h" #define FIO_RANDSEED (0xb1899bedUL) #define td_var_offset(var) ((size_t) &((struct thread_data *)0)->var) static int str_rw_cb(void *, const char *); static int str_ioengine_cb(void *, const char *); static int str_mem_cb(void *, const char *); static int str_verify_cb(void *, const char *); static int str_lockmem_cb(void *, unsigned long *); #ifdef FIO_HAVE_IOPRIO static int str_prio_cb(void *, unsigned int *); static int str_prioclass_cb(void *, unsigned int *); #endif static int str_exitall_cb(void); static int str_cpumask_cb(void *, unsigned int *); #define __stringify_1(x) #x #define __stringify(x) __stringify_1(x) /* * Map of job/command line options */ static struct fio_option options[] = { { .name = "name", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(name), .help = "Name of this job", }, { .name = "directory", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(directory), .help = "Directory to store files in", }, { .name = "filename", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(filename), .help = "Force the use of a specific file", }, { .name = "rw", .type = FIO_OPT_STR, .cb = str_rw_cb, .help = "IO direction (read, write, rw, etc)", .def = "read", }, { .name = "ioengine", .type = FIO_OPT_STR, .cb = str_ioengine_cb, .help = "IO engine to use (sync, aio, etc)", .def = "sync", }, { .name = "mem", .type = FIO_OPT_STR, .cb = str_mem_cb, .help = "Backing type for IO buffers (malloc, shm, etc)", .def = "malloc", }, { .name = "verify", .type = FIO_OPT_STR, .cb = str_verify_cb, .help = "Verify sum function (md5 or crc32)", .def = "0", }, { .name = "write_iolog", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(write_iolog_file), .help = "Store IO pattern to file", }, { .name = "read_iolog", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(read_iolog_file), .help = "Playback IO pattern from file", }, { .name = "exec_prerun", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(exec_prerun), .help = "Execute this file prior to running job", }, { .name = "exec_postrun", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(exec_postrun), .help = "Execute this file after running job", }, #ifdef FIO_HAVE_IOSCHED_SWITCH { .name = "ioscheduler", .type = FIO_OPT_STR_STORE, .off1 = td_var_offset(ioscheduler), .help = "Use this IO scheduler on the backing device", }, #endif { .name = "size", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(total_file_size), .help = "Size of device or file", }, { .name = "bs", .type = FIO_OPT_STR_VAL_INT, .off1 = td_var_offset(bs[DDIR_READ]), .off2 = td_var_offset(bs[DDIR_WRITE]), .help = "Block size unit", .def = "4k", }, { .name = "offset", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(start_offset), .help = "Start IO from this offset", .def = "0", }, { .name = "zonesize", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(zone_size), .help = "Give size of an IO zone", .def = "0", }, { .name = "zoneskip", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(zone_skip), .help = "Space between IO zones", .def = "0", }, { .name = "lockmem", .type = FIO_OPT_STR_VAL, .cb = str_lockmem_cb, .help = "Lock down this amount of memory", .def = "0", }, { .name = "bsrange", .type = FIO_OPT_RANGE, .off1 = td_var_offset(min_bs[DDIR_READ]), .off2 = td_var_offset(max_bs[DDIR_READ]), .off3 = td_var_offset(min_bs[DDIR_WRITE]), .off4 = td_var_offset(max_bs[DDIR_WRITE]), .help = "Set block size range", }, { .name = "randrepeat", .type = FIO_OPT_INT, .off1 = td_var_offset(rand_repeatable), .help = "Use repeatable random IO pattern", .def = "1", }, { .name = "nrfiles", .type = FIO_OPT_INT, .off1 = td_var_offset(nr_files), .help = "Split job workload between this number of files", .def = "1", }, { .name = "iodepth", .type = FIO_OPT_INT, .off1 = td_var_offset(iodepth), .help = "Amount of IO buffers to keep in flight", .def = "1", }, { .name = "fsync", .type = FIO_OPT_INT, .off1 = td_var_offset(fsync_blocks), .help = "Issue fsync for writes every given number of blocks", .def = "0", }, { .name = "rwmixcycle", .type = FIO_OPT_INT, .off1 = td_var_offset(rwmixcycle), .help = "Cycle period for mixed read/write workloads (msec)", .def = "500", }, { .name = "rwmixread", .type = FIO_OPT_INT, .off1 = td_var_offset(rwmixread), .maxval = 100, .help = "Percentage of mixed workload that is reads", .def = "50", }, { .name = "rwmixwrite", .type = FIO_OPT_INT, .off1 = td_var_offset(rwmixwrite), .maxval = 100, .help = "Percentage of mixed workload that is writes", .def = "50", }, { .name = "nice", .type = FIO_OPT_INT, .off1 = td_var_offset(nice), .help = "Set job CPU nice value", .maxval = 20, .def = "0", }, #ifdef FIO_HAVE_IOPRIO { .name = "prio", .type = FIO_OPT_INT, .cb = str_prio_cb, .help = "Set job IO priority value", }, { .name = "prioclass", .type = FIO_OPT_INT, .cb = str_prioclass_cb, .help = "Set job IO priority class", }, #endif { .name = "thinktime", .type = FIO_OPT_INT, .off1 = td_var_offset(thinktime), .help = "Idle time between IO buffers", .def = "0", }, { .name = "thinktime_blocks", .type = FIO_OPT_INT, .off1 = td_var_offset(thinktime_blocks), .help = "IO buffer period between 'thinktime'", .def = "1", }, { .name = "rate", .type = FIO_OPT_INT, .off1 = td_var_offset(rate), .help = "Set bandwidth rate", }, { .name = "ratemin", .type = FIO_OPT_INT, .off1 = td_var_offset(ratemin), .help = "The bottom limit accepted", }, { .name = "ratecycle", .type = FIO_OPT_INT, .off1 = td_var_offset(ratecycle), .name = "Window average for rate limits (msec)", .def = "1000", }, { .name = "startdelay", .type = FIO_OPT_INT, .off1 = td_var_offset(start_delay), .help = "Only start job when this period has passed", .def = "0", }, { .name = "timeout", .type = FIO_OPT_STR_VAL_TIME, .off1 = td_var_offset(timeout), .help = "Stop workload when this amount of time has passed", .def = "0", }, { .name = "invalidate", .type = FIO_OPT_INT, .off1 = td_var_offset(invalidate_cache), .help = "Invalidate buffer/page cache prior to running job", .def = "1", }, { .name = "sync", .type = FIO_OPT_INT, .off1 = td_var_offset(sync_io), .help = "Use O_SYNC for buffered writes", .def = "0", }, { .name = "bwavgtime", .type = FIO_OPT_INT, .off1 = td_var_offset(bw_avg_time), .help = "Time window over which to calculate bandwidth (msec)", .def = "500", }, { .name = "create_serialize", .type = FIO_OPT_INT, .off1 = td_var_offset(create_serialize), .help = "Serialize creating of job files", .def = "1", }, { .name = "create_fsync", .type = FIO_OPT_INT, .off1 = td_var_offset(create_fsync), .help = "Fsync file after creation", .def = "1", }, { .name = "loops", .type = FIO_OPT_INT, .off1 = td_var_offset(loops), .help = "Number of times to run the job", .def = "1", }, { .name = "numjobs", .type = FIO_OPT_INT, .off1 = td_var_offset(numjobs), .help = "Duplicate this job this many times", .def = "1", }, { .name = "cpuload", .type = FIO_OPT_INT, .off1 = td_var_offset(cpuload), .help = "Use this percentage of CPU", }, { .name = "cpuchunks", .type = FIO_OPT_INT, .off1 = td_var_offset(cpucycle), .help = "Length of the CPU burn cycles", }, { .name = "direct", .type = FIO_OPT_INT, .off1 = td_var_offset(odirect), .help = "Use O_DIRECT IO", .def = "1", }, { .name = "overwrite", .type = FIO_OPT_INT, .off1 = td_var_offset(overwrite), .help = "When writing, set whether to overwrite current data", .def = "0", }, #ifdef FIO_HAVE_CPU_AFFINITY { .name = "cpumask", .type = FIO_OPT_INT, .cb = str_cpumask_cb, .help = "CPU affinity mask", }, #endif { .name = "end_fsync", .type = FIO_OPT_INT, .off1 = td_var_offset(end_fsync), .help = "Include fsync at the end of job", .def = "0", }, { .name = "unlink", .type = FIO_OPT_INT, .off1 = td_var_offset(unlink), .help = "Unlink created files after job has completed", .def = "1", }, { .name = "exitall", .type = FIO_OPT_STR_SET, .cb = str_exitall_cb, .help = "Terminate all jobs when one exits", }, { .name = "stonewall", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(stonewall), .help = "Insert a hard barrier between this job and previous", }, { .name = "thread", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(thread), .help = "Use threads instead of forks", }, { .name = "write_bw_log", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(write_bw_log), .help = "Write log of bandwidth during run", }, { .name = "write_lat_log", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(write_lat_log), .help = "Write log of latency during run", }, { .name = "norandommap", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(norandommap), .help = "Accept potential duplicate random blocks", }, { .name = "bs_unaligned", .type = FIO_OPT_STR_SET, .off1 = td_var_offset(bs_unaligned), .help = "Don't sector align IO buffer sizes", }, { .name = "hugepage-size", .type = FIO_OPT_STR_VAL, .off1 = td_var_offset(hugepage_size), .help = "When using hugepages, specify size of each page", .def = __stringify(FIO_HUGE_PAGE), }, { .name = NULL, }, }; #define FIO_JOB_OPTS (sizeof(options) / sizeof(struct fio_option)) #define FIO_CMD_OPTS (16) #define FIO_GETOPT_JOB (0x89988998) /* * Command line options. These will contain the above, plus a few * extra that only pertain to fio itself and not jobs. */ static struct option long_options[FIO_JOB_OPTS + FIO_CMD_OPTS] = { { .name = "output", .has_arg = required_argument, .val = 'o', }, { .name = "timeout", .has_arg = required_argument, .val = 't', }, { .name = "latency-log", .has_arg = required_argument, .val = 'l', }, { .name = "bandwidth-log", .has_arg = required_argument, .val = 'b', }, { .name = "minimal", .has_arg = optional_argument, .val = 'm', }, { .name = "version", .has_arg = no_argument, .val = 'v', }, { .name = "help", .has_arg = no_argument, .val = 'h', }, { .name = "cmdhelp", .has_arg = required_argument, .val = 'c', }, { .name = NULL, }, }; static int def_timeout = 0; static char fio_version_string[] = "fio 1.11"; static char **ini_file; static int max_jobs = MAX_JOBS; struct thread_data def_thread; struct thread_data *threads = NULL; int exitall_on_terminate = 0; int terse_output = 0; unsigned long long mlock_size = 0; FILE *f_out = NULL; FILE *f_err = NULL; static int write_lat_log = 0; static int write_bw_log = 0; /* * Return a free job structure. */ static struct thread_data *get_new_job(int global, struct thread_data *parent) { struct thread_data *td; if (global) return &def_thread; if (thread_number >= max_jobs) return NULL; td = &threads[thread_number++]; *td = *parent; td->thread_number = thread_number; return td; } static void put_job(struct thread_data *td) { if (td == &def_thread) return; memset(&threads[td->thread_number - 1], 0, sizeof(*td)); thread_number--; } /* * Lazy way of fixing up options that depend on each other. We could also * define option callback handlers, but this is easier. */ static void fixup_options(struct thread_data *td) { if (!td->rwmixread && td->rwmixwrite) td->rwmixread = 100 - td->rwmixwrite; if (td->write_iolog_file && td->read_iolog_file) { log_err("fio: read iolog overrides write_iolog\n"); free(td->write_iolog_file); td->write_iolog_file = NULL; } if (td->io_ops->flags & FIO_SYNCIO) td->iodepth = 1; else { if (!td->iodepth) td->iodepth = td->nr_files; } /* * only really works for sequential io for now, and with 1 file */ if (td->zone_size && !td->sequential && td->nr_files == 1) td->zone_size = 0; /* * Reads can do overwrites, we always need to pre-create the file */ if (td_read(td) || td_rw(td)) td->overwrite = 1; if (!td->min_bs[DDIR_READ]) td->min_bs[DDIR_READ]= td->bs[DDIR_READ]; if (!td->max_bs[DDIR_READ]) td->max_bs[DDIR_READ] = td->bs[DDIR_READ]; if (!td->min_bs[DDIR_WRITE]) td->min_bs[DDIR_WRITE]= td->bs[DDIR_WRITE]; if (!td->max_bs[DDIR_WRITE]) td->max_bs[DDIR_WRITE] = td->bs[DDIR_WRITE]; td->rw_min_bs = min(td->min_bs[DDIR_READ], td->min_bs[DDIR_WRITE]); if (td_read(td) && !td_rw(td)) td->verify = 0; if (td->norandommap && td->verify != VERIFY_NONE) { log_err("fio: norandommap given, verify disabled\n"); td->verify = VERIFY_NONE; } if (td->bs_unaligned && (td->odirect || td->io_ops->flags & FIO_RAWIO)) log_err("fio: bs_unaligned may not work with raw io\n"); /* * O_DIRECT and char doesn't mix, clear that flag if necessary. */ if (td->filetype == FIO_TYPE_CHAR && td->odirect) td->odirect = 0; } /* * This function leaks the buffer */ static char *to_kmg(unsigned int val) { char *buf = malloc(32); char post[] = { 0, 'K', 'M', 'G', 'P', 0 }; char *p = post; do { if (val & 1023) break; val >>= 10; p++; } while (*p); snprintf(buf, 31, "%u%c", val, *p); return buf; } /* * Adds a job to the list of things todo. Sanitizes the various options * to make sure we don't have conflicts, and initializes various * members of td. */ static int add_job(struct thread_data *td, const char *jobname, int job_add_num) { const char *ddir_str[] = { "read", "write", "randread", "randwrite", "rw", NULL, "randrw" }; struct stat sb; int numjobs, ddir, i; struct fio_file *f; /* * the def_thread is just for options, it's not a real job */ if (td == &def_thread) return 0; assert(td->io_ops); if (td->odirect) td->io_ops->flags |= FIO_RAWIO; td->filetype = FIO_TYPE_FILE; if (!stat(jobname, &sb)) { if (S_ISBLK(sb.st_mode)) td->filetype = FIO_TYPE_BD; else if (S_ISCHR(sb.st_mode)) td->filetype = FIO_TYPE_CHAR; } fixup_options(td); if (td->filename) td->nr_uniq_files = 1; else td->nr_uniq_files = td->nr_files; if (td->filetype == FIO_TYPE_FILE || td->filename) { char tmp[PATH_MAX]; int len = 0; if (td->directory && td->directory[0] != '\0') len = sprintf(tmp, "%s/", td->directory); td->files = malloc(sizeof(struct fio_file) * td->nr_files); for_each_file(td, f, i) { memset(f, 0, sizeof(*f)); f->fd = -1; if (td->filename) sprintf(tmp + len, "%s", td->filename); else sprintf(tmp + len, "%s.%d.%d", jobname, td->thread_number, i); f->file_name = strdup(tmp); } } else { td->nr_files = 1; td->files = malloc(sizeof(struct fio_file)); f = &td->files[0]; memset(f, 0, sizeof(*f)); f->fd = -1; f->file_name = strdup(jobname); } for_each_file(td, f, i) { f->file_size = td->total_file_size / td->nr_files; f->file_offset = td->start_offset; } fio_sem_init(&td->mutex, 0); td->clat_stat[0].min_val = td->clat_stat[1].min_val = ULONG_MAX; td->slat_stat[0].min_val = td->slat_stat[1].min_val = ULONG_MAX; td->bw_stat[0].min_val = td->bw_stat[1].min_val = ULONG_MAX; if (td->stonewall && td->thread_number > 1) groupid++; td->groupid = groupid; if (setup_rate(td)) goto err; if (td->write_lat_log) { setup_log(&td->slat_log); setup_log(&td->clat_log); } if (td->write_bw_log) setup_log(&td->bw_log); if (!td->name) td->name = strdup(jobname); ddir = td->ddir + (!td->sequential << 1) + (td->iomix << 2); if (!terse_output) { if (!job_add_num) { if (td->io_ops->flags & FIO_CPUIO) fprintf(f_out, "%s: ioengine=cpu, cpuload=%u, cpucycle=%u\n", td->name, td->cpuload, td->cpucycle); else { char *c1, *c2, *c3, *c4; c1 = to_kmg(td->min_bs[DDIR_READ]); c2 = to_kmg(td->max_bs[DDIR_READ]); c3 = to_kmg(td->min_bs[DDIR_WRITE]); c4 = to_kmg(td->max_bs[DDIR_WRITE]); fprintf(f_out, "%s: (g=%d): rw=%s, odir=%u, bs=%s-%s/%s-%s, rate=%u, ioengine=%s, iodepth=%u\n", td->name, td->groupid, ddir_str[ddir], td->odirect, c1, c2, c3, c4, td->rate, td->io_ops->name, td->iodepth); free(c1); free(c2); free(c3); free(c4); } } else if (job_add_num == 1) fprintf(f_out, "...\n"); } /* * recurse add identical jobs, clear numjobs and stonewall options * as they don't apply to sub-jobs */ numjobs = td->numjobs; while (--numjobs) { struct thread_data *td_new = get_new_job(0, td); if (!td_new) goto err; td_new->numjobs = 1; td_new->stonewall = 0; job_add_num = numjobs - 1; if (add_job(td_new, jobname, job_add_num)) goto err; } return 0; err: put_job(td); return -1; } /* * Initialize the various random states we need (random io, block size ranges, * read/write mix, etc). */ int init_random_state(struct thread_data *td) { unsigned long seeds[4]; int fd, num_maps, blocks, i; struct fio_file *f; if (td->io_ops->flags & FIO_CPUIO) return 0; fd = open("/dev/urandom", O_RDONLY); if (fd == -1) { td_verror(td, errno); return 1; } if (read(fd, seeds, sizeof(seeds)) < (int) sizeof(seeds)) { td_verror(td, EIO); close(fd); return 1; } close(fd); os_random_seed(seeds[0], &td->bsrange_state); os_random_seed(seeds[1], &td->verify_state); os_random_seed(seeds[2], &td->rwmix_state); if (td->sequential) return 0; if (td->rand_repeatable) seeds[3] = FIO_RANDSEED; if (!td->norandommap) { for_each_file(td, f, i) { blocks = (f->file_size + td->rw_min_bs - 1) / td->rw_min_bs; num_maps = (blocks + BLOCKS_PER_MAP-1)/ BLOCKS_PER_MAP; f->file_map = malloc(num_maps * sizeof(long)); f->num_maps = num_maps; memset(f->file_map, 0, num_maps * sizeof(long)); } } os_random_seed(seeds[3], &td->random_state); return 0; } static void fill_cpu_mask(os_cpu_mask_t cpumask, int cpu) { #ifdef FIO_HAVE_CPU_AFFINITY unsigned int i; CPU_ZERO(&cpumask); for (i = 0; i < sizeof(int) * 8; i++) { if ((1 << i) & cpu) CPU_SET(i, &cpumask); } #endif } static int is_empty_or_comment(char *line) { unsigned int i; for (i = 0; i < strlen(line); i++) { if (line[i] == ';') return 1; if (!isspace(line[i]) && !iscntrl(line[i])) return 0; } return 1; } static int str_rw_cb(void *data, const char *mem) { struct thread_data *td = data; if (!strncmp(mem, "read", 4) || !strncmp(mem, "0", 1)) { td->ddir = DDIR_READ; td->sequential = 1; return 0; } else if (!strncmp(mem, "randread", 8)) { td->ddir = DDIR_READ; td->sequential = 0; return 0; } else if (!strncmp(mem, "write", 5) || !strncmp(mem, "1", 1)) { td->ddir = DDIR_WRITE; td->sequential = 1; return 0; } else if (!strncmp(mem, "randwrite", 9)) { td->ddir = DDIR_WRITE; td->sequential = 0; return 0; } else if (!strncmp(mem, "rw", 2)) { td->ddir = DDIR_READ; td->iomix = 1; td->sequential = 1; return 0; } else if (!strncmp(mem, "randrw", 6)) { td->ddir = DDIR_READ; td->iomix = 1; td->sequential = 0; return 0; } log_err("fio: data direction: read, write, randread, randwrite, rw, randrw\n"); return 1; } static int str_verify_cb(void *data, const char *mem) { struct thread_data *td = data; if (!strncmp(mem, "0", 1)) { td->verify = VERIFY_NONE; return 0; } else if (!strncmp(mem, "md5", 3) || !strncmp(mem, "1", 1)) { td->verify = VERIFY_MD5; return 0; } else if (!strncmp(mem, "crc32", 5)) { td->verify = VERIFY_CRC32; return 0; } log_err("fio: verify types: md5, crc32\n"); return 1; } /* * Check if mmap/mmaphuge has a :/foo/bar/file at the end. If so, return that. */ static char *get_mmap_file(const char *str) { char *p = strstr(str, ":"); if (!p) return NULL; p++; strip_blank_front(&p); strip_blank_end(p); return strdup(p); } static int str_mem_cb(void *data, const char *mem) { struct thread_data *td = data; if (!strncmp(mem, "malloc", 6)) { td->mem_type = MEM_MALLOC; return 0; } else if (!strncmp(mem, "mmaphuge", 8)) { #ifdef FIO_HAVE_HUGETLB /* * mmaphuge must be appended with the actual file */ td->mmapfile = get_mmap_file(mem); if (!td->mmapfile) { log_err("fio: mmaphuge:/path/to/file\n"); return 1; } td->mem_type = MEM_MMAPHUGE; return 0; #else log_err("fio: mmaphuge not available\n"); return 1; #endif } else if (!strncmp(mem, "mmap", 4)) { /* * Check if the user wants file backed memory. It's ok * if there's no file given, we'll just use anon mamp then. */ td->mmapfile = get_mmap_file(mem); td->mem_type = MEM_MMAP; return 0; } else if (!strncmp(mem, "shmhuge", 7)) { #ifdef FIO_HAVE_HUGETLB td->mem_type = MEM_SHMHUGE; return 0; #else log_err("fio: shmhuge not available\n"); return 1; #endif } else if (!strncmp(mem, "shm", 3)) { td->mem_type = MEM_SHM; return 0; } log_err("fio: mem type: malloc, shm, shmhuge, mmap, mmaphuge\n"); return 1; } static int str_ioengine_cb(void *data, const char *str) { struct thread_data *td = data; td->io_ops = load_ioengine(td, str); if (td->io_ops) return 0; log_err("fio: ioengine= libaio, posixaio, sync, mmap, sgio, splice, cpu, null\n"); log_err("fio: or specify path to dynamic ioengine module\n"); return 1; } static int str_lockmem_cb(void fio_unused *data, unsigned long *val) { mlock_size = *val; return 0; } #ifdef FIO_HAVE_IOPRIO static int str_prioclass_cb(void *data, unsigned int *val) { struct thread_data *td = data; td->ioprio |= *val << IOPRIO_CLASS_SHIFT; return 0; } static int str_prio_cb(void *data, unsigned int *val) { struct thread_data *td = data; td->ioprio |= *val; return 0; } #endif static int str_exitall_cb(void) { exitall_on_terminate = 1; return 0; } static int str_cpumask_cb(void *data, unsigned int *val) { struct thread_data *td = data; fill_cpu_mask(td->cpumask, *val); return 0; } /* * This is our [ini] type file parser. */ static int parse_jobs_ini(char *file, int stonewall_flag) { unsigned int global; struct thread_data *td; char *string, *name; fpos_t off; FILE *f; char *p; int ret = 0, stonewall; f = fopen(file, "r"); if (!f) { perror("fopen job file"); return 1; } string = malloc(4096); name = malloc(256); memset(name, 0, 256); stonewall = stonewall_flag; do { p = fgets(string, 4095, f); if (!p) break; if (is_empty_or_comment(p)) continue; if (sscanf(p, "[%255s]", name) != 1) continue; global = !strncmp(name, "global", 6); name[strlen(name) - 1] = '\0'; td = get_new_job(global, &def_thread); if (!td) { ret = 1; break; } /* * Seperate multiple job files by a stonewall */ if (!global && stonewall) { td->stonewall = stonewall; stonewall = 0; } fgetpos(f, &off); while ((p = fgets(string, 4096, f)) != NULL) { if (is_empty_or_comment(p)) continue; strip_blank_front(&p); if (p[0] == '[') break; strip_blank_end(p); fgetpos(f, &off); /* * Don't break here, continue parsing options so we * dump all the bad ones. Makes trial/error fixups * easier on the user. */ ret |= parse_option(p, options, td); } if (!ret) { fsetpos(f, &off); ret = add_job(td, name, 0); } else { log_err("fio: job %s dropped\n", name); put_job(td); } } while (!ret); free(string); free(name); fclose(f); return ret; } static int fill_def_thread(void) { memset(&def_thread, 0, sizeof(def_thread)); if (fio_getaffinity(getpid(), &def_thread.cpumask) == -1) { perror("sched_getaffinity"); return 1; } /* * fill default options */ fill_default_options(&def_thread, options); def_thread.timeout = def_timeout; def_thread.write_bw_log = write_bw_log; def_thread.write_lat_log = write_lat_log; #ifdef FIO_HAVE_DISK_UTIL def_thread.do_disk_util = 1; #endif return 0; } static void usage(void) { printf("%s\n", fio_version_string); printf("\t--output\tWrite output to file\n"); printf("\t--timeout\tRuntime in seconds\n"); printf("\t--latency-log\tGenerate per-job latency logs\n"); printf("\t--bandwidth-log\tGenerate per-job bandwidth logs\n"); printf("\t--minimal\tMinimal (terse) output\n"); printf("\t--version\tPrint version info and exit\n"); printf("\t--help\t\tPrint this page\n"); printf("\t--cmdhelp=cmd\tPrint command help, \"all\" for all of them\n"); } static int parse_cmd_line(int argc, char *argv[]) { struct thread_data *td = NULL; int c, ini_idx = 0, lidx, ret; while ((c = getopt_long(argc, argv, "", long_options, &lidx)) != -1) { switch (c) { case 't': def_timeout = atoi(optarg); break; case 'l': write_lat_log = 1; break; case 'w': write_bw_log = 1; break; case 'o': f_out = fopen(optarg, "w+"); if (!f_out) { perror("fopen output"); exit(1); } f_err = f_out; break; case 'm': terse_output = 1; break; case 'h': usage(); exit(0); case 'c': ret = show_cmd_help(options, optarg); exit(ret); case 'v': printf("%s\n", fio_version_string); exit(0); case FIO_GETOPT_JOB: { const char *opt = long_options[lidx].name; char *val = optarg; if (!strncmp(opt, "name", 4) && td) { ret = add_job(td, td->name ?: "fio", 0); if (ret) { put_job(td); return 0; } td = NULL; } if (!td) { int global = !strncmp(val, "global", 6); td = get_new_job(global, &def_thread); if (!td) return 0; } ret = parse_cmd_option(opt, val, options, td); if (ret) { log_err("fio: job dropped\n"); put_job(td); td = NULL; } break; } default: break; } } if (td) { ret = add_job(td, td->name ?: "fio", 0); if (ret) put_job(td); } while (optind < argc) { ini_idx++; ini_file = realloc(ini_file, ini_idx * sizeof(char *)); ini_file[ini_idx - 1] = strdup(argv[optind]); optind++; } return ini_idx; } static void free_shm(void) { struct shmid_ds sbuf; if (threads) { shmdt((void *) threads); threads = NULL; shmctl(shm_id, IPC_RMID, &sbuf); } } /* * The thread area is shared between the main process and the job * threads/processes. So setup a shared memory segment that will hold * all the job info. */ static int setup_thread_area(void) { /* * 1024 is too much on some machines, scale max_jobs if * we get a failure that looks like too large a shm segment */ do { size_t size = max_jobs * sizeof(struct thread_data); shm_id = shmget(0, size, IPC_CREAT | 0600); if (shm_id != -1) break; if (errno != EINVAL) { perror("shmget"); break; } max_jobs >>= 1; } while (max_jobs); if (shm_id == -1) return 1; threads = shmat(shm_id, NULL, 0); if (threads == (void *) -1) { perror("shmat"); return 1; } atexit(free_shm); return 0; } /* * Copy the fio options into the long options map, so we mirror * job and cmd line options. */ static void dupe_job_options(void) { struct fio_option *o; unsigned int i; i = 0; while (long_options[i].name) i++; o = &options[0]; while (o->name) { long_options[i].name = o->name; long_options[i].val = FIO_GETOPT_JOB; if (o->type == FIO_OPT_STR_SET) long_options[i].has_arg = no_argument; else long_options[i].has_arg = required_argument; i++; o++; assert(i < FIO_JOB_OPTS + FIO_CMD_OPTS); } } int parse_options(int argc, char *argv[]) { int job_files, i; f_out = stdout; f_err = stderr; dupe_job_options(); if (setup_thread_area()) return 1; if (fill_def_thread()) return 1; job_files = parse_cmd_line(argc, argv); for (i = 0; i < job_files; i++) { if (fill_def_thread()) return 1; if (parse_jobs_ini(ini_file[i], i)) return 1; free(ini_file[i]); } free(ini_file); if (!thread_number) { log_err("No jobs defined(s)\n"); return 1; } return 0; }