#include #include #include #include #include #include #include "fio.h" #include "hash.h" /* * Change this define to play with the timeout handling */ #undef FIO_USE_TIMEOUT struct io_completion_data { int nr; /* input */ int error; /* output */ unsigned long bytes_done[2]; /* output */ struct timeval time; /* output */ }; /* * The ->file_map[] contains a map of blocks we have or have not done io * to yet. Used to make sure we cover the entire range in a fair fashion. */ static int random_map_free(struct fio_file *f, const unsigned long long block) { unsigned int idx = RAND_MAP_IDX(f, block); unsigned int bit = RAND_MAP_BIT(f, block); dprint(FD_RANDOM, "free: b=%llu, idx=%u, bit=%u\n", block, idx, bit); return (f->file_map[idx] & (1 << bit)) == 0; } /* * Mark a given offset as used in the map. */ static void mark_random_map(struct thread_data *td, struct io_u *io_u) { unsigned int min_bs = td->o.rw_min_bs; struct fio_file *f = io_u->file; unsigned long long block; unsigned int blocks, nr_blocks; block = (io_u->offset - f->file_offset) / (unsigned long long) min_bs; nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; blocks = 0; while (nr_blocks) { unsigned int this_blocks, mask; unsigned int idx, bit; /* * If we have a mixed random workload, we may * encounter blocks we already did IO to. */ if ((td->o.ddir_nr == 1) && !random_map_free(f, block)) { if (!blocks) blocks = 1; break; } idx = RAND_MAP_IDX(f, block); bit = RAND_MAP_BIT(f, block); fio_assert(td, idx < f->num_maps); this_blocks = nr_blocks; if (this_blocks + bit > BLOCKS_PER_MAP) this_blocks = BLOCKS_PER_MAP - bit; if (this_blocks == BLOCKS_PER_MAP) mask = -1U; else mask = ((1U << this_blocks) - 1) << bit; f->file_map[idx] |= mask; nr_blocks -= this_blocks; blocks += this_blocks; block += this_blocks; } if ((blocks * min_bs) < io_u->buflen) io_u->buflen = blocks * min_bs; } static unsigned long long last_block(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir) { unsigned long long max_blocks; unsigned long long max_size; /* * Hmm, should we make sure that ->io_size <= ->real_file_size? */ max_size = f->io_size; if (max_size > f->real_file_size) max_size = f->real_file_size; max_blocks = max_size / (unsigned long long) td->o.min_bs[ddir]; if (!max_blocks) return 0; return max_blocks; } /* * Return the next free block in the map. */ static int get_next_free_block(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir, unsigned long long *b) { unsigned long long min_bs = td->o.rw_min_bs; int i; i = f->last_free_lookup; *b = (i * BLOCKS_PER_MAP); while ((*b) * min_bs < f->real_file_size) { if (f->file_map[i] != (unsigned int) -1) { *b += ffz(f->file_map[i]); if (*b > last_block(td, f, ddir)) break; f->last_free_lookup = i; return 0; } *b += BLOCKS_PER_MAP; i++; } dprint(FD_IO, "failed finding a free block\n"); return 1; } static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, enum fio_ddir ddir, unsigned long long *b) { unsigned long long r; int loops = 5; do { r = os_random_long(&td->random_state); dprint(FD_RANDOM, "off rand %llu\n", r); *b = (last_block(td, f, ddir) - 1) * (r / ((unsigned long long) OS_RAND_MAX + 1.0)); /* * if we are not maintaining a random map, we are done. */ if (!file_randommap(td, f)) return 0; /* * calculate map offset and check if it's free */ if (random_map_free(f, *b)) return 0; dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", *b); } while (--loops); /* * we get here, if we didn't suceed in looking up a block. generate * a random start offset into the filemap, and find the first free * block from there. */ loops = 10; do { f->last_free_lookup = (f->num_maps - 1) * (r / (OS_RAND_MAX + 1.0)); if (!get_next_free_block(td, f, ddir, b)) return 0; r = os_random_long(&td->random_state); } while (--loops); /* * that didn't work either, try exhaustive search from the start */ f->last_free_lookup = 0; return get_next_free_block(td, f, ddir, b); } /* * For random io, generate a random new block and see if it's used. Repeat * until we find a free one. For sequential io, just return the end of * the last io issued. */ static int get_next_offset(struct thread_data *td, struct io_u *io_u) { struct fio_file *f = io_u->file; unsigned long long b; enum fio_ddir ddir = io_u->ddir; if (td_random(td) && (td->o.ddir_nr && !--td->ddir_nr)) { td->ddir_nr = td->o.ddir_nr; if (get_next_rand_offset(td, f, ddir, &b)) return 1; } else { if (f->last_pos >= f->real_file_size) { if (!td_random(td) || get_next_rand_offset(td, f, ddir, &b)) return 1; } else b = (f->last_pos - f->file_offset) / td->o.min_bs[ddir]; } io_u->offset = b * td->o.min_bs[ddir]; if (io_u->offset >= f->io_size) { dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n", io_u->offset, f->io_size); return 1; } io_u->offset += f->file_offset; if (io_u->offset >= f->real_file_size) { dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", io_u->offset, f->real_file_size); return 1; } return 0; } static inline int is_power_of_2(unsigned int val) { return (val != 0 && ((val & (val - 1)) == 0)); } static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u) { const int ddir = io_u->ddir; unsigned int uninitialized_var(buflen); unsigned int minbs, maxbs; long r; minbs = td->o.min_bs[ddir]; maxbs = td->o.max_bs[ddir]; if (minbs == maxbs) buflen = minbs; else { r = os_random_long(&td->bsrange_state); if (!td->o.bssplit_nr) { buflen = 1 + (unsigned int) ((double) maxbs * (r / (OS_RAND_MAX + 1.0))); if (buflen < minbs) buflen = minbs; } else { long perc = 0; unsigned int i; for (i = 0; i < td->o.bssplit_nr; i++) { struct bssplit *bsp = &td->o.bssplit[i]; buflen = bsp->bs; perc += bsp->perc; if (r <= ((OS_RAND_MAX / 100L) * perc)) break; } } if (!td->o.bs_unaligned && is_power_of_2(minbs)) buflen = (buflen + minbs - 1) & ~(minbs - 1); } if (io_u->offset + buflen > io_u->file->real_file_size) { dprint(FD_IO, "lower buflen %u -> %u (ddir=%d)\n", buflen, minbs, ddir); buflen = minbs; } return buflen; } static void set_rwmix_bytes(struct thread_data *td) { unsigned int diff; /* * we do time or byte based switch. this is needed because * buffered writes may issue a lot quicker than they complete, * whereas reads do not. */ diff = td->o.rwmix[td->rwmix_ddir ^ 1]; td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100; } static inline enum fio_ddir get_rand_ddir(struct thread_data *td) { unsigned int v; long r; r = os_random_long(&td->rwmix_state); v = 1 + (int) (100.0 * (r / (OS_RAND_MAX + 1.0))); if (v <= td->o.rwmix[DDIR_READ]) return DDIR_READ; return DDIR_WRITE; } /* * Return the data direction for the next io_u. If the job is a * mixed read/write workload, check the rwmix cycle and switch if * necessary. */ static enum fio_ddir get_rw_ddir(struct thread_data *td) { if (td_rw(td)) { /* * Check if it's time to seed a new data direction. */ if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { unsigned long long max_bytes; enum fio_ddir ddir; /* * Put a top limit on how many bytes we do for * one data direction, to avoid overflowing the * ranges too much */ ddir = get_rand_ddir(td); max_bytes = td->this_io_bytes[ddir]; if (max_bytes >= (td->o.size * td->o.rwmix[ddir] / 100)) { if (!td->rw_end_set[ddir]) { td->rw_end_set[ddir] = 1; fio_gettime(&td->rw_end[ddir], NULL); } ddir ^= 1; } if (ddir != td->rwmix_ddir) set_rwmix_bytes(td); td->rwmix_ddir = ddir; } return td->rwmix_ddir; } else if (td_read(td)) return DDIR_READ; else return DDIR_WRITE; } static void put_file_log(struct thread_data *td, struct fio_file *f) { int ret = put_file(td, f); if (ret) td_verror(td, ret, "file close"); } void put_io_u(struct thread_data *td, struct io_u *io_u) { assert((io_u->flags & IO_U_F_FREE) == 0); io_u->flags |= IO_U_F_FREE; if (io_u->file) put_file_log(td, io_u->file); io_u->file = NULL; flist_del(&io_u->list); flist_add(&io_u->list, &td->io_u_freelist); td->cur_depth--; } void requeue_io_u(struct thread_data *td, struct io_u **io_u) { struct io_u *__io_u = *io_u; dprint(FD_IO, "requeue %p\n", __io_u); __io_u->flags |= IO_U_F_FREE; if ((__io_u->flags & IO_U_F_FLIGHT) && (__io_u->ddir != DDIR_SYNC)) td->io_issues[__io_u->ddir]--; __io_u->flags &= ~IO_U_F_FLIGHT; flist_del(&__io_u->list); flist_add_tail(&__io_u->list, &td->io_u_requeues); td->cur_depth--; *io_u = NULL; } static int fill_io_u(struct thread_data *td, struct io_u *io_u) { if (td->io_ops->flags & FIO_NOIO) goto out; /* * see if it's time to sync */ if (td->o.fsync_blocks && !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && td->io_issues[DDIR_WRITE] && should_fsync(td)) { io_u->ddir = DDIR_SYNC; goto out; } io_u->ddir = get_rw_ddir(td); /* * See if it's time to switch to a new zone */ if (td->zone_bytes >= td->o.zone_size) { td->zone_bytes = 0; io_u->file->last_pos += td->o.zone_skip; td->io_skip_bytes += td->o.zone_skip; } /* * No log, let the seq/rand engine retrieve the next buflen and * position. */ if (get_next_offset(td, io_u)) { dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); return 1; } io_u->buflen = get_next_buflen(td, io_u); if (!io_u->buflen) { dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); return 1; } if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { dprint(FD_IO, "io_u %p, offset too large\n", io_u); dprint(FD_IO, " off=%llu/%lu > %llu\n", io_u->offset, io_u->buflen, io_u->file->real_file_size); return 1; } /* * mark entry before potentially trimming io_u */ if (td_random(td) && file_randommap(td, io_u->file)) mark_random_map(td, io_u); /* * If using a write iolog, store this entry. */ out: dprint_io_u(io_u, "fill_io_u"); td->zone_bytes += io_u->buflen; log_io_u(td, io_u); return 0; } static void __io_u_mark_map(unsigned int *map, unsigned int nr) { int index = 0; switch (nr) { default: index = 6; break; case 33 ... 64: index = 5; break; case 17 ... 32: index = 4; break; case 9 ... 16: index = 3; break; case 5 ... 8: index = 2; break; case 1 ... 4: index = 1; case 0: break; } map[index]++; } void io_u_mark_submit(struct thread_data *td, unsigned int nr) { __io_u_mark_map(td->ts.io_u_submit, nr); td->ts.total_submit++; } void io_u_mark_complete(struct thread_data *td, unsigned int nr) { __io_u_mark_map(td->ts.io_u_complete, nr); td->ts.total_complete++; } void io_u_mark_depth(struct thread_data *td, unsigned int nr) { int index = 0; switch (td->cur_depth) { default: index = 6; break; case 32 ... 63: index = 5; break; case 16 ... 31: index = 4; break; case 8 ... 15: index = 3; break; case 4 ... 7: index = 2; break; case 2 ... 3: index = 1; case 1: break; } td->ts.io_u_map[index] += nr; } static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) { int index = 0; assert(usec < 1000); switch (usec) { case 750 ... 999: index = 9; break; case 500 ... 749: index = 8; break; case 250 ... 499: index = 7; break; case 100 ... 249: index = 6; break; case 50 ... 99: index = 5; break; case 20 ... 49: index = 4; break; case 10 ... 19: index = 3; break; case 4 ... 9: index = 2; break; case 2 ... 3: index = 1; case 0 ... 1: break; } assert(index < FIO_IO_U_LAT_U_NR); td->ts.io_u_lat_u[index]++; } static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) { int index = 0; switch (msec) { default: index = 11; break; case 1000 ... 1999: index = 10; break; case 750 ... 999: index = 9; break; case 500 ... 749: index = 8; break; case 250 ... 499: index = 7; break; case 100 ... 249: index = 6; break; case 50 ... 99: index = 5; break; case 20 ... 49: index = 4; break; case 10 ... 19: index = 3; break; case 4 ... 9: index = 2; break; case 2 ... 3: index = 1; case 0 ... 1: break; } assert(index < FIO_IO_U_LAT_M_NR); td->ts.io_u_lat_m[index]++; } static void io_u_mark_latency(struct thread_data *td, unsigned long usec) { if (usec < 1000) io_u_mark_lat_usec(td, usec); else io_u_mark_lat_msec(td, usec / 1000); } /* * Get next file to service by choosing one at random */ static struct fio_file *get_next_file_rand(struct thread_data *td, int goodf, int badf) { struct fio_file *f; int fno; do { long r = os_random_long(&td->next_file_state); fno = (unsigned int) ((double) td->o.nr_files * (r / (OS_RAND_MAX + 1.0))); f = td->files[fno]; if (f->flags & FIO_FILE_DONE) continue; if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { dprint(FD_FILE, "get_next_file_rand: %p\n", f); return f; } } while (1); } /* * Get next file to service by doing round robin between all available ones */ static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, int badf) { unsigned int old_next_file = td->next_file; struct fio_file *f; do { f = td->files[td->next_file]; td->next_file++; if (td->next_file >= td->o.nr_files) td->next_file = 0; if (f->flags & FIO_FILE_DONE) { f = NULL; continue; } if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) break; f = NULL; } while (td->next_file != old_next_file); dprint(FD_FILE, "get_next_file_rr: %p\n", f); return f; } static struct fio_file *get_next_file(struct thread_data *td) { struct fio_file *f; assert(td->o.nr_files <= td->files_index); if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files) { dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," " nr_files=%d\n", td->nr_open_files, td->nr_done_files, td->o.nr_files); return NULL; } f = td->file_service_file; if (f && (f->flags & FIO_FILE_OPEN) && td->file_service_left--) goto out; if (td->o.file_service_type == FIO_FSERVICE_RR) f = get_next_file_rr(td, FIO_FILE_OPEN, FIO_FILE_CLOSING); else f = get_next_file_rand(td, FIO_FILE_OPEN, FIO_FILE_CLOSING); td->file_service_file = f; td->file_service_left = td->file_service_nr - 1; out: dprint(FD_FILE, "get_next_file: %p\n", f); return f; } static struct fio_file *find_next_new_file(struct thread_data *td) { struct fio_file *f; if (!td->nr_open_files || td->nr_done_files >= td->o.nr_files) return NULL; if (td->o.file_service_type == FIO_FSERVICE_RR) f = get_next_file_rr(td, 0, FIO_FILE_OPEN); else f = get_next_file_rand(td, 0, FIO_FILE_OPEN); return f; } static int set_io_u_file(struct thread_data *td, struct io_u *io_u) { struct fio_file *f; do { f = get_next_file(td); if (!f) return 1; set_file: io_u->file = f; get_file(f); if (!fill_io_u(td, io_u)) break; /* * optimization to prevent close/open of the same file. This * way we preserve queueing etc. */ if (td->o.nr_files == 1 && td->o.time_based) { put_file_log(td, f); fio_file_reset(f); goto set_file; } /* * td_io_close() does a put_file() as well, so no need to * do that here. */ io_u->file = NULL; td_io_close_file(td, f); f->flags |= FIO_FILE_DONE; td->nr_done_files++; /* * probably not the right place to do this, but see * if we need to open a new file */ if (td->nr_open_files < td->o.open_files && td->o.open_files != td->o.nr_files) { f = find_next_new_file(td); if (!f || td_io_open_file(td, f)) return 1; goto set_file; } } while (1); return 0; } struct io_u *__get_io_u(struct thread_data *td) { struct io_u *io_u = NULL; if (!flist_empty(&td->io_u_requeues)) io_u = flist_entry(td->io_u_requeues.next, struct io_u, list); else if (!queue_full(td)) { io_u = flist_entry(td->io_u_freelist.next, struct io_u, list); io_u->buflen = 0; io_u->resid = 0; io_u->file = NULL; io_u->end_io = NULL; } if (io_u) { assert(io_u->flags & IO_U_F_FREE); io_u->flags &= ~IO_U_F_FREE; io_u->error = 0; flist_del(&io_u->list); flist_add(&io_u->list, &td->io_u_busylist); td->cur_depth++; } return io_u; } /* * Return an io_u to be processed. Gets a buflen and offset, sets direction, * etc. The returned io_u is fully ready to be prepped and submitted. */ struct io_u *get_io_u(struct thread_data *td) { struct fio_file *f; struct io_u *io_u; io_u = __get_io_u(td); if (!io_u) { dprint(FD_IO, "__get_io_u failed\n"); return NULL; } /* * from a requeue, io_u already setup */ if (io_u->file) goto out; /* * If using an iolog, grab next piece if any available. */ if (td->o.read_iolog_file) { if (read_iolog_get(td, io_u)) goto err_put; } else if (set_io_u_file(td, io_u)) { dprint(FD_IO, "io_u %p, setting file failed\n", io_u); goto err_put; } f = io_u->file; assert(f->flags & FIO_FILE_OPEN); if (io_u->ddir != DDIR_SYNC) { if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); goto err_put; } f->last_pos = io_u->offset + io_u->buflen; if (td->o.verify != VERIFY_NONE) populate_verify_io_u(td, io_u); else if (td->o.refill_buffers && io_u->ddir == DDIR_WRITE) io_u_fill_buffer(td, io_u, io_u->xfer_buflen); } /* * Set io data pointers. */ io_u->endpos = io_u->offset + io_u->buflen; io_u->xfer_buf = io_u->buf; io_u->xfer_buflen = io_u->buflen; out: if (!td_io_prep(td, io_u)) { fio_gettime(&io_u->start_time, NULL); return io_u; } err_put: dprint(FD_IO, "get_io_u failed\n"); put_io_u(td, io_u); return NULL; } void io_u_log_error(struct thread_data *td, struct io_u *io_u) { const char *msg[] = { "read", "write", "sync" }; log_err("fio: io_u error"); if (io_u->file) log_err(" on file %s", io_u->file->file_name); log_err(": %s\n", strerror(io_u->error)); log_err(" %s offset=%llu, buflen=%lu\n", msg[io_u->ddir], io_u->offset, io_u->xfer_buflen); if (!td->error) td_verror(td, io_u->error, "io_u error"); } static void io_completed(struct thread_data *td, struct io_u *io_u, struct io_completion_data *icd) { unsigned long usec; dprint_io_u(io_u, "io complete"); assert(io_u->flags & IO_U_F_FLIGHT); io_u->flags &= ~IO_U_F_FLIGHT; if (io_u->ddir == DDIR_SYNC) { td->last_was_sync = 1; return; } td->last_was_sync = 0; if (!io_u->error) { unsigned int bytes = io_u->buflen - io_u->resid; const enum fio_ddir idx = io_u->ddir; int ret; td->io_blocks[idx]++; td->io_bytes[idx] += bytes; td->this_io_bytes[idx] += bytes; if (ramp_time_over(td)) { usec = utime_since(&io_u->issue_time, &icd->time); add_clat_sample(td, idx, usec); add_bw_sample(td, idx, &icd->time); io_u_mark_latency(td, usec); } if (td_write(td) && idx == DDIR_WRITE && td->o.do_verify && td->o.verify != VERIFY_NONE) log_io_piece(td, io_u); icd->bytes_done[idx] += bytes; if (io_u->end_io) { ret = io_u->end_io(td, io_u); if (ret && !icd->error) icd->error = ret; } } else { icd->error = io_u->error; io_u_log_error(td, io_u); } } static void init_icd(struct io_completion_data *icd, int nr) { fio_gettime(&icd->time, NULL); icd->nr = nr; icd->error = 0; icd->bytes_done[0] = icd->bytes_done[1] = 0; } static void ios_completed(struct thread_data *td, struct io_completion_data *icd) { struct io_u *io_u; int i; for (i = 0; i < icd->nr; i++) { io_u = td->io_ops->event(td, i); io_completed(td, io_u, icd); put_io_u(td, io_u); } } /* * Complete a single io_u for the sync engines. */ long io_u_sync_complete(struct thread_data *td, struct io_u *io_u) { struct io_completion_data icd; init_icd(&icd, 1); io_completed(td, io_u, &icd); put_io_u(td, io_u); if (!icd.error) return icd.bytes_done[0] + icd.bytes_done[1]; td_verror(td, icd.error, "io_u_sync_complete"); return -1; } /* * Called to complete min_events number of io for the async engines. */ long io_u_queued_complete(struct thread_data *td, int min_evts) { struct io_completion_data icd; struct timespec *tvp = NULL; int ret; struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts); if (!min_evts) tvp = &ts; ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp); if (ret < 0) { td_verror(td, -ret, "td_io_getevents"); return ret; } else if (!ret) return ret; init_icd(&icd, ret); ios_completed(td, &icd); if (!icd.error) return icd.bytes_done[0] + icd.bytes_done[1]; td_verror(td, icd.error, "io_u_queued_complete"); return -1; } /* * Call when io_u is really queued, to update the submission latency. */ void io_u_queued(struct thread_data *td, struct io_u *io_u) { unsigned long slat_time; slat_time = utime_since(&io_u->start_time, &io_u->issue_time); add_slat_sample(td, io_u->ddir, slat_time); } /* * "randomly" fill the buffer contents */ void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u, unsigned int max_bs) { long *ptr = io_u->buf; if (!td->o.zero_buffers) { while ((void *) ptr - io_u->buf < max_bs) { *ptr = rand() * GOLDEN_RATIO_PRIME; ptr++; } } else memset(ptr, 0, max_bs); } #ifdef FIO_USE_TIMEOUT void io_u_set_timeout(struct thread_data *td) { assert(td->cur_depth); td->timer.it_interval.tv_sec = 0; td->timer.it_interval.tv_usec = 0; td->timer.it_value.tv_sec = IO_U_TIMEOUT + IO_U_TIMEOUT_INC; td->timer.it_value.tv_usec = 0; setitimer(ITIMER_REAL, &td->timer, NULL); fio_gettime(&td->timeout_end, NULL); } static void io_u_dump(struct io_u *io_u) { unsigned long t_start = mtime_since_now(&io_u->start_time); unsigned long t_issue = mtime_since_now(&io_u->issue_time); log_err("io_u=%p, t_start=%lu, t_issue=%lu\n", io_u, t_start, t_issue); log_err(" buf=%p/%p, len=%lu/%lu, offset=%llu\n", io_u->buf, io_u->xfer_buf, io_u->buflen, io_u->xfer_buflen, io_u->offset); log_err(" ddir=%d, fname=%s\n", io_u->ddir, io_u->file->file_name); } #else void io_u_set_timeout(struct thread_data fio_unused *td) { } #endif #ifdef FIO_USE_TIMEOUT static void io_u_timeout_handler(int fio_unused sig) { struct thread_data *td, *__td; pid_t pid = getpid(); struct flist_head *entry; struct io_u *io_u; int i; log_err("fio: io_u timeout\n"); /* * TLS would be nice... */ td = NULL; for_each_td(__td, i) { if (__td->pid == pid) { td = __td; break; } } if (!td) { log_err("fio: io_u timeout, can't find job\n"); exit(1); } if (!td->cur_depth) { log_err("fio: timeout without pending work?\n"); return; } log_err("fio: io_u timeout: job=%s, pid=%d\n", td->o.name, td->pid); flist_for_each(entry, &td->io_u_busylist) { io_u = flist_entry(entry, struct io_u, list); io_u_dump(io_u); } td_verror(td, ETIMEDOUT, "io_u timeout"); exit(1); } #endif void io_u_init_timeout(void) { #ifdef FIO_USE_TIMEOUT signal(SIGALRM, io_u_timeout_handler); #endif }