aboutsummaryrefslogtreecommitdiff
path: root/include/flatbuffers/flatbuffers.h
blob: a1a95f00efb7330eaf8bf97720e5de1c926da266 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
/*
 * Copyright 2014 Google Inc. All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef FLATBUFFERS_H_
#define FLATBUFFERS_H_

#include "flatbuffers/base.h"

#if defined(FLATBUFFERS_NAN_DEFAULTS)
#include <cmath>
#endif

namespace flatbuffers {
// Generic 'operator==' with conditional specialisations.
template<typename T> inline bool IsTheSameAs(T e, T def) { return e == def; }

#if defined(FLATBUFFERS_NAN_DEFAULTS) && \
    (!defined(_MSC_VER) || _MSC_VER >= 1800)
// Like `operator==(e, def)` with weak NaN if T=(float|double).
template<> inline bool IsTheSameAs<float>(float e, float def) {
  return (e == def) || (std::isnan(def) && std::isnan(e));
}
template<> inline bool IsTheSameAs<double>(double e, double def) {
  return (e == def) || (std::isnan(def) && std::isnan(e));
}
#endif

// Wrapper for uoffset_t to allow safe template specialization.
// Value is allowed to be 0 to indicate a null object (see e.g. AddOffset).
template<typename T> struct Offset {
  uoffset_t o;
  Offset() : o(0) {}
  Offset(uoffset_t _o) : o(_o) {}
  Offset<void> Union() const { return Offset<void>(o); }
  bool IsNull() const { return !o; }
};

inline void EndianCheck() {
  int endiantest = 1;
  // If this fails, see FLATBUFFERS_LITTLEENDIAN above.
  FLATBUFFERS_ASSERT(*reinterpret_cast<char *>(&endiantest) ==
                     FLATBUFFERS_LITTLEENDIAN);
  (void)endiantest;
}

template<typename T> FLATBUFFERS_CONSTEXPR size_t AlignOf() {
  // clang-format off
  #ifdef _MSC_VER
    return __alignof(T);
  #else
    #ifndef alignof
      return __alignof__(T);
    #else
      return alignof(T);
    #endif
  #endif
  // clang-format on
}

// When we read serialized data from memory, in the case of most scalars,
// we want to just read T, but in the case of Offset, we want to actually
// perform the indirection and return a pointer.
// The template specialization below does just that.
// It is wrapped in a struct since function templates can't overload on the
// return type like this.
// The typedef is for the convenience of callers of this function
// (avoiding the need for a trailing return decltype)
template<typename T> struct IndirectHelper {
  typedef T return_type;
  typedef T mutable_return_type;
  static const size_t element_stride = sizeof(T);
  static return_type Read(const uint8_t *p, uoffset_t i) {
    return EndianScalar((reinterpret_cast<const T *>(p))[i]);
  }
};
template<typename T> struct IndirectHelper<Offset<T>> {
  typedef const T *return_type;
  typedef T *mutable_return_type;
  static const size_t element_stride = sizeof(uoffset_t);
  static return_type Read(const uint8_t *p, uoffset_t i) {
    p += i * sizeof(uoffset_t);
    return reinterpret_cast<return_type>(p + ReadScalar<uoffset_t>(p));
  }
};
template<typename T> struct IndirectHelper<const T *> {
  typedef const T *return_type;
  typedef T *mutable_return_type;
  static const size_t element_stride = sizeof(T);
  static return_type Read(const uint8_t *p, uoffset_t i) {
    return reinterpret_cast<const T *>(p + i * sizeof(T));
  }
};

// An STL compatible iterator implementation for Vector below, effectively
// calling Get() for every element.
template<typename T, typename IT> struct VectorIterator {
  typedef std::random_access_iterator_tag iterator_category;
  typedef IT value_type;
  typedef ptrdiff_t difference_type;
  typedef IT *pointer;
  typedef IT &reference;

  VectorIterator(const uint8_t *data, uoffset_t i)
      : data_(data + IndirectHelper<T>::element_stride * i) {}
  VectorIterator(const VectorIterator &other) : data_(other.data_) {}
  VectorIterator() : data_(nullptr) {}

  VectorIterator &operator=(const VectorIterator &other) {
    data_ = other.data_;
    return *this;
  }

  // clang-format off
  #if !defined(FLATBUFFERS_CPP98_STL)
  VectorIterator &operator=(VectorIterator &&other) {
    data_ = other.data_;
    return *this;
  }
  #endif  // !defined(FLATBUFFERS_CPP98_STL)
  // clang-format on

  bool operator==(const VectorIterator &other) const {
    return data_ == other.data_;
  }

  bool operator<(const VectorIterator &other) const {
    return data_ < other.data_;
  }

  bool operator!=(const VectorIterator &other) const {
    return data_ != other.data_;
  }

  difference_type operator-(const VectorIterator &other) const {
    return (data_ - other.data_) / IndirectHelper<T>::element_stride;
  }

  IT operator*() const { return IndirectHelper<T>::Read(data_, 0); }

  IT operator->() const { return IndirectHelper<T>::Read(data_, 0); }

  VectorIterator &operator++() {
    data_ += IndirectHelper<T>::element_stride;
    return *this;
  }

  VectorIterator operator++(int) {
    VectorIterator temp(data_, 0);
    data_ += IndirectHelper<T>::element_stride;
    return temp;
  }

  VectorIterator operator+(const uoffset_t &offset) const {
    return VectorIterator(data_ + offset * IndirectHelper<T>::element_stride,
                          0);
  }

  VectorIterator &operator+=(const uoffset_t &offset) {
    data_ += offset * IndirectHelper<T>::element_stride;
    return *this;
  }

  VectorIterator &operator--() {
    data_ -= IndirectHelper<T>::element_stride;
    return *this;
  }

  VectorIterator operator--(int) {
    VectorIterator temp(data_, 0);
    data_ -= IndirectHelper<T>::element_stride;
    return temp;
  }

  VectorIterator operator-(const uoffset_t &offset) const {
    return VectorIterator(data_ - offset * IndirectHelper<T>::element_stride,
                          0);
  }

  VectorIterator &operator-=(const uoffset_t &offset) {
    data_ -= offset * IndirectHelper<T>::element_stride;
    return *this;
  }

 private:
  const uint8_t *data_;
};

template<typename Iterator> struct VectorReverseIterator :
  public std::reverse_iterator<Iterator> {

  explicit VectorReverseIterator(Iterator iter) : iter_(iter) {}

  typename Iterator::value_type operator*() const { return *(iter_ - 1); }

  typename Iterator::value_type operator->() const { return *(iter_ - 1); }

 private:
  Iterator iter_;
};

struct String;

// This is used as a helper type for accessing vectors.
// Vector::data() assumes the vector elements start after the length field.
template<typename T> class Vector {
 public:
  typedef VectorIterator<T, typename IndirectHelper<T>::mutable_return_type>
      iterator;
  typedef VectorIterator<T, typename IndirectHelper<T>::return_type>
      const_iterator;
  typedef VectorReverseIterator<iterator> reverse_iterator;
  typedef VectorReverseIterator<const_iterator> const_reverse_iterator;

  uoffset_t size() const { return EndianScalar(length_); }

  // Deprecated: use size(). Here for backwards compatibility.
  FLATBUFFERS_ATTRIBUTE(deprecated("use size() instead"))
  uoffset_t Length() const { return size(); }

  typedef typename IndirectHelper<T>::return_type return_type;
  typedef typename IndirectHelper<T>::mutable_return_type mutable_return_type;

  return_type Get(uoffset_t i) const {
    FLATBUFFERS_ASSERT(i < size());
    return IndirectHelper<T>::Read(Data(), i);
  }

  return_type operator[](uoffset_t i) const { return Get(i); }

  // If this is a Vector of enums, T will be its storage type, not the enum
  // type. This function makes it convenient to retrieve value with enum
  // type E.
  template<typename E> E GetEnum(uoffset_t i) const {
    return static_cast<E>(Get(i));
  }

  // If this a vector of unions, this does the cast for you. There's no check
  // to make sure this is the right type!
  template<typename U> const U *GetAs(uoffset_t i) const {
    return reinterpret_cast<const U *>(Get(i));
  }

  // If this a vector of unions, this does the cast for you. There's no check
  // to make sure this is actually a string!
  const String *GetAsString(uoffset_t i) const {
    return reinterpret_cast<const String *>(Get(i));
  }

  const void *GetStructFromOffset(size_t o) const {
    return reinterpret_cast<const void *>(Data() + o);
  }

  iterator begin() { return iterator(Data(), 0); }
  const_iterator begin() const { return const_iterator(Data(), 0); }

  iterator end() { return iterator(Data(), size()); }
  const_iterator end() const { return const_iterator(Data(), size()); }

  reverse_iterator rbegin() { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }

  reverse_iterator rend() { return reverse_iterator(end()); }
  const_reverse_iterator rend() const { return const_reverse_iterator(end()); }

  const_iterator cbegin() const { return begin(); }

  const_iterator cend() const { return end(); }

  const_reverse_iterator crbegin() const { return rbegin(); }

  const_reverse_iterator crend() const { return rend(); }

  // Change elements if you have a non-const pointer to this object.
  // Scalars only. See reflection.h, and the documentation.
  void Mutate(uoffset_t i, const T &val) {
    FLATBUFFERS_ASSERT(i < size());
    WriteScalar(data() + i, val);
  }

  // Change an element of a vector of tables (or strings).
  // "val" points to the new table/string, as you can obtain from
  // e.g. reflection::AddFlatBuffer().
  void MutateOffset(uoffset_t i, const uint8_t *val) {
    FLATBUFFERS_ASSERT(i < size());
    static_assert(sizeof(T) == sizeof(uoffset_t), "Unrelated types");
    WriteScalar(data() + i,
                static_cast<uoffset_t>(val - (Data() + i * sizeof(uoffset_t))));
  }

  // Get a mutable pointer to tables/strings inside this vector.
  mutable_return_type GetMutableObject(uoffset_t i) const {
    FLATBUFFERS_ASSERT(i < size());
    return const_cast<mutable_return_type>(IndirectHelper<T>::Read(Data(), i));
  }

  // The raw data in little endian format. Use with care.
  const uint8_t *Data() const {
    return reinterpret_cast<const uint8_t *>(&length_ + 1);
  }

  uint8_t *Data() { return reinterpret_cast<uint8_t *>(&length_ + 1); }

  // Similarly, but typed, much like std::vector::data
  const T *data() const { return reinterpret_cast<const T *>(Data()); }
  T *data() { return reinterpret_cast<T *>(Data()); }

  template<typename K> return_type LookupByKey(K key) const {
    void *search_result = std::bsearch(
        &key, Data(), size(), IndirectHelper<T>::element_stride, KeyCompare<K>);

    if (!search_result) {
      return nullptr;  // Key not found.
    }

    const uint8_t *element = reinterpret_cast<const uint8_t *>(search_result);

    return IndirectHelper<T>::Read(element, 0);
  }

 protected:
  // This class is only used to access pre-existing data. Don't ever
  // try to construct these manually.
  Vector();

  uoffset_t length_;

 private:
  // This class is a pointer. Copying will therefore create an invalid object.
  // Private and unimplemented copy constructor.
  Vector(const Vector &);

  template<typename K> static int KeyCompare(const void *ap, const void *bp) {
    const K *key = reinterpret_cast<const K *>(ap);
    const uint8_t *data = reinterpret_cast<const uint8_t *>(bp);
    auto table = IndirectHelper<T>::Read(data, 0);

    // std::bsearch compares with the operands transposed, so we negate the
    // result here.
    return -table->KeyCompareWithValue(*key);
  }
};

// Represent a vector much like the template above, but in this case we
// don't know what the element types are (used with reflection.h).
class VectorOfAny {
 public:
  uoffset_t size() const { return EndianScalar(length_); }

  const uint8_t *Data() const {
    return reinterpret_cast<const uint8_t *>(&length_ + 1);
  }
  uint8_t *Data() { return reinterpret_cast<uint8_t *>(&length_ + 1); }

 protected:
  VectorOfAny();

  uoffset_t length_;

 private:
  VectorOfAny(const VectorOfAny &);
};

#ifndef FLATBUFFERS_CPP98_STL
template<typename T, typename U>
Vector<Offset<T>> *VectorCast(Vector<Offset<U>> *ptr) {
  static_assert(std::is_base_of<T, U>::value, "Unrelated types");
  return reinterpret_cast<Vector<Offset<T>> *>(ptr);
}

template<typename T, typename U>
const Vector<Offset<T>> *VectorCast(const Vector<Offset<U>> *ptr) {
  static_assert(std::is_base_of<T, U>::value, "Unrelated types");
  return reinterpret_cast<const Vector<Offset<T>> *>(ptr);
}
#endif

// Convenient helper function to get the length of any vector, regardless
// of whether it is null or not (the field is not set).
template<typename T> static inline size_t VectorLength(const Vector<T> *v) {
  return v ? v->size() : 0;
}

// Lexicographically compare two strings (possibly containing nulls), and
// return true if the first is less than the second.
static inline bool StringLessThan(const char *a_data, uoffset_t a_size,
                                  const char *b_data, uoffset_t b_size) {
  const auto cmp = memcmp(a_data, b_data, (std::min)(a_size, b_size));
  return cmp == 0 ? a_size < b_size : cmp < 0;
}

struct String : public Vector<char> {
  const char *c_str() const { return reinterpret_cast<const char *>(Data()); }
  std::string str() const { return std::string(c_str(), size()); }

  // clang-format off
  #ifdef FLATBUFFERS_HAS_STRING_VIEW
  flatbuffers::string_view string_view() const {
    return flatbuffers::string_view(c_str(), size());
  }
  #endif // FLATBUFFERS_HAS_STRING_VIEW
  // clang-format on

  bool operator<(const String &o) const {
    return StringLessThan(this->data(), this->size(), o.data(), o.size());
  }
};

// Convenience function to get std::string from a String returning an empty
// string on null pointer.
static inline std::string GetString(const String * str) {
  return str ? str->str() : "";
}

// Convenience function to get char* from a String returning an empty string on
// null pointer.
static inline const char * GetCstring(const String * str) {
  return str ? str->c_str() : "";
}

// Allocator interface. This is flatbuffers-specific and meant only for
// `vector_downward` usage.
class Allocator {
 public:
  virtual ~Allocator() {}

  // Allocate `size` bytes of memory.
  virtual uint8_t *allocate(size_t size) = 0;

  // Deallocate `size` bytes of memory at `p` allocated by this allocator.
  virtual void deallocate(uint8_t *p, size_t size) = 0;

  // Reallocate `new_size` bytes of memory, replacing the old region of size
  // `old_size` at `p`. In contrast to a normal realloc, this grows downwards,
  // and is intended specifcally for `vector_downward` use.
  // `in_use_back` and `in_use_front` indicate how much of `old_size` is
  // actually in use at each end, and needs to be copied.
  virtual uint8_t *reallocate_downward(uint8_t *old_p, size_t old_size,
                                       size_t new_size, size_t in_use_back,
                                       size_t in_use_front) {
    FLATBUFFERS_ASSERT(new_size > old_size);  // vector_downward only grows
    uint8_t *new_p = allocate(new_size);
    memcpy_downward(old_p, old_size, new_p, new_size, in_use_back,
                    in_use_front);
    deallocate(old_p, old_size);
    return new_p;
  }

 protected:
  // Called by `reallocate_downward` to copy memory from `old_p` of `old_size`
  // to `new_p` of `new_size`. Only memory of size `in_use_front` and
  // `in_use_back` will be copied from the front and back of the old memory
  // allocation.
  void memcpy_downward(uint8_t *old_p, size_t old_size,
                       uint8_t *new_p, size_t new_size,
                       size_t in_use_back, size_t in_use_front) {
    memcpy(new_p + new_size - in_use_back, old_p + old_size - in_use_back,
           in_use_back);
    memcpy(new_p, old_p, in_use_front);
  }
};

// DefaultAllocator uses new/delete to allocate memory regions
class DefaultAllocator : public Allocator {
 public:
  uint8_t *allocate(size_t size) FLATBUFFERS_OVERRIDE {
    return new uint8_t[size];
  }

  void deallocate(uint8_t *p, size_t) FLATBUFFERS_OVERRIDE {
    delete[] p;
  }

  static void dealloc(void *p, size_t) {
    delete[] static_cast<uint8_t *>(p);
  }
};

// These functions allow for a null allocator to mean use the default allocator,
// as used by DetachedBuffer and vector_downward below.
// This is to avoid having a statically or dynamically allocated default
// allocator, or having to move it between the classes that may own it.
inline uint8_t *Allocate(Allocator *allocator, size_t size) {
  return allocator ? allocator->allocate(size)
                   : DefaultAllocator().allocate(size);
}

inline void Deallocate(Allocator *allocator, uint8_t *p, size_t size) {
  if (allocator) allocator->deallocate(p, size);
  else DefaultAllocator().deallocate(p, size);
}

inline uint8_t *ReallocateDownward(Allocator *allocator, uint8_t *old_p,
                                   size_t old_size, size_t new_size,
                                   size_t in_use_back, size_t in_use_front) {
  return allocator
      ? allocator->reallocate_downward(old_p, old_size, new_size,
                                       in_use_back, in_use_front)
      : DefaultAllocator().reallocate_downward(old_p, old_size, new_size,
                                               in_use_back, in_use_front);
}

// DetachedBuffer is a finished flatbuffer memory region, detached from its
// builder. The original memory region and allocator are also stored so that
// the DetachedBuffer can manage the memory lifetime.
class DetachedBuffer {
 public:
  DetachedBuffer()
      : allocator_(nullptr),
        own_allocator_(false),
        buf_(nullptr),
        reserved_(0),
        cur_(nullptr),
        size_(0) {}

  DetachedBuffer(Allocator *allocator, bool own_allocator, uint8_t *buf,
                 size_t reserved, uint8_t *cur, size_t sz)
      : allocator_(allocator),
        own_allocator_(own_allocator),
        buf_(buf),
        reserved_(reserved),
        cur_(cur),
        size_(sz) {}

  // clang-format off
  #if !defined(FLATBUFFERS_CPP98_STL)
  // clang-format on
  DetachedBuffer(DetachedBuffer &&other)
      : allocator_(other.allocator_),
        own_allocator_(other.own_allocator_),
        buf_(other.buf_),
        reserved_(other.reserved_),
        cur_(other.cur_),
        size_(other.size_) {
    other.reset();
  }
  // clang-format off
  #endif  // !defined(FLATBUFFERS_CPP98_STL)
  // clang-format on

  // clang-format off
  #if !defined(FLATBUFFERS_CPP98_STL)
  // clang-format on
  DetachedBuffer &operator=(DetachedBuffer &&other) {
    destroy();

    allocator_ = other.allocator_;
    own_allocator_ = other.own_allocator_;
    buf_ = other.buf_;
    reserved_ = other.reserved_;
    cur_ = other.cur_;
    size_ = other.size_;

    other.reset();

    return *this;
  }
  // clang-format off
  #endif  // !defined(FLATBUFFERS_CPP98_STL)
  // clang-format on

  ~DetachedBuffer() { destroy(); }

  const uint8_t *data() const { return cur_; }

  uint8_t *data() { return cur_; }

  size_t size() const { return size_; }

  // clang-format off
  #if 0  // disabled for now due to the ordering of classes in this header
  template <class T>
  bool Verify() const {
    Verifier verifier(data(), size());
    return verifier.Verify<T>(nullptr);
  }

  template <class T>
  const T* GetRoot() const {
    return flatbuffers::GetRoot<T>(data());
  }

  template <class T>
  T* GetRoot() {
    return flatbuffers::GetRoot<T>(data());
  }
  #endif
  // clang-format on

  // clang-format off
  #if !defined(FLATBUFFERS_CPP98_STL)
  // clang-format on
  // These may change access mode, leave these at end of public section
  FLATBUFFERS_DELETE_FUNC(DetachedBuffer(const DetachedBuffer &other))
  FLATBUFFERS_DELETE_FUNC(
      DetachedBuffer &operator=(const DetachedBuffer &other))
  // clang-format off
  #endif  // !defined(FLATBUFFERS_CPP98_STL)
  // clang-format on

protected:
  Allocator *allocator_;
  bool own_allocator_;
  uint8_t *buf_;
  size_t reserved_;
  uint8_t *cur_;
  size_t size_;

  inline void destroy() {
    if (buf_) Deallocate(allocator_, buf_, reserved_);
    if (own_allocator_ && allocator_) { delete allocator_; }
    reset();
  }

  inline void reset() {
    allocator_ = nullptr;
    own_allocator_ = false;
    buf_ = nullptr;
    reserved_ = 0;
    cur_ = nullptr;
    size_ = 0;
  }
};

// This is a minimal replication of std::vector<uint8_t> functionality,
// except growing from higher to lower addresses. i.e push_back() inserts data
// in the lowest address in the vector.
// Since this vector leaves the lower part unused, we support a "scratch-pad"
// that can be stored there for temporary data, to share the allocated space.
// Essentially, this supports 2 std::vectors in a single buffer.
class vector_downward {
 public:
  explicit vector_downward(size_t initial_size,
                           Allocator *allocator,
                           bool own_allocator,
                           size_t buffer_minalign)
      : allocator_(allocator),
        own_allocator_(own_allocator),
        initial_size_(initial_size),
        buffer_minalign_(buffer_minalign),
        reserved_(0),
        buf_(nullptr),
        cur_(nullptr),
        scratch_(nullptr) {}

  // clang-format off
  #if !defined(FLATBUFFERS_CPP98_STL)
  vector_downward(vector_downward &&other)
  #else
  vector_downward(vector_downward &other)
  #endif  // defined(FLATBUFFERS_CPP98_STL)
  // clang-format on
    : allocator_(other.allocator_),
      own_allocator_(other.own_allocator_),
      initial_size_(other.initial_size_),
      buffer_minalign_(other.buffer_minalign_),
      reserved_(other.reserved_),
      buf_(other.buf_),
      cur_(other.cur_),
      scratch_(other.scratch_) {
    // No change in other.allocator_
    // No change in other.initial_size_
    // No change in other.buffer_minalign_
    other.own_allocator_ = false;
    other.reserved_ = 0;
    other.buf_ = nullptr;
    other.cur_ = nullptr;
    other.scratch_ = nullptr;
  }

  // clang-format off
  #if !defined(FLATBUFFERS_CPP98_STL)
  // clang-format on
  vector_downward &operator=(vector_downward &&other) {
    // Move construct a temporary and swap idiom
    vector_downward temp(std::move(other));
    swap(temp);
    return *this;
  }
  // clang-format off
  #endif  // defined(FLATBUFFERS_CPP98_STL)
  // clang-format on

  ~vector_downward() {
    clear_buffer();
    clear_allocator();
  }

  void reset() {
    clear_buffer();
    clear();
  }

  void clear() {
    if (buf_) {
      cur_ = buf_ + reserved_;
    } else {
      reserved_ = 0;
      cur_ = nullptr;
    }
    clear_scratch();
  }

  void clear_scratch() {
    scratch_ = buf_;
  }

  void clear_allocator() {
    if (own_allocator_ && allocator_) { delete allocator_; }
    allocator_ = nullptr;
    own_allocator_ = false;
  }

  void clear_buffer() {
    if (buf_) Deallocate(allocator_, buf_, reserved_);
    buf_ = nullptr;
  }

  // Relinquish the pointer to the caller.
  uint8_t *release_raw(size_t &allocated_bytes, size_t &offset) {
    auto *buf = buf_;
    allocated_bytes = reserved_;
    offset = static_cast<size_t>(cur_ - buf_);

    // release_raw only relinquishes the buffer ownership.
    // Does not deallocate or reset the allocator. Destructor will do that.
    buf_ = nullptr;
    clear();
    return buf;
  }

  // Relinquish the pointer to the caller.
  DetachedBuffer release() {
    // allocator ownership (if any) is transferred to DetachedBuffer.
    DetachedBuffer fb(allocator_, own_allocator_, buf_, reserved_, cur_,
                      size());
    if (own_allocator_) {
      allocator_ = nullptr;
      own_allocator_ = false;
    }
    buf_ = nullptr;
    clear();
    return fb;
  }

  size_t ensure_space(size_t len) {
    FLATBUFFERS_ASSERT(cur_ >= scratch_ && scratch_ >= buf_);
    if (len > static_cast<size_t>(cur_ - scratch_)) { reallocate(len); }
    // Beyond this, signed offsets may not have enough range:
    // (FlatBuffers > 2GB not supported).
    FLATBUFFERS_ASSERT(size() < FLATBUFFERS_MAX_BUFFER_SIZE);
    return len;
  }

  inline uint8_t *make_space(size_t len) {
    size_t space = ensure_space(len);
    cur_ -= space;
    return cur_;
  }

  // Returns nullptr if using the DefaultAllocator.
  Allocator *get_custom_allocator() { return allocator_; }

  uoffset_t size() const {
    return static_cast<uoffset_t>(reserved_ - (cur_ - buf_));
  }

  uoffset_t scratch_size() const {
    return static_cast<uoffset_t>(scratch_ - buf_);
  }

  size_t capacity() const { return reserved_; }

  uint8_t *data() const {
    FLATBUFFERS_ASSERT(cur_);
    return cur_;
  }

  uint8_t *scratch_data() const {
    FLATBUFFERS_ASSERT(buf_);
    return buf_;
  }

  uint8_t *scratch_end() const {
    FLATBUFFERS_ASSERT(scratch_);
    return scratch_;
  }

  uint8_t *data_at(size_t offset) const { return buf_ + reserved_ - offset; }

  void push(const uint8_t *bytes, size_t num) {
    memcpy(make_space(num), bytes, num);
  }

  // Specialized version of push() that avoids memcpy call for small data.
  template<typename T> void push_small(const T &little_endian_t) {
    make_space(sizeof(T));
    *reinterpret_cast<T *>(cur_) = little_endian_t;
  }

  template<typename T> void scratch_push_small(const T &t) {
    ensure_space(sizeof(T));
    *reinterpret_cast<T *>(scratch_) = t;
    scratch_ += sizeof(T);
  }

  // fill() is most frequently called with small byte counts (<= 4),
  // which is why we're using loops rather than calling memset.
  void fill(size_t zero_pad_bytes) {
    make_space(zero_pad_bytes);
    for (size_t i = 0; i < zero_pad_bytes; i++) cur_[i] = 0;
  }

  // Version for when we know the size is larger.
  void fill_big(size_t zero_pad_bytes) {
    memset(make_space(zero_pad_bytes), 0, zero_pad_bytes);
  }

  void pop(size_t bytes_to_remove) { cur_ += bytes_to_remove; }
  void scratch_pop(size_t bytes_to_remove) { scratch_ -= bytes_to_remove; }

  void swap(vector_downward &other) {
    using std::swap;
    swap(allocator_, other.allocator_);
    swap(own_allocator_, other.own_allocator_);
    swap(initial_size_, other.initial_size_);
    swap(buffer_minalign_, other.buffer_minalign_);
    swap(reserved_, other.reserved_);
    swap(buf_, other.buf_);
    swap(cur_, other.cur_);
    swap(scratch_, other.scratch_);
  }

  void swap_allocator(vector_downward &other) {
    using std::swap;
    swap(allocator_, other.allocator_);
    swap(own_allocator_, other.own_allocator_);
  }

 private:
  // You shouldn't really be copying instances of this class.
  FLATBUFFERS_DELETE_FUNC(vector_downward(const vector_downward &))
  FLATBUFFERS_DELETE_FUNC(vector_downward &operator=(const vector_downward &))

  Allocator *allocator_;
  bool own_allocator_;
  size_t initial_size_;
  size_t buffer_minalign_;
  size_t reserved_;
  uint8_t *buf_;
  uint8_t *cur_;  // Points at location between empty (below) and used (above).
  uint8_t *scratch_;  // Points to the end of the scratchpad in use.

  void reallocate(size_t len) {
    auto old_reserved = reserved_;
    auto old_size = size();
    auto old_scratch_size = scratch_size();
    reserved_ += (std::max)(len,
                            old_reserved ? old_reserved / 2 : initial_size_);
    reserved_ = (reserved_ + buffer_minalign_ - 1) & ~(buffer_minalign_ - 1);
    if (buf_) {
      buf_ = ReallocateDownward(allocator_, buf_, old_reserved, reserved_,
                                old_size, old_scratch_size);
    } else {
      buf_ = Allocate(allocator_, reserved_);
    }
    cur_ = buf_ + reserved_ - old_size;
    scratch_ = buf_ + old_scratch_size;
  }
};

// Converts a Field ID to a virtual table offset.
inline voffset_t FieldIndexToOffset(voffset_t field_id) {
  // Should correspond to what EndTable() below builds up.
  const int fixed_fields = 2;  // Vtable size and Object Size.
  return static_cast<voffset_t>((field_id + fixed_fields) * sizeof(voffset_t));
}

template<typename T, typename Alloc>
const T *data(const std::vector<T, Alloc> &v) {
  return v.empty() ? nullptr : &v.front();
}
template<typename T, typename Alloc> T *data(std::vector<T, Alloc> &v) {
  return v.empty() ? nullptr : &v.front();
}

/// @endcond

/// @addtogroup flatbuffers_cpp_api
/// @{
/// @class FlatBufferBuilder
/// @brief Helper class to hold data needed in creation of a FlatBuffer.
/// To serialize data, you typically call one of the `Create*()` functions in
/// the generated code, which in turn call a sequence of `StartTable`/
/// `PushElement`/`AddElement`/`EndTable`, or the builtin `CreateString`/
/// `CreateVector` functions. Do this is depth-first order to build up a tree to
/// the root. `Finish()` wraps up the buffer ready for transport.
class FlatBufferBuilder {
 public:
  /// @brief Default constructor for FlatBufferBuilder.
  /// @param[in] initial_size The initial size of the buffer, in bytes. Defaults
  /// to `1024`.
  /// @param[in] allocator An `Allocator` to use. If null will use
  /// `DefaultAllocator`.
  /// @param[in] own_allocator Whether the builder/vector should own the
  /// allocator. Defaults to / `false`.
  /// @param[in] buffer_minalign Force the buffer to be aligned to the given
  /// minimum alignment upon reallocation. Only needed if you intend to store
  /// types with custom alignment AND you wish to read the buffer in-place
  /// directly after creation.
  explicit FlatBufferBuilder(size_t initial_size = 1024,
                             Allocator *allocator = nullptr,
                             bool own_allocator = false,
                             size_t buffer_minalign =
                                 AlignOf<largest_scalar_t>())
      : buf_(initial_size, allocator, own_allocator, buffer_minalign),
        num_field_loc(0),
        max_voffset_(0),
        nested(false),
        finished(false),
        minalign_(1),
        force_defaults_(false),
        dedup_vtables_(true),
        string_pool(nullptr) {
    EndianCheck();
  }

  // clang-format off
  /// @brief Move constructor for FlatBufferBuilder.
  #if !defined(FLATBUFFERS_CPP98_STL)
  FlatBufferBuilder(FlatBufferBuilder &&other)
  #else
  FlatBufferBuilder(FlatBufferBuilder &other)
  #endif  // #if !defined(FLATBUFFERS_CPP98_STL)
    : buf_(1024, nullptr, false, AlignOf<largest_scalar_t>()),
      num_field_loc(0),
      max_voffset_(0),
      nested(false),
      finished(false),
      minalign_(1),
      force_defaults_(false),
      dedup_vtables_(true),
      string_pool(nullptr) {
    EndianCheck();
    // Default construct and swap idiom.
    // Lack of delegating constructors in vs2010 makes it more verbose than needed.
    Swap(other);
  }
  // clang-format on

  // clang-format off
  #if !defined(FLATBUFFERS_CPP98_STL)
  // clang-format on
  /// @brief Move assignment operator for FlatBufferBuilder.
  FlatBufferBuilder &operator=(FlatBufferBuilder &&other) {
    // Move construct a temporary and swap idiom
    FlatBufferBuilder temp(std::move(other));
    Swap(temp);
    return *this;
  }
  // clang-format off
  #endif  // defined(FLATBUFFERS_CPP98_STL)
  // clang-format on

  void Swap(FlatBufferBuilder &other) {
    using std::swap;
    buf_.swap(other.buf_);
    swap(num_field_loc, other.num_field_loc);
    swap(max_voffset_, other.max_voffset_);
    swap(nested, other.nested);
    swap(finished, other.finished);
    swap(minalign_, other.minalign_);
    swap(force_defaults_, other.force_defaults_);
    swap(dedup_vtables_, other.dedup_vtables_);
    swap(string_pool, other.string_pool);
  }

  ~FlatBufferBuilder() {
    if (string_pool) delete string_pool;
  }

  void Reset() {
    Clear();       // clear builder state
    buf_.reset();  // deallocate buffer
  }

  /// @brief Reset all the state in this FlatBufferBuilder so it can be reused
  /// to construct another buffer.
  void Clear() {
    ClearOffsets();
    buf_.clear();
    nested = false;
    finished = false;
    minalign_ = 1;
    if (string_pool) string_pool->clear();
  }

  /// @brief The current size of the serialized buffer, counting from the end.
  /// @return Returns an `uoffset_t` with the current size of the buffer.
  uoffset_t GetSize() const { return buf_.size(); }

  /// @brief Get the serialized buffer (after you call `Finish()`).
  /// @return Returns an `uint8_t` pointer to the FlatBuffer data inside the
  /// buffer.
  uint8_t *GetBufferPointer() const {
    Finished();
    return buf_.data();
  }

  /// @brief Get a pointer to an unfinished buffer.
  /// @return Returns a `uint8_t` pointer to the unfinished buffer.
  uint8_t *GetCurrentBufferPointer() const { return buf_.data(); }

  /// @brief Get the released pointer to the serialized buffer.
  /// @warning Do NOT attempt to use this FlatBufferBuilder afterwards!
  /// @return A `FlatBuffer` that owns the buffer and its allocator and
  /// behaves similar to a `unique_ptr` with a deleter.
  FLATBUFFERS_ATTRIBUTE(deprecated("use Release() instead")) DetachedBuffer
  ReleaseBufferPointer() {
    Finished();
    return buf_.release();
  }

  /// @brief Get the released DetachedBuffer.
  /// @return A `DetachedBuffer` that owns the buffer and its allocator.
  DetachedBuffer Release() {
    Finished();
    return buf_.release();
  }

  /// @brief Get the released pointer to the serialized buffer.
  /// @param The size of the memory block containing
  /// the serialized `FlatBuffer`.
  /// @param The offset from the released pointer where the finished
  /// `FlatBuffer` starts.
  /// @return A raw pointer to the start of the memory block containing
  /// the serialized `FlatBuffer`.
  /// @remark If the allocator is owned, it gets deleted when the destructor is called..
  uint8_t *ReleaseRaw(size_t &size, size_t &offset) {
    Finished();
    return buf_.release_raw(size, offset);
  }

  /// @brief get the minimum alignment this buffer needs to be accessed
  /// properly. This is only known once all elements have been written (after
  /// you call Finish()). You can use this information if you need to embed
  /// a FlatBuffer in some other buffer, such that you can later read it
  /// without first having to copy it into its own buffer.
  size_t GetBufferMinAlignment() {
    Finished();
    return minalign_;
  }

  /// @cond FLATBUFFERS_INTERNAL
  void Finished() const {
    // If you get this assert, you're attempting to get access a buffer
    // which hasn't been finished yet. Be sure to call
    // FlatBufferBuilder::Finish with your root table.
    // If you really need to access an unfinished buffer, call
    // GetCurrentBufferPointer instead.
    FLATBUFFERS_ASSERT(finished);
  }
  /// @endcond

  /// @brief In order to save space, fields that are set to their default value
  /// don't get serialized into the buffer.
  /// @param[in] bool fd When set to `true`, always serializes default values that are set.
  /// Optional fields which are not set explicitly, will still not be serialized.
  void ForceDefaults(bool fd) { force_defaults_ = fd; }

  /// @brief By default vtables are deduped in order to save space.
  /// @param[in] bool dedup When set to `true`, dedup vtables.
  void DedupVtables(bool dedup) { dedup_vtables_ = dedup; }

  /// @cond FLATBUFFERS_INTERNAL
  void Pad(size_t num_bytes) { buf_.fill(num_bytes); }

  void TrackMinAlign(size_t elem_size) {
    if (elem_size > minalign_) minalign_ = elem_size;
  }

  void Align(size_t elem_size) {
    TrackMinAlign(elem_size);
    buf_.fill(PaddingBytes(buf_.size(), elem_size));
  }

  void PushFlatBuffer(const uint8_t *bytes, size_t size) {
    PushBytes(bytes, size);
    finished = true;
  }

  void PushBytes(const uint8_t *bytes, size_t size) { buf_.push(bytes, size); }

  void PopBytes(size_t amount) { buf_.pop(amount); }

  template<typename T> void AssertScalarT() {
    // The code assumes power of 2 sizes and endian-swap-ability.
    static_assert(flatbuffers::is_scalar<T>::value, "T must be a scalar type");
  }

  // Write a single aligned scalar to the buffer
  template<typename T> uoffset_t PushElement(T element) {
    AssertScalarT<T>();
    T litle_endian_element = EndianScalar(element);
    Align(sizeof(T));
    buf_.push_small(litle_endian_element);
    return GetSize();
  }

  template<typename T> uoffset_t PushElement(Offset<T> off) {
    // Special case for offsets: see ReferTo below.
    return PushElement(ReferTo(off.o));
  }

  // When writing fields, we track where they are, so we can create correct
  // vtables later.
  void TrackField(voffset_t field, uoffset_t off) {
    FieldLoc fl = { off, field };
    buf_.scratch_push_small(fl);
    num_field_loc++;
    max_voffset_ = (std::max)(max_voffset_, field);
  }

  // Like PushElement, but additionally tracks the field this represents.
  template<typename T> void AddElement(voffset_t field, T e, T def) {
    // We don't serialize values equal to the default.
    if (IsTheSameAs(e, def) && !force_defaults_) return;
    auto off = PushElement(e);
    TrackField(field, off);
  }

  template<typename T> void AddOffset(voffset_t field, Offset<T> off) {
    if (off.IsNull()) return;  // Don't store.
    AddElement(field, ReferTo(off.o), static_cast<uoffset_t>(0));
  }

  template<typename T> void AddStruct(voffset_t field, const T *structptr) {
    if (!structptr) return;  // Default, don't store.
    Align(AlignOf<T>());
    buf_.push_small(*structptr);
    TrackField(field, GetSize());
  }

  void AddStructOffset(voffset_t field, uoffset_t off) {
    TrackField(field, off);
  }

  // Offsets initially are relative to the end of the buffer (downwards).
  // This function converts them to be relative to the current location
  // in the buffer (when stored here), pointing upwards.
  uoffset_t ReferTo(uoffset_t off) {
    // Align to ensure GetSize() below is correct.
    Align(sizeof(uoffset_t));
    // Offset must refer to something already in buffer.
    FLATBUFFERS_ASSERT(off && off <= GetSize());
    return GetSize() - off + static_cast<uoffset_t>(sizeof(uoffset_t));
  }

  void NotNested() {
    // If you hit this, you're trying to construct a Table/Vector/String
    // during the construction of its parent table (between the MyTableBuilder
    // and table.Finish().
    // Move the creation of these sub-objects to above the MyTableBuilder to
    // not get this assert.
    // Ignoring this assert may appear to work in simple cases, but the reason
    // it is here is that storing objects in-line may cause vtable offsets
    // to not fit anymore. It also leads to vtable duplication.
    FLATBUFFERS_ASSERT(!nested);
    // If you hit this, fields were added outside the scope of a table.
    FLATBUFFERS_ASSERT(!num_field_loc);
  }

  // From generated code (or from the parser), we call StartTable/EndTable
  // with a sequence of AddElement calls in between.
  uoffset_t StartTable() {
    NotNested();
    nested = true;
    return GetSize();
  }

  // This finishes one serialized object by generating the vtable if it's a
  // table, comparing it against existing vtables, and writing the
  // resulting vtable offset.
  uoffset_t EndTable(uoffset_t start) {
    // If you get this assert, a corresponding StartTable wasn't called.
    FLATBUFFERS_ASSERT(nested);
    // Write the vtable offset, which is the start of any Table.
    // We fill it's value later.
    auto vtableoffsetloc = PushElement<soffset_t>(0);
    // Write a vtable, which consists entirely of voffset_t elements.
    // It starts with the number of offsets, followed by a type id, followed
    // by the offsets themselves. In reverse:
    // Include space for the last offset and ensure empty tables have a
    // minimum size.
    max_voffset_ =
        (std::max)(static_cast<voffset_t>(max_voffset_ + sizeof(voffset_t)),
                   FieldIndexToOffset(0));
    buf_.fill_big(max_voffset_);
    auto table_object_size = vtableoffsetloc - start;
    // Vtable use 16bit offsets.
    FLATBUFFERS_ASSERT(table_object_size < 0x10000);
    WriteScalar<voffset_t>(buf_.data() + sizeof(voffset_t),
                           static_cast<voffset_t>(table_object_size));
    WriteScalar<voffset_t>(buf_.data(), max_voffset_);
    // Write the offsets into the table
    for (auto it = buf_.scratch_end() - num_field_loc * sizeof(FieldLoc);
         it < buf_.scratch_end(); it += sizeof(FieldLoc)) {
      auto field_location = reinterpret_cast<FieldLoc *>(it);
      auto pos = static_cast<voffset_t>(vtableoffsetloc - field_location->off);
      // If this asserts, it means you've set a field twice.
      FLATBUFFERS_ASSERT(
          !ReadScalar<voffset_t>(buf_.data() + field_location->id));
      WriteScalar<voffset_t>(buf_.data() + field_location->id, pos);
    }
    ClearOffsets();
    auto vt1 = reinterpret_cast<voffset_t *>(buf_.data());
    auto vt1_size = ReadScalar<voffset_t>(vt1);
    auto vt_use = GetSize();
    // See if we already have generated a vtable with this exact same
    // layout before. If so, make it point to the old one, remove this one.
    if (dedup_vtables_) {
      for (auto it = buf_.scratch_data(); it < buf_.scratch_end();
           it += sizeof(uoffset_t)) {
        auto vt_offset_ptr = reinterpret_cast<uoffset_t *>(it);
        auto vt2 = reinterpret_cast<voffset_t *>(buf_.data_at(*vt_offset_ptr));
        auto vt2_size = *vt2;
        if (vt1_size != vt2_size || 0 != memcmp(vt2, vt1, vt1_size)) continue;
        vt_use = *vt_offset_ptr;
        buf_.pop(GetSize() - vtableoffsetloc);
        break;
      }
    }
    // If this is a new vtable, remember it.
    if (vt_use == GetSize()) { buf_.scratch_push_small(vt_use); }
    // Fill the vtable offset we created above.
    // The offset points from the beginning of the object to where the
    // vtable is stored.
    // Offsets default direction is downward in memory for future format
    // flexibility (storing all vtables at the start of the file).
    WriteScalar(buf_.data_at(vtableoffsetloc),
                static_cast<soffset_t>(vt_use) -
                    static_cast<soffset_t>(vtableoffsetloc));

    nested = false;
    return vtableoffsetloc;
  }

  FLATBUFFERS_ATTRIBUTE(deprecated("call the version above instead"))
  uoffset_t EndTable(uoffset_t start, voffset_t /*numfields*/) {
    return EndTable(start);
  }

  // This checks a required field has been set in a given table that has
  // just been constructed.
  template<typename T> void Required(Offset<T> table, voffset_t field);

  uoffset_t StartStruct(size_t alignment) {
    Align(alignment);
    return GetSize();
  }

  uoffset_t EndStruct() { return GetSize(); }

  void ClearOffsets() {
    buf_.scratch_pop(num_field_loc * sizeof(FieldLoc));
    num_field_loc = 0;
    max_voffset_ = 0;
  }

  // Aligns such that when "len" bytes are written, an object can be written
  // after it with "alignment" without padding.
  void PreAlign(size_t len, size_t alignment) {
    TrackMinAlign(alignment);
    buf_.fill(PaddingBytes(GetSize() + len, alignment));
  }
  template<typename T> void PreAlign(size_t len) {
    AssertScalarT<T>();
    PreAlign(len, sizeof(T));
  }
  /// @endcond

  /// @brief Store a string in the buffer, which can contain any binary data.
  /// @param[in] str A const char pointer to the data to be stored as a string.
  /// @param[in] len The number of bytes that should be stored from `str`.
  /// @return Returns the offset in the buffer where the string starts.
  Offset<String> CreateString(const char *str, size_t len) {
    NotNested();
    PreAlign<uoffset_t>(len + 1);  // Always 0-terminated.
    buf_.fill(1);
    PushBytes(reinterpret_cast<const uint8_t *>(str), len);
    PushElement(static_cast<uoffset_t>(len));
    return Offset<String>(GetSize());
  }

  /// @brief Store a string in the buffer, which is null-terminated.
  /// @param[in] str A const char pointer to a C-string to add to the buffer.
  /// @return Returns the offset in the buffer where the string starts.
  Offset<String> CreateString(const char *str) {
    return CreateString(str, strlen(str));
  }

  /// @brief Store a string in the buffer, which is null-terminated.
  /// @param[in] str A char pointer to a C-string to add to the buffer.
  /// @return Returns the offset in the buffer where the string starts.
  Offset<String> CreateString(char *str) {
    return CreateString(str, strlen(str));
  }

  /// @brief Store a string in the buffer, which can contain any binary data.
  /// @param[in] str A const reference to a std::string to store in the buffer.
  /// @return Returns the offset in the buffer where the string starts.
  Offset<String> CreateString(const std::string &str) {
    return CreateString(str.c_str(), str.length());
  }

  // clang-format off
  #ifdef FLATBUFFERS_HAS_STRING_VIEW
  /// @brief Store a string in the buffer, which can contain any binary data.
  /// @param[in] str A const string_view to copy in to the buffer.
  /// @return Returns the offset in the buffer where the string starts.
  Offset<String> CreateString(flatbuffers::string_view str) {
    return CreateString(str.data(), str.size());
  }
  #endif // FLATBUFFERS_HAS_STRING_VIEW
  // clang-format on

  /// @brief Store a string in the buffer, which can contain any binary data.
  /// @param[in] str A const pointer to a `String` struct to add to the buffer.
  /// @return Returns the offset in the buffer where the string starts
  Offset<String> CreateString(const String *str) {
    return str ? CreateString(str->c_str(), str->size()) : 0;
  }

  /// @brief Store a string in the buffer, which can contain any binary data.
  /// @param[in] str A const reference to a std::string like type with support
  /// of T::c_str() and T::length() to store in the buffer.
  /// @return Returns the offset in the buffer where the string starts.
  template<typename T> Offset<String> CreateString(const T &str) {
    return CreateString(str.c_str(), str.length());
  }

  /// @brief Store a string in the buffer, which can contain any binary data.
  /// If a string with this exact contents has already been serialized before,
  /// instead simply returns the offset of the existing string.
  /// @param[in] str A const char pointer to the data to be stored as a string.
  /// @param[in] len The number of bytes that should be stored from `str`.
  /// @return Returns the offset in the buffer where the string starts.
  Offset<String> CreateSharedString(const char *str, size_t len) {
    if (!string_pool)
      string_pool = new StringOffsetMap(StringOffsetCompare(buf_));
    auto size_before_string = buf_.size();
    // Must first serialize the string, since the set is all offsets into
    // buffer.
    auto off = CreateString(str, len);
    auto it = string_pool->find(off);
    // If it exists we reuse existing serialized data!
    if (it != string_pool->end()) {
      // We can remove the string we serialized.
      buf_.pop(buf_.size() - size_before_string);
      return *it;
    }
    // Record this string for future use.
    string_pool->insert(off);
    return off;
  }

  /// @brief Store a string in the buffer, which null-terminated.
  /// If a string with this exact contents has already been serialized before,
  /// instead simply returns the offset of the existing string.
  /// @param[in] str A const char pointer to a C-string to add to the buffer.
  /// @return Returns the offset in the buffer where the string starts.
  Offset<String> CreateSharedString(const char *str) {
    return CreateSharedString(str, strlen(str));
  }

  /// @brief Store a string in the buffer, which can contain any binary data.
  /// If a string with this exact contents has already been serialized before,
  /// instead simply returns the offset of the existing string.
  /// @param[in] str A const reference to a std::string to store in the buffer.
  /// @return Returns the offset in the buffer where the string starts.
  Offset<String> CreateSharedString(const std::string &str) {
    return CreateSharedString(str.c_str(), str.length());
  }

  /// @brief Store a string in the buffer, which can contain any binary data.
  /// If a string with this exact contents has already been serialized before,
  /// instead simply returns the offset of the existing string.
  /// @param[in] str A const pointer to a `String` struct to add to the buffer.
  /// @return Returns the offset in the buffer where the string starts
  Offset<String> CreateSharedString(const String *str) {
    return CreateSharedString(str->c_str(), str->size());
  }

  /// @cond FLATBUFFERS_INTERNAL
  uoffset_t EndVector(size_t len) {
    FLATBUFFERS_ASSERT(nested);  // Hit if no corresponding StartVector.
    nested = false;
    return PushElement(static_cast<uoffset_t>(len));
  }

  void StartVector(size_t len, size_t elemsize) {
    NotNested();
    nested = true;
    PreAlign<uoffset_t>(len * elemsize);
    PreAlign(len * elemsize, elemsize);  // Just in case elemsize > uoffset_t.
  }

  // Call this right before StartVector/CreateVector if you want to force the
  // alignment to be something different than what the element size would
  // normally dictate.
  // This is useful when storing a nested_flatbuffer in a vector of bytes,
  // or when storing SIMD floats, etc.
  void ForceVectorAlignment(size_t len, size_t elemsize, size_t alignment) {
    PreAlign(len * elemsize, alignment);
  }

  // Similar to ForceVectorAlignment but for String fields.
  void ForceStringAlignment(size_t len, size_t alignment) {
    PreAlign((len + 1) * sizeof(char), alignment);
  }

  /// @endcond

  /// @brief Serialize an array into a FlatBuffer `vector`.
  /// @tparam T The data type of the array elements.
  /// @param[in] v A pointer to the array of type `T` to serialize into the
  /// buffer as a `vector`.
  /// @param[in] len The number of elements to serialize.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T> Offset<Vector<T>> CreateVector(const T *v, size_t len) {
    // If this assert hits, you're specifying a template argument that is
    // causing the wrong overload to be selected, remove it.
    AssertScalarT<T>();
    StartVector(len, sizeof(T));
    // clang-format off
    #if FLATBUFFERS_LITTLEENDIAN
      PushBytes(reinterpret_cast<const uint8_t *>(v), len * sizeof(T));
    #else
      if (sizeof(T) == 1) {
        PushBytes(reinterpret_cast<const uint8_t *>(v), len);
      } else {
        for (auto i = len; i > 0; ) {
          PushElement(v[--i]);
        }
      }
    #endif
    // clang-format on
    return Offset<Vector<T>>(EndVector(len));
  }

  template<typename T>
  Offset<Vector<Offset<T>>> CreateVector(const Offset<T> *v, size_t len) {
    StartVector(len, sizeof(Offset<T>));
    for (auto i = len; i > 0;) { PushElement(v[--i]); }
    return Offset<Vector<Offset<T>>>(EndVector(len));
  }

  /// @brief Serialize a `std::vector` into a FlatBuffer `vector`.
  /// @tparam T The data type of the `std::vector` elements.
  /// @param v A const reference to the `std::vector` to serialize into the
  /// buffer as a `vector`.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T> Offset<Vector<T>> CreateVector(const std::vector<T> &v) {
    return CreateVector(data(v), v.size());
  }

  // vector<bool> may be implemented using a bit-set, so we can't access it as
  // an array. Instead, read elements manually.
  // Background: https://isocpp.org/blog/2012/11/on-vectorbool
  Offset<Vector<uint8_t>> CreateVector(const std::vector<bool> &v) {
    StartVector(v.size(), sizeof(uint8_t));
    for (auto i = v.size(); i > 0;) {
      PushElement(static_cast<uint8_t>(v[--i]));
    }
    return Offset<Vector<uint8_t>>(EndVector(v.size()));
  }

  // clang-format off
  #ifndef FLATBUFFERS_CPP98_STL
  /// @brief Serialize values returned by a function into a FlatBuffer `vector`.
  /// This is a convenience function that takes care of iteration for you.
  /// @tparam T The data type of the `std::vector` elements.
  /// @param f A function that takes the current iteration 0..vector_size-1 and
  /// returns any type that you can construct a FlatBuffers vector out of.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T> Offset<Vector<T>> CreateVector(size_t vector_size,
      const std::function<T (size_t i)> &f) {
    std::vector<T> elems(vector_size);
    for (size_t i = 0; i < vector_size; i++) elems[i] = f(i);
    return CreateVector(elems);
  }
  #endif
  // clang-format on

  /// @brief Serialize values returned by a function into a FlatBuffer `vector`.
  /// This is a convenience function that takes care of iteration for you.
  /// @tparam T The data type of the `std::vector` elements.
  /// @param f A function that takes the current iteration 0..vector_size-1,
  /// and the state parameter returning any type that you can construct a
  /// FlatBuffers vector out of.
  /// @param state State passed to f.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T, typename F, typename S>
  Offset<Vector<T>> CreateVector(size_t vector_size, F f, S *state) {
    std::vector<T> elems(vector_size);
    for (size_t i = 0; i < vector_size; i++) elems[i] = f(i, state);
    return CreateVector(elems);
  }

  /// @brief Serialize a `std::vector<std::string>` into a FlatBuffer `vector`.
  /// This is a convenience function for a common case.
  /// @param v A const reference to the `std::vector` to serialize into the
  /// buffer as a `vector`.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  Offset<Vector<Offset<String>>> CreateVectorOfStrings(
      const std::vector<std::string> &v) {
    std::vector<Offset<String>> offsets(v.size());
    for (size_t i = 0; i < v.size(); i++) offsets[i] = CreateString(v[i]);
    return CreateVector(offsets);
  }

  /// @brief Serialize an array of structs into a FlatBuffer `vector`.
  /// @tparam T The data type of the struct array elements.
  /// @param[in] v A pointer to the array of type `T` to serialize into the
  /// buffer as a `vector`.
  /// @param[in] len The number of elements to serialize.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T>
  Offset<Vector<const T *>> CreateVectorOfStructs(const T *v, size_t len) {
    StartVector(len * sizeof(T) / AlignOf<T>(), AlignOf<T>());
    PushBytes(reinterpret_cast<const uint8_t *>(v), sizeof(T) * len);
    return Offset<Vector<const T *>>(EndVector(len));
  }

  /// @brief Serialize an array of native structs into a FlatBuffer `vector`.
  /// @tparam T The data type of the struct array elements.
  /// @tparam S The data type of the native struct array elements.
  /// @param[in] v A pointer to the array of type `S` to serialize into the
  /// buffer as a `vector`.
  /// @param[in] len The number of elements to serialize.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T, typename S>
  Offset<Vector<const T *>> CreateVectorOfNativeStructs(const S *v,
                                                        size_t len) {
    extern T Pack(const S &);
    typedef T (*Pack_t)(const S &);
    std::vector<T> vv(len);
    std::transform(v, v + len, vv.begin(), static_cast<Pack_t&>(Pack));
    return CreateVectorOfStructs<T>(vv.data(), vv.size());
  }

  // clang-format off
  #ifndef FLATBUFFERS_CPP98_STL
  /// @brief Serialize an array of structs into a FlatBuffer `vector`.
  /// @tparam T The data type of the struct array elements.
  /// @param[in] f A function that takes the current iteration 0..vector_size-1
  /// and a pointer to the struct that must be filled.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  /// This is mostly useful when flatbuffers are generated with mutation
  /// accessors.
  template<typename T> Offset<Vector<const T *>> CreateVectorOfStructs(
      size_t vector_size, const std::function<void(size_t i, T *)> &filler) {
    T* structs = StartVectorOfStructs<T>(vector_size);
    for (size_t i = 0; i < vector_size; i++) {
      filler(i, structs);
      structs++;
    }
    return EndVectorOfStructs<T>(vector_size);
  }
  #endif
  // clang-format on

  /// @brief Serialize an array of structs into a FlatBuffer `vector`.
  /// @tparam T The data type of the struct array elements.
  /// @param[in] f A function that takes the current iteration 0..vector_size-1,
  /// a pointer to the struct that must be filled and the state argument.
  /// @param[in] state Arbitrary state to pass to f.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  /// This is mostly useful when flatbuffers are generated with mutation
  /// accessors.
  template<typename T, typename F, typename S>
  Offset<Vector<const T *>> CreateVectorOfStructs(size_t vector_size, F f,
                                                  S *state) {
    T *structs = StartVectorOfStructs<T>(vector_size);
    for (size_t i = 0; i < vector_size; i++) {
      f(i, structs, state);
      structs++;
    }
    return EndVectorOfStructs<T>(vector_size);
  }

  /// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`.
  /// @tparam T The data type of the `std::vector` struct elements.
  /// @param[in]] v A const reference to the `std::vector` of structs to
  /// serialize into the buffer as a `vector`.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T, typename Alloc>
  Offset<Vector<const T *>> CreateVectorOfStructs(
      const std::vector<T, Alloc> &v) {
    return CreateVectorOfStructs(data(v), v.size());
  }

  /// @brief Serialize a `std::vector` of native structs into a FlatBuffer
  /// `vector`.
  /// @tparam T The data type of the `std::vector` struct elements.
  /// @tparam S The data type of the `std::vector` native struct elements.
  /// @param[in]] v A const reference to the `std::vector` of structs to
  /// serialize into the buffer as a `vector`.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T, typename S>
  Offset<Vector<const T *>> CreateVectorOfNativeStructs(
      const std::vector<S> &v) {
    return CreateVectorOfNativeStructs<T, S>(data(v), v.size());
  }

  /// @cond FLATBUFFERS_INTERNAL
  template<typename T> struct StructKeyComparator {
    bool operator()(const T &a, const T &b) const {
      return a.KeyCompareLessThan(&b);
    }

   private:
    StructKeyComparator &operator=(const StructKeyComparator &);
  };
  /// @endcond

  /// @brief Serialize a `std::vector` of structs into a FlatBuffer `vector`
  /// in sorted order.
  /// @tparam T The data type of the `std::vector` struct elements.
  /// @param[in]] v A const reference to the `std::vector` of structs to
  /// serialize into the buffer as a `vector`.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T>
  Offset<Vector<const T *>> CreateVectorOfSortedStructs(std::vector<T> *v) {
    return CreateVectorOfSortedStructs(data(*v), v->size());
  }

  /// @brief Serialize a `std::vector` of native structs into a FlatBuffer
  /// `vector` in sorted order.
  /// @tparam T The data type of the `std::vector` struct elements.
  /// @tparam S The data type of the `std::vector` native struct elements.
  /// @param[in]] v A const reference to the `std::vector` of structs to
  /// serialize into the buffer as a `vector`.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T, typename S>
  Offset<Vector<const T *>> CreateVectorOfSortedNativeStructs(
      std::vector<S> *v) {
    return CreateVectorOfSortedNativeStructs<T, S>(data(*v), v->size());
  }

  /// @brief Serialize an array of structs into a FlatBuffer `vector` in sorted
  /// order.
  /// @tparam T The data type of the struct array elements.
  /// @param[in] v A pointer to the array of type `T` to serialize into the
  /// buffer as a `vector`.
  /// @param[in] len The number of elements to serialize.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T>
  Offset<Vector<const T *>> CreateVectorOfSortedStructs(T *v, size_t len) {
    std::sort(v, v + len, StructKeyComparator<T>());
    return CreateVectorOfStructs(v, len);
  }

  /// @brief Serialize an array of native structs into a FlatBuffer `vector` in
  /// sorted order.
  /// @tparam T The data type of the struct array elements.
  /// @tparam S The data type of the native struct array elements.
  /// @param[in] v A pointer to the array of type `S` to serialize into the
  /// buffer as a `vector`.
  /// @param[in] len The number of elements to serialize.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T, typename S>
  Offset<Vector<const T *>> CreateVectorOfSortedNativeStructs(S *v,
                                                              size_t len) {
    extern T Pack(const S &);
    typedef T (*Pack_t)(const S &);
    std::vector<T> vv(len);
    std::transform(v, v + len, vv.begin(), static_cast<Pack_t&>(Pack));
    return CreateVectorOfSortedStructs<T>(vv, len);
  }

  /// @cond FLATBUFFERS_INTERNAL
  template<typename T> struct TableKeyComparator {
    TableKeyComparator(vector_downward &buf) : buf_(buf) {}
    bool operator()(const Offset<T> &a, const Offset<T> &b) const {
      auto table_a = reinterpret_cast<T *>(buf_.data_at(a.o));
      auto table_b = reinterpret_cast<T *>(buf_.data_at(b.o));
      return table_a->KeyCompareLessThan(table_b);
    }
    vector_downward &buf_;

   private:
    TableKeyComparator &operator=(const TableKeyComparator &);
  };
  /// @endcond

  /// @brief Serialize an array of `table` offsets as a `vector` in the buffer
  /// in sorted order.
  /// @tparam T The data type that the offset refers to.
  /// @param[in] v An array of type `Offset<T>` that contains the `table`
  /// offsets to store in the buffer in sorted order.
  /// @param[in] len The number of elements to store in the `vector`.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T>
  Offset<Vector<Offset<T>>> CreateVectorOfSortedTables(Offset<T> *v,
                                                       size_t len) {
    std::sort(v, v + len, TableKeyComparator<T>(buf_));
    return CreateVector(v, len);
  }

  /// @brief Serialize an array of `table` offsets as a `vector` in the buffer
  /// in sorted order.
  /// @tparam T The data type that the offset refers to.
  /// @param[in] v An array of type `Offset<T>` that contains the `table`
  /// offsets to store in the buffer in sorted order.
  /// @return Returns a typed `Offset` into the serialized data indicating
  /// where the vector is stored.
  template<typename T>
  Offset<Vector<Offset<T>>> CreateVectorOfSortedTables(
      std::vector<Offset<T>> *v) {
    return CreateVectorOfSortedTables(data(*v), v->size());
  }

  /// @brief Specialized version of `CreateVector` for non-copying use cases.
  /// Write the data any time later to the returned buffer pointer `buf`.
  /// @param[in] len The number of elements to store in the `vector`.
  /// @param[in] elemsize The size of each element in the `vector`.
  /// @param[out] buf A pointer to a `uint8_t` pointer that can be
  /// written to at a later time to serialize the data into a `vector`
  /// in the buffer.
  uoffset_t CreateUninitializedVector(size_t len, size_t elemsize,
                                      uint8_t **buf) {
    NotNested();
    StartVector(len, elemsize);
    buf_.make_space(len * elemsize);
    auto vec_start = GetSize();
    auto vec_end = EndVector(len);
    *buf = buf_.data_at(vec_start);
    return vec_end;
  }

  /// @brief Specialized version of `CreateVector` for non-copying use cases.
  /// Write the data any time later to the returned buffer pointer `buf`.
  /// @tparam T The data type of the data that will be stored in the buffer
  /// as a `vector`.
  /// @param[in] len The number of elements to store in the `vector`.
  /// @param[out] buf A pointer to a pointer of type `T` that can be
  /// written to at a later time to serialize the data into a `vector`
  /// in the buffer.
  template<typename T>
  Offset<Vector<T>> CreateUninitializedVector(size_t len, T **buf) {
    AssertScalarT<T>();
    return CreateUninitializedVector(len, sizeof(T),
                                     reinterpret_cast<uint8_t **>(buf));
  }

  template<typename T>
  Offset<Vector<const T*>> CreateUninitializedVectorOfStructs(size_t len, T **buf) {
    return CreateUninitializedVector(len, sizeof(T),
                                     reinterpret_cast<uint8_t **>(buf));
  }


  // @brief Create a vector of scalar type T given as input a vector of scalar
  // type U, useful with e.g. pre "enum class" enums, or any existing scalar
  // data of the wrong type.
  template<typename T, typename U>
  Offset<Vector<T>> CreateVectorScalarCast(const U *v, size_t len) {
    AssertScalarT<T>();
    AssertScalarT<U>();
    StartVector(len, sizeof(T));
    for (auto i = len; i > 0;) { PushElement(static_cast<T>(v[--i])); }
    return Offset<Vector<T>>(EndVector(len));
  }

  /// @brief Write a struct by itself, typically to be part of a union.
  template<typename T> Offset<const T *> CreateStruct(const T &structobj) {
    NotNested();
    Align(AlignOf<T>());
    buf_.push_small(structobj);
    return Offset<const T *>(GetSize());
  }

  /// @brief The length of a FlatBuffer file header.
  static const size_t kFileIdentifierLength = 4;

  /// @brief Finish serializing a buffer by writing the root offset.
  /// @param[in] file_identifier If a `file_identifier` is given, the buffer
  /// will be prefixed with a standard FlatBuffers file header.
  template<typename T>
  void Finish(Offset<T> root, const char *file_identifier = nullptr) {
    Finish(root.o, file_identifier, false);
  }

  /// @brief Finish a buffer with a 32 bit size field pre-fixed (size of the
  /// buffer following the size field). These buffers are NOT compatible
  /// with standard buffers created by Finish, i.e. you can't call GetRoot
  /// on them, you have to use GetSizePrefixedRoot instead.
  /// All >32 bit quantities in this buffer will be aligned when the whole
  /// size pre-fixed buffer is aligned.
  /// These kinds of buffers are useful for creating a stream of FlatBuffers.
  template<typename T>
  void FinishSizePrefixed(Offset<T> root,
                          const char *file_identifier = nullptr) {
    Finish(root.o, file_identifier, true);
  }

  void SwapBufAllocator(FlatBufferBuilder &other) {
    buf_.swap_allocator(other.buf_);
  }

protected:

  // You shouldn't really be copying instances of this class.
  FlatBufferBuilder(const FlatBufferBuilder &);
  FlatBufferBuilder &operator=(const FlatBufferBuilder &);

  void Finish(uoffset_t root, const char *file_identifier, bool size_prefix) {
    NotNested();
    buf_.clear_scratch();
    // This will cause the whole buffer to be aligned.
    PreAlign((size_prefix ? sizeof(uoffset_t) : 0) + sizeof(uoffset_t) +
                 (file_identifier ? kFileIdentifierLength : 0),
             minalign_);
    if (file_identifier) {
      FLATBUFFERS_ASSERT(strlen(file_identifier) == kFileIdentifierLength);
      PushBytes(reinterpret_cast<const uint8_t *>(file_identifier),
                kFileIdentifierLength);
    }
    PushElement(ReferTo(root));  // Location of root.
    if (size_prefix) { PushElement(GetSize()); }
    finished = true;
  }

  struct FieldLoc {
    uoffset_t off;
    voffset_t id;
  };

  vector_downward buf_;

  // Accumulating offsets of table members while it is being built.
  // We store these in the scratch pad of buf_, after the vtable offsets.
  uoffset_t num_field_loc;
  // Track how much of the vtable is in use, so we can output the most compact
  // possible vtable.
  voffset_t max_voffset_;

  // Ensure objects are not nested.
  bool nested;

  // Ensure the buffer is finished before it is being accessed.
  bool finished;

  size_t minalign_;

  bool force_defaults_;  // Serialize values equal to their defaults anyway.

  bool dedup_vtables_;

  struct StringOffsetCompare {
    StringOffsetCompare(const vector_downward &buf) : buf_(&buf) {}
    bool operator()(const Offset<String> &a, const Offset<String> &b) const {
      auto stra = reinterpret_cast<const String *>(buf_->data_at(a.o));
      auto strb = reinterpret_cast<const String *>(buf_->data_at(b.o));
      return StringLessThan(stra->data(), stra->size(),
                            strb->data(), strb->size());
    }
    const vector_downward *buf_;
  };

  // For use with CreateSharedString. Instantiated on first use only.
  typedef std::set<Offset<String>, StringOffsetCompare> StringOffsetMap;
  StringOffsetMap *string_pool;

 private:
  // Allocates space for a vector of structures.
  // Must be completed with EndVectorOfStructs().
  template<typename T> T *StartVectorOfStructs(size_t vector_size) {
    StartVector(vector_size * sizeof(T) / AlignOf<T>(), AlignOf<T>());
    return reinterpret_cast<T *>(buf_.make_space(vector_size * sizeof(T)));
  }

  // End the vector of structues in the flatbuffers.
  // Vector should have previously be started with StartVectorOfStructs().
  template<typename T>
  Offset<Vector<const T *>> EndVectorOfStructs(size_t vector_size) {
    return Offset<Vector<const T *>>(EndVector(vector_size));
  }
};
/// @}

/// @cond FLATBUFFERS_INTERNAL
// Helpers to get a typed pointer to the root object contained in the buffer.
template<typename T> T *GetMutableRoot(void *buf) {
  EndianCheck();
  return reinterpret_cast<T *>(
      reinterpret_cast<uint8_t *>(buf) +
      EndianScalar(*reinterpret_cast<uoffset_t *>(buf)));
}

template<typename T> const T *GetRoot(const void *buf) {
  return GetMutableRoot<T>(const_cast<void *>(buf));
}

template<typename T> const T *GetSizePrefixedRoot(const void *buf) {
  return GetRoot<T>(reinterpret_cast<const uint8_t *>(buf) + sizeof(uoffset_t));
}

/// Helpers to get a typed pointer to objects that are currently being built.
/// @warning Creating new objects will lead to reallocations and invalidates
/// the pointer!
template<typename T>
T *GetMutableTemporaryPointer(FlatBufferBuilder &fbb, Offset<T> offset) {
  return reinterpret_cast<T *>(fbb.GetCurrentBufferPointer() + fbb.GetSize() -
                               offset.o);
}

template<typename T>
const T *GetTemporaryPointer(FlatBufferBuilder &fbb, Offset<T> offset) {
  return GetMutableTemporaryPointer<T>(fbb, offset);
}

/// @brief Get a pointer to the the file_identifier section of the buffer.
/// @return Returns a const char pointer to the start of the file_identifier
/// characters in the buffer.  The returned char * has length
/// 'flatbuffers::FlatBufferBuilder::kFileIdentifierLength'.
/// This function is UNDEFINED for FlatBuffers whose schema does not include
/// a file_identifier (likely points at padding or the start of a the root
/// vtable).
inline const char *GetBufferIdentifier(const void *buf, bool size_prefixed = false) {
  return reinterpret_cast<const char *>(buf) +
         ((size_prefixed) ? 2 * sizeof(uoffset_t) : sizeof(uoffset_t));
}

// Helper to see if the identifier in a buffer has the expected value.
inline bool BufferHasIdentifier(const void *buf, const char *identifier, bool size_prefixed = false) {
  return strncmp(GetBufferIdentifier(buf, size_prefixed), identifier,
                 FlatBufferBuilder::kFileIdentifierLength) == 0;
}

// Helper class to verify the integrity of a FlatBuffer
class Verifier FLATBUFFERS_FINAL_CLASS {
 public:
  Verifier(const uint8_t *buf, size_t buf_len, uoffset_t _max_depth = 64,
           uoffset_t _max_tables = 1000000, bool _check_alignment = true)
      : buf_(buf),
        size_(buf_len),
        depth_(0),
        max_depth_(_max_depth),
        num_tables_(0),
        max_tables_(_max_tables),
        upper_bound_(0),
        check_alignment_(_check_alignment)
  {
    FLATBUFFERS_ASSERT(size_ < FLATBUFFERS_MAX_BUFFER_SIZE);
  }

  // Central location where any verification failures register.
  bool Check(bool ok) const {
    // clang-format off
    #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE
      FLATBUFFERS_ASSERT(ok);
    #endif
    #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
      if (!ok)
        upper_bound_ = 0;
    #endif
    // clang-format on
    return ok;
  }

  // Verify any range within the buffer.
  bool Verify(size_t elem, size_t elem_len) const {
    // clang-format off
    #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
      auto upper_bound = elem + elem_len;
      if (upper_bound_ < upper_bound)
        upper_bound_ =  upper_bound;
    #endif
    // clang-format on
    return Check(elem_len < size_ && elem <= size_ - elem_len);
  }

  template<typename T> bool VerifyAlignment(size_t elem) const {
    return (elem & (sizeof(T) - 1)) == 0 || !check_alignment_;
  }

  // Verify a range indicated by sizeof(T).
  template<typename T> bool Verify(size_t elem) const {
    return VerifyAlignment<T>(elem) && Verify(elem, sizeof(T));
  }

  // Verify relative to a known-good base pointer.
  bool Verify(const uint8_t *base, voffset_t elem_off, size_t elem_len) const {
    return Verify(static_cast<size_t>(base - buf_) + elem_off, elem_len);
  }

  template<typename T> bool Verify(const uint8_t *base, voffset_t elem_off)
      const {
    return Verify(static_cast<size_t>(base - buf_) + elem_off, sizeof(T));
  }

  // Verify a pointer (may be NULL) of a table type.
  template<typename T> bool VerifyTable(const T *table) {
    return !table || table->Verify(*this);
  }

  // Verify a pointer (may be NULL) of any vector type.
  template<typename T> bool VerifyVector(const Vector<T> *vec) const {
    return !vec || VerifyVectorOrString(reinterpret_cast<const uint8_t *>(vec),
                                        sizeof(T));
  }

  // Verify a pointer (may be NULL) of a vector to struct.
  template<typename T> bool VerifyVector(const Vector<const T *> *vec) const {
    return VerifyVector(reinterpret_cast<const Vector<T> *>(vec));
  }

  // Verify a pointer (may be NULL) to string.
  bool VerifyString(const String *str) const {
    size_t end;
    return !str ||
           (VerifyVectorOrString(reinterpret_cast<const uint8_t *>(str),
                                 1, &end) &&
            Verify(end, 1) &&      // Must have terminator
            Check(buf_[end] == '\0'));  // Terminating byte must be 0.
  }

  // Common code between vectors and strings.
  bool VerifyVectorOrString(const uint8_t *vec, size_t elem_size,
                    size_t *end = nullptr) const {
    auto veco = static_cast<size_t>(vec - buf_);
    // Check we can read the size field.
    if (!Verify<uoffset_t>(veco)) return false;
    // Check the whole array. If this is a string, the byte past the array
    // must be 0.
    auto size = ReadScalar<uoffset_t>(vec);
    auto max_elems = FLATBUFFERS_MAX_BUFFER_SIZE / elem_size;
    if (!Check(size < max_elems))
      return false;  // Protect against byte_size overflowing.
    auto byte_size = sizeof(size) + elem_size * size;
    if (end) *end = veco + byte_size;
    return Verify(veco, byte_size);
  }

  // Special case for string contents, after the above has been called.
  bool VerifyVectorOfStrings(const Vector<Offset<String>> *vec) const {
    if (vec) {
      for (uoffset_t i = 0; i < vec->size(); i++) {
        if (!VerifyString(vec->Get(i))) return false;
      }
    }
    return true;
  }

  // Special case for table contents, after the above has been called.
  template<typename T> bool VerifyVectorOfTables(const Vector<Offset<T>> *vec) {
    if (vec) {
      for (uoffset_t i = 0; i < vec->size(); i++) {
        if (!vec->Get(i)->Verify(*this)) return false;
      }
    }
    return true;
  }

  bool VerifyTableStart(const uint8_t *table) {
    // Check the vtable offset.
    auto tableo = static_cast<size_t>(table - buf_);
    if (!Verify<soffset_t>(tableo)) return false;
    // This offset may be signed, but doing the substraction unsigned always
    // gives the result we want.
    auto vtableo = tableo - static_cast<size_t>(ReadScalar<soffset_t>(table));
    // Check the vtable size field, then check vtable fits in its entirety.
    return VerifyComplexity() && Verify<voffset_t>(vtableo) &&
           VerifyAlignment<voffset_t>(ReadScalar<voffset_t>(buf_ + vtableo)) &&
           Verify(vtableo, ReadScalar<voffset_t>(buf_ + vtableo));
  }

  template<typename T>
  bool VerifyBufferFromStart(const char *identifier, size_t start) {
    if (identifier &&
        (size_ < 2 * sizeof(flatbuffers::uoffset_t) ||
         !BufferHasIdentifier(buf_ + start, identifier))) {
      return false;
    }

    // Call T::Verify, which must be in the generated code for this type.
    auto o = VerifyOffset(start);
    return o && reinterpret_cast<const T *>(buf_ + start + o)->Verify(*this)
    // clang-format off
    #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
           && GetComputedSize()
    #endif
        ;
    // clang-format on
  }

  // Verify this whole buffer, starting with root type T.
  template<typename T> bool VerifyBuffer() { return VerifyBuffer<T>(nullptr); }

  template<typename T> bool VerifyBuffer(const char *identifier) {
    return VerifyBufferFromStart<T>(identifier, 0);
  }

  template<typename T> bool VerifySizePrefixedBuffer(const char *identifier) {
    return Verify<uoffset_t>(0U) &&
           ReadScalar<uoffset_t>(buf_) == size_ - sizeof(uoffset_t) &&
           VerifyBufferFromStart<T>(identifier, sizeof(uoffset_t));
  }

  uoffset_t VerifyOffset(size_t start) const {
    if (!Verify<uoffset_t>(start)) return 0;
    auto o = ReadScalar<uoffset_t>(buf_ + start);
    // May not point to itself.
    if (!Check(o != 0)) return 0;
    // Can't wrap around / buffers are max 2GB.
    if (!Check(static_cast<soffset_t>(o) >= 0)) return 0;
    // Must be inside the buffer to create a pointer from it (pointer outside
    // buffer is UB).
    if (!Verify(start + o, 1)) return 0;
    return o;
  }

  uoffset_t VerifyOffset(const uint8_t *base, voffset_t start) const {
    return VerifyOffset(static_cast<size_t>(base - buf_) + start);
  }

  // Called at the start of a table to increase counters measuring data
  // structure depth and amount, and possibly bails out with false if
  // limits set by the constructor have been hit. Needs to be balanced
  // with EndTable().
  bool VerifyComplexity() {
    depth_++;
    num_tables_++;
    return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_);
  }

  // Called at the end of a table to pop the depth count.
  bool EndTable() {
    depth_--;
    return true;
  }

  // Returns the message size in bytes
  size_t GetComputedSize() const {
    // clang-format off
    #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
      uintptr_t size = upper_bound_;
      // Align the size to uoffset_t
      size = (size - 1 + sizeof(uoffset_t)) & ~(sizeof(uoffset_t) - 1);
      return (size > size_) ?  0 : size;
    #else
      // Must turn on FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE for this to work.
      (void)upper_bound_;
      FLATBUFFERS_ASSERT(false);
      return 0;
    #endif
    // clang-format on
  }

 private:
  const uint8_t *buf_;
  size_t size_;
  uoffset_t depth_;
  uoffset_t max_depth_;
  uoffset_t num_tables_;
  uoffset_t max_tables_;
  mutable size_t upper_bound_;
  bool check_alignment_;
};

// Convenient way to bundle a buffer and its length, to pass it around
// typed by its root.
// A BufferRef does not own its buffer.
struct BufferRefBase {};  // for std::is_base_of
template<typename T> struct BufferRef : BufferRefBase {
  BufferRef() : buf(nullptr), len(0), must_free(false) {}
  BufferRef(uint8_t *_buf, uoffset_t _len)
      : buf(_buf), len(_len), must_free(false) {}

  ~BufferRef() {
    if (must_free) free(buf);
  }

  const T *GetRoot() const { return flatbuffers::GetRoot<T>(buf); }

  bool Verify() {
    Verifier verifier(buf, len);
    return verifier.VerifyBuffer<T>(nullptr);
  }

  uint8_t *buf;
  uoffset_t len;
  bool must_free;
};

// "structs" are flat structures that do not have an offset table, thus
// always have all members present and do not support forwards/backwards
// compatible extensions.

class Struct FLATBUFFERS_FINAL_CLASS {
 public:
  template<typename T> T GetField(uoffset_t o) const {
    return ReadScalar<T>(&data_[o]);
  }

  template<typename T> T GetStruct(uoffset_t o) const {
    return reinterpret_cast<T>(&data_[o]);
  }

  const uint8_t *GetAddressOf(uoffset_t o) const { return &data_[o]; }
  uint8_t *GetAddressOf(uoffset_t o) { return &data_[o]; }

 private:
  uint8_t data_[1];
};

// "tables" use an offset table (possibly shared) that allows fields to be
// omitted and added at will, but uses an extra indirection to read.
class Table {
 public:
  const uint8_t *GetVTable() const {
    return data_ - ReadScalar<soffset_t>(data_);
  }

  // This gets the field offset for any of the functions below it, or 0
  // if the field was not present.
  voffset_t GetOptionalFieldOffset(voffset_t field) const {
    // The vtable offset is always at the start.
    auto vtable = GetVTable();
    // The first element is the size of the vtable (fields + type id + itself).
    auto vtsize = ReadScalar<voffset_t>(vtable);
    // If the field we're accessing is outside the vtable, we're reading older
    // data, so it's the same as if the offset was 0 (not present).
    return field < vtsize ? ReadScalar<voffset_t>(vtable + field) : 0;
  }

  template<typename T> T GetField(voffset_t field, T defaultval) const {
    auto field_offset = GetOptionalFieldOffset(field);
    return field_offset ? ReadScalar<T>(data_ + field_offset) : defaultval;
  }

  template<typename P> P GetPointer(voffset_t field) {
    auto field_offset = GetOptionalFieldOffset(field);
    auto p = data_ + field_offset;
    return field_offset ? reinterpret_cast<P>(p + ReadScalar<uoffset_t>(p))
                        : nullptr;
  }
  template<typename P> P GetPointer(voffset_t field) const {
    return const_cast<Table *>(this)->GetPointer<P>(field);
  }

  template<typename P> P GetStruct(voffset_t field) const {
    auto field_offset = GetOptionalFieldOffset(field);
    auto p = const_cast<uint8_t *>(data_ + field_offset);
    return field_offset ? reinterpret_cast<P>(p) : nullptr;
  }

  template<typename T> bool SetField(voffset_t field, T val, T def) {
    auto field_offset = GetOptionalFieldOffset(field);
    if (!field_offset) return IsTheSameAs(val, def);
    WriteScalar(data_ + field_offset, val);
    return true;
  }

  bool SetPointer(voffset_t field, const uint8_t *val) {
    auto field_offset = GetOptionalFieldOffset(field);
    if (!field_offset) return false;
    WriteScalar(data_ + field_offset,
                static_cast<uoffset_t>(val - (data_ + field_offset)));
    return true;
  }

  uint8_t *GetAddressOf(voffset_t field) {
    auto field_offset = GetOptionalFieldOffset(field);
    return field_offset ? data_ + field_offset : nullptr;
  }
  const uint8_t *GetAddressOf(voffset_t field) const {
    return const_cast<Table *>(this)->GetAddressOf(field);
  }

  bool CheckField(voffset_t field) const {
    return GetOptionalFieldOffset(field) != 0;
  }

  // Verify the vtable of this table.
  // Call this once per table, followed by VerifyField once per field.
  bool VerifyTableStart(Verifier &verifier) const {
    return verifier.VerifyTableStart(data_);
  }

  // Verify a particular field.
  template<typename T>
  bool VerifyField(const Verifier &verifier, voffset_t field) const {
    // Calling GetOptionalFieldOffset should be safe now thanks to
    // VerifyTable().
    auto field_offset = GetOptionalFieldOffset(field);
    // Check the actual field.
    return !field_offset || verifier.Verify<T>(data_, field_offset);
  }

  // VerifyField for required fields.
  template<typename T>
  bool VerifyFieldRequired(const Verifier &verifier, voffset_t field) const {
    auto field_offset = GetOptionalFieldOffset(field);
    return verifier.Check(field_offset != 0) &&
           verifier.Verify<T>(data_, field_offset);
  }

  // Versions for offsets.
  bool VerifyOffset(const Verifier &verifier, voffset_t field) const {
    auto field_offset = GetOptionalFieldOffset(field);
    return !field_offset || verifier.VerifyOffset(data_, field_offset);
  }

  bool VerifyOffsetRequired(const Verifier &verifier, voffset_t field) const {
    auto field_offset = GetOptionalFieldOffset(field);
    return verifier.Check(field_offset != 0) &&
           verifier.VerifyOffset(data_, field_offset);
  }

 private:
  // private constructor & copy constructor: you obtain instances of this
  // class by pointing to existing data only
  Table();
  Table(const Table &other);

  uint8_t data_[1];
};

template<typename T> void FlatBufferBuilder::Required(Offset<T> table,
                                                      voffset_t field) {
  auto table_ptr = reinterpret_cast<const Table *>(buf_.data_at(table.o));
  bool ok = table_ptr->GetOptionalFieldOffset(field) != 0;
  // If this fails, the caller will show what field needs to be set.
  FLATBUFFERS_ASSERT(ok);
  (void)ok;
}

/// @brief This can compute the start of a FlatBuffer from a root pointer, i.e.
/// it is the opposite transformation of GetRoot().
/// This may be useful if you want to pass on a root and have the recipient
/// delete the buffer afterwards.
inline const uint8_t *GetBufferStartFromRootPointer(const void *root) {
  auto table = reinterpret_cast<const Table *>(root);
  auto vtable = table->GetVTable();
  // Either the vtable is before the root or after the root.
  auto start = (std::min)(vtable, reinterpret_cast<const uint8_t *>(root));
  // Align to at least sizeof(uoffset_t).
  start = reinterpret_cast<const uint8_t *>(reinterpret_cast<uintptr_t>(start) &
                                            ~(sizeof(uoffset_t) - 1));
  // Additionally, there may be a file_identifier in the buffer, and the root
  // offset. The buffer may have been aligned to any size between
  // sizeof(uoffset_t) and FLATBUFFERS_MAX_ALIGNMENT (see "force_align").
  // Sadly, the exact alignment is only known when constructing the buffer,
  // since it depends on the presence of values with said alignment properties.
  // So instead, we simply look at the next uoffset_t values (root,
  // file_identifier, and alignment padding) to see which points to the root.
  // None of the other values can "impersonate" the root since they will either
  // be 0 or four ASCII characters.
  static_assert(FlatBufferBuilder::kFileIdentifierLength == sizeof(uoffset_t),
                "file_identifier is assumed to be the same size as uoffset_t");
  for (auto possible_roots = FLATBUFFERS_MAX_ALIGNMENT / sizeof(uoffset_t) + 1;
       possible_roots; possible_roots--) {
    start -= sizeof(uoffset_t);
    if (ReadScalar<uoffset_t>(start) + start ==
        reinterpret_cast<const uint8_t *>(root))
      return start;
  }
  // We didn't find the root, either the "root" passed isn't really a root,
  // or the buffer is corrupt.
  // Assert, because calling this function with bad data may cause reads
  // outside of buffer boundaries.
  FLATBUFFERS_ASSERT(false);
  return nullptr;
}

/// @brief This return the prefixed size of a FlatBuffer.
inline uoffset_t GetPrefixedSize(const uint8_t* buf){ return ReadScalar<uoffset_t>(buf); }

// Base class for native objects (FlatBuffer data de-serialized into native
// C++ data structures).
// Contains no functionality, purely documentative.
struct NativeTable {};

/// @brief Function types to be used with resolving hashes into objects and
/// back again. The resolver gets a pointer to a field inside an object API
/// object that is of the type specified in the schema using the attribute
/// `cpp_type` (it is thus important whatever you write to this address
/// matches that type). The value of this field is initially null, so you
/// may choose to implement a delayed binding lookup using this function
/// if you wish. The resolver does the opposite lookup, for when the object
/// is being serialized again.
typedef uint64_t hash_value_t;
// clang-format off
#ifdef FLATBUFFERS_CPP98_STL
  typedef void (*resolver_function_t)(void **pointer_adr, hash_value_t hash);
  typedef hash_value_t (*rehasher_function_t)(void *pointer);
#else
  typedef std::function<void (void **pointer_adr, hash_value_t hash)>
          resolver_function_t;
  typedef std::function<hash_value_t (void *pointer)> rehasher_function_t;
#endif
// clang-format on

// Helper function to test if a field is present, using any of the field
// enums in the generated code.
// `table` must be a generated table type. Since this is a template parameter,
// this is not typechecked to be a subclass of Table, so beware!
// Note: this function will return false for fields equal to the default
// value, since they're not stored in the buffer (unless force_defaults was
// used).
template<typename T>
bool IsFieldPresent(const T *table, typename T::FlatBuffersVTableOffset field) {
  // Cast, since Table is a private baseclass of any table types.
  return reinterpret_cast<const Table *>(table)->CheckField(
      static_cast<voffset_t>(field));
}

// Utility function for reverse lookups on the EnumNames*() functions
// (in the generated C++ code)
// names must be NULL terminated.
inline int LookupEnum(const char **names, const char *name) {
  for (const char **p = names; *p; p++)
    if (!strcmp(*p, name)) return static_cast<int>(p - names);
  return -1;
}

// These macros allow us to layout a struct with a guarantee that they'll end
// up looking the same on different compilers and platforms.
// It does this by disallowing the compiler to do any padding, and then
// does padding itself by inserting extra padding fields that make every
// element aligned to its own size.
// Additionally, it manually sets the alignment of the struct as a whole,
// which is typically its largest element, or a custom size set in the schema
// by the force_align attribute.
// These are used in the generated code only.

// clang-format off
#if defined(_MSC_VER)
  #define FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(alignment) \
    __pragma(pack(1)) \
    struct __declspec(align(alignment))
  #define FLATBUFFERS_STRUCT_END(name, size) \
    __pragma(pack()) \
    static_assert(sizeof(name) == size, "compiler breaks packing rules")
#elif defined(__GNUC__) || defined(__clang__)
  #define FLATBUFFERS_MANUALLY_ALIGNED_STRUCT(alignment) \
    _Pragma("pack(1)") \
    struct __attribute__((aligned(alignment)))
  #define FLATBUFFERS_STRUCT_END(name, size) \
    _Pragma("pack()") \
    static_assert(sizeof(name) == size, "compiler breaks packing rules")
#else
  #error Unknown compiler, please define structure alignment macros
#endif
// clang-format on

// Minimal reflection via code generation.
// Besides full-fat reflection (see reflection.h) and parsing/printing by
// loading schemas (see idl.h), we can also have code generation for mimimal
// reflection data which allows pretty-printing and other uses without needing
// a schema or a parser.
// Generate code with --reflect-types (types only) or --reflect-names (names
// also) to enable.
// See minireflect.h for utilities using this functionality.

// These types are organized slightly differently as the ones in idl.h.
enum SequenceType { ST_TABLE, ST_STRUCT, ST_UNION, ST_ENUM };

// Scalars have the same order as in idl.h
// clang-format off
#define FLATBUFFERS_GEN_ELEMENTARY_TYPES(ET) \
  ET(ET_UTYPE) \
  ET(ET_BOOL) \
  ET(ET_CHAR) \
  ET(ET_UCHAR) \
  ET(ET_SHORT) \
  ET(ET_USHORT) \
  ET(ET_INT) \
  ET(ET_UINT) \
  ET(ET_LONG) \
  ET(ET_ULONG) \
  ET(ET_FLOAT) \
  ET(ET_DOUBLE) \
  ET(ET_STRING) \
  ET(ET_SEQUENCE)  // See SequenceType.

enum ElementaryType {
  #define FLATBUFFERS_ET(E) E,
    FLATBUFFERS_GEN_ELEMENTARY_TYPES(FLATBUFFERS_ET)
  #undef FLATBUFFERS_ET
};

inline const char * const *ElementaryTypeNames() {
  static const char * const names[] = {
    #define FLATBUFFERS_ET(E) #E,
      FLATBUFFERS_GEN_ELEMENTARY_TYPES(FLATBUFFERS_ET)
    #undef FLATBUFFERS_ET
  };
  return names;
}
// clang-format on

// Basic type info cost just 16bits per field!
struct TypeCode {
  uint16_t base_type : 4;  // ElementaryType
  uint16_t is_vector : 1;
  int16_t sequence_ref : 11;  // Index into type_refs below, or -1 for none.
};

static_assert(sizeof(TypeCode) == 2, "TypeCode");

struct TypeTable;

// Signature of the static method present in each type.
typedef const TypeTable *(*TypeFunction)();

struct TypeTable {
  SequenceType st;
  size_t num_elems;  // of type_codes, values, names (but not type_refs).
  const TypeCode *type_codes;  // num_elems count
  const TypeFunction *type_refs;  // less than num_elems entries (see TypeCode).
  const int64_t *values;  // Only set for non-consecutive enum/union or structs.
  const char * const *names;     // Only set if compiled with --reflect-names.
};

// String which identifies the current version of FlatBuffers.
// flatbuffer_version_string is used by Google developers to identify which
// applications uploaded to Google Play are using this library.  This allows
// the development team at Google to determine the popularity of the library.
// How it works: Applications that are uploaded to the Google Play Store are
// scanned for this version string.  We track which applications are using it
// to measure popularity.  You are free to remove it (of course) but we would
// appreciate if you left it in.

// Weak linkage is culled by VS & doesn't work on cygwin.
// clang-format off
#if !defined(_WIN32) && !defined(__CYGWIN__)

extern volatile __attribute__((weak)) const char *flatbuffer_version_string;
volatile __attribute__((weak)) const char *flatbuffer_version_string =
  "FlatBuffers "
  FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MAJOR) "."
  FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MINOR) "."
  FLATBUFFERS_STRING(FLATBUFFERS_VERSION_REVISION);

#endif  // !defined(_WIN32) && !defined(__CYGWIN__)

#define FLATBUFFERS_DEFINE_BITMASK_OPERATORS(E, T)\
    inline E operator | (E lhs, E rhs){\
        return E(T(lhs) | T(rhs));\
    }\
    inline E operator & (E lhs, E rhs){\
        return E(T(lhs) & T(rhs));\
    }\
    inline E operator ^ (E lhs, E rhs){\
        return E(T(lhs) ^ T(rhs));\
    }\
    inline E operator ~ (E lhs){\
        return E(~T(lhs));\
    }\
    inline E operator |= (E &lhs, E rhs){\
        lhs = lhs | rhs;\
        return lhs;\
    }\
    inline E operator &= (E &lhs, E rhs){\
        lhs = lhs & rhs;\
        return lhs;\
    }\
    inline E operator ^= (E &lhs, E rhs){\
        lhs = lhs ^ rhs;\
        return lhs;\
    }\
    inline bool operator !(E rhs) \
    {\
        return !bool(T(rhs)); \
    }
/// @endcond
}  // namespace flatbuffers

// clang-format on

#endif  // FLATBUFFERS_H_