# -*- coding: utf-8 -*- """fontTools.misc.bezierTools.py -- tools for working with Bezier path segments. """ from fontTools.misc.arrayTools import calcBounds from fontTools.misc.py23 import * import math __all__ = [ "approximateCubicArcLength", "approximateCubicArcLengthC", "approximateQuadraticArcLength", "approximateQuadraticArcLengthC", "calcCubicArcLength", "calcCubicArcLengthC", "calcQuadraticArcLength", "calcQuadraticArcLengthC", "calcCubicBounds", "calcQuadraticBounds", "splitLine", "splitQuadratic", "splitCubic", "splitQuadraticAtT", "splitCubicAtT", "solveQuadratic", "solveCubic", ] def calcCubicArcLength(pt1, pt2, pt3, pt4, tolerance=0.005): """Calculates the arc length for a cubic Bezier segment. Whereas :func:`approximateCubicArcLength` approximates the length, this function calculates it by "measuring", recursively dividing the curve until the divided segments are shorter than ``tolerance``. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. tolerance: Controls the precision of the calcuation. Returns: Arc length value. """ return calcCubicArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4), tolerance) def _split_cubic_into_two(p0, p1, p2, p3): mid = (p0 + 3 * (p1 + p2) + p3) * .125 deriv3 = (p3 + p2 - p1 - p0) * .125 return ((p0, (p0 + p1) * .5, mid - deriv3, mid), (mid, mid + deriv3, (p2 + p3) * .5, p3)) def _calcCubicArcLengthCRecurse(mult, p0, p1, p2, p3): arch = abs(p0-p3) box = abs(p0-p1) + abs(p1-p2) + abs(p2-p3) if arch * mult >= box: return (arch + box) * .5 else: one,two = _split_cubic_into_two(p0,p1,p2,p3) return _calcCubicArcLengthCRecurse(mult, *one) + _calcCubicArcLengthCRecurse(mult, *two) def calcCubicArcLengthC(pt1, pt2, pt3, pt4, tolerance=0.005): """Calculates the arc length for a cubic Bezier segment. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers. tolerance: Controls the precision of the calcuation. Returns: Arc length value. """ mult = 1. + 1.5 * tolerance # The 1.5 is a empirical hack; no math return _calcCubicArcLengthCRecurse(mult, pt1, pt2, pt3, pt4) epsilonDigits = 6 epsilon = 1e-10 def _dot(v1, v2): return (v1 * v2.conjugate()).real def _intSecAtan(x): # In : sympy.integrate(sp.sec(sp.atan(x))) # Out: x*sqrt(x**2 + 1)/2 + asinh(x)/2 return x * math.sqrt(x**2 + 1)/2 + math.asinh(x)/2 def calcQuadraticArcLength(pt1, pt2, pt3): """Calculates the arc length for a quadratic Bezier segment. Args: pt1: Start point of the Bezier as 2D tuple. pt2: Handle point of the Bezier as 2D tuple. pt3: End point of the Bezier as 2D tuple. Returns: Arc length value. Example:: >>> calcQuadraticArcLength((0, 0), (0, 0), (0, 0)) # empty segment 0.0 >>> calcQuadraticArcLength((0, 0), (50, 0), (80, 0)) # collinear points 80.0 >>> calcQuadraticArcLength((0, 0), (0, 50), (0, 80)) # collinear points vertical 80.0 >>> calcQuadraticArcLength((0, 0), (50, 20), (100, 40)) # collinear points 107.70329614269008 >>> calcQuadraticArcLength((0, 0), (0, 100), (100, 0)) 154.02976155645263 >>> calcQuadraticArcLength((0, 0), (0, 50), (100, 0)) 120.21581243984076 >>> calcQuadraticArcLength((0, 0), (50, -10), (80, 50)) 102.53273816445825 >>> calcQuadraticArcLength((0, 0), (40, 0), (-40, 0)) # collinear points, control point outside 66.66666666666667 >>> calcQuadraticArcLength((0, 0), (40, 0), (0, 0)) # collinear points, looping back 40.0 """ return calcQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3)) def calcQuadraticArcLengthC(pt1, pt2, pt3): """Calculates the arc length for a quadratic Bezier segment. Args: pt1: Start point of the Bezier as a complex number. pt2: Handle point of the Bezier as a complex number. pt3: End point of the Bezier as a complex number. Returns: Arc length value. """ # Analytical solution to the length of a quadratic bezier. # I'll explain how I arrived at this later. d0 = pt2 - pt1 d1 = pt3 - pt2 d = d1 - d0 n = d * 1j scale = abs(n) if scale == 0.: return abs(pt3-pt1) origDist = _dot(n,d0) if abs(origDist) < epsilon: if _dot(d0,d1) >= 0: return abs(pt3-pt1) a, b = abs(d0), abs(d1) return (a*a + b*b) / (a+b) x0 = _dot(d,d0) / origDist x1 = _dot(d,d1) / origDist Len = abs(2 * (_intSecAtan(x1) - _intSecAtan(x0)) * origDist / (scale * (x1 - x0))) return Len def approximateQuadraticArcLength(pt1, pt2, pt3): """Calculates the arc length for a quadratic Bezier segment. Uses Gauss-Legendre quadrature for a branch-free approximation. See :func:`calcQuadraticArcLength` for a slower but more accurate result. Args: pt1: Start point of the Bezier as 2D tuple. pt2: Handle point of the Bezier as 2D tuple. pt3: End point of the Bezier as 2D tuple. Returns: Approximate arc length value. """ return approximateQuadraticArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3)) def approximateQuadraticArcLengthC(pt1, pt2, pt3): """Calculates the arc length for a quadratic Bezier segment. Uses Gauss-Legendre quadrature for a branch-free approximation. See :func:`calcQuadraticArcLength` for a slower but more accurate result. Args: pt1: Start point of the Bezier as a complex number. pt2: Handle point of the Bezier as a complex number. pt3: End point of the Bezier as a complex number. Returns: Approximate arc length value. """ # This, essentially, approximates the length-of-derivative function # to be integrated with the best-matching fifth-degree polynomial # approximation of it. # #https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Legendre_quadrature # abs(BezierCurveC[2].diff(t).subs({t:T})) for T in sorted(.5, .5±sqrt(3/5)/2), # weighted 5/18, 8/18, 5/18 respectively. v0 = abs(-0.492943519233745*pt1 + 0.430331482911935*pt2 + 0.0626120363218102*pt3) v1 = abs(pt3-pt1)*0.4444444444444444 v2 = abs(-0.0626120363218102*pt1 - 0.430331482911935*pt2 + 0.492943519233745*pt3) return v0 + v1 + v2 def calcQuadraticBounds(pt1, pt2, pt3): """Calculates the bounding rectangle for a quadratic Bezier segment. Args: pt1: Start point of the Bezier as a 2D tuple. pt2: Handle point of the Bezier as a 2D tuple. pt3: End point of the Bezier as a 2D tuple. Returns: A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``. Example:: >>> calcQuadraticBounds((0, 0), (50, 100), (100, 0)) (0, 0, 100, 50.0) >>> calcQuadraticBounds((0, 0), (100, 0), (100, 100)) (0.0, 0.0, 100, 100) """ (ax, ay), (bx, by), (cx, cy) = calcQuadraticParameters(pt1, pt2, pt3) ax2 = ax*2.0 ay2 = ay*2.0 roots = [] if ax2 != 0: roots.append(-bx/ax2) if ay2 != 0: roots.append(-by/ay2) points = [(ax*t*t + bx*t + cx, ay*t*t + by*t + cy) for t in roots if 0 <= t < 1] + [pt1, pt3] return calcBounds(points) def approximateCubicArcLength(pt1, pt2, pt3, pt4): """Approximates the arc length for a cubic Bezier segment. Uses Gauss-Lobatto quadrature with n=5 points to approximate arc length. See :func:`calcCubicArcLength` for a slower but more accurate result. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. Returns: Arc length value. Example:: >>> approximateCubicArcLength((0, 0), (25, 100), (75, 100), (100, 0)) 190.04332968932817 >>> approximateCubicArcLength((0, 0), (50, 0), (100, 50), (100, 100)) 154.8852074945903 >>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (150, 0)) # line; exact result should be 150. 149.99999999999991 >>> approximateCubicArcLength((0, 0), (50, 0), (100, 0), (-50, 0)) # cusp; exact result should be 150. 136.9267662156362 >>> approximateCubicArcLength((0, 0), (50, 0), (100, -50), (-50, 0)) # cusp 154.80848416537057 """ return approximateCubicArcLengthC(complex(*pt1), complex(*pt2), complex(*pt3), complex(*pt4)) def approximateCubicArcLengthC(pt1, pt2, pt3, pt4): """Approximates the arc length for a cubic Bezier segment. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as complex numbers. Returns: Arc length value. """ # This, essentially, approximates the length-of-derivative function # to be integrated with the best-matching seventh-degree polynomial # approximation of it. # # https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss.E2.80.93Lobatto_rules # abs(BezierCurveC[3].diff(t).subs({t:T})) for T in sorted(0, .5±(3/7)**.5/2, .5, 1), # weighted 1/20, 49/180, 32/90, 49/180, 1/20 respectively. v0 = abs(pt2-pt1)*.15 v1 = abs(-0.558983582205757*pt1 + 0.325650248872424*pt2 + 0.208983582205757*pt3 + 0.024349751127576*pt4) v2 = abs(pt4-pt1+pt3-pt2)*0.26666666666666666 v3 = abs(-0.024349751127576*pt1 - 0.208983582205757*pt2 - 0.325650248872424*pt3 + 0.558983582205757*pt4) v4 = abs(pt4-pt3)*.15 return v0 + v1 + v2 + v3 + v4 def calcCubicBounds(pt1, pt2, pt3, pt4): """Calculates the bounding rectangle for a quadratic Bezier segment. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. Returns: A four-item tuple representing the bounding rectangle ``(xMin, yMin, xMax, yMax)``. Example:: >>> calcCubicBounds((0, 0), (25, 100), (75, 100), (100, 0)) (0, 0, 100, 75.0) >>> calcCubicBounds((0, 0), (50, 0), (100, 50), (100, 100)) (0.0, 0.0, 100, 100) >>> print("%f %f %f %f" % calcCubicBounds((50, 0), (0, 100), (100, 100), (50, 0))) 35.566243 0.000000 64.433757 75.000000 """ (ax, ay), (bx, by), (cx, cy), (dx, dy) = calcCubicParameters(pt1, pt2, pt3, pt4) # calc first derivative ax3 = ax * 3.0 ay3 = ay * 3.0 bx2 = bx * 2.0 by2 = by * 2.0 xRoots = [t for t in solveQuadratic(ax3, bx2, cx) if 0 <= t < 1] yRoots = [t for t in solveQuadratic(ay3, by2, cy) if 0 <= t < 1] roots = xRoots + yRoots points = [(ax*t*t*t + bx*t*t + cx * t + dx, ay*t*t*t + by*t*t + cy * t + dy) for t in roots] + [pt1, pt4] return calcBounds(points) def splitLine(pt1, pt2, where, isHorizontal): """Split a line at a given coordinate. Args: pt1: Start point of line as 2D tuple. pt2: End point of line as 2D tuple. where: Position at which to split the line. isHorizontal: Direction of the ray splitting the line. If true, ``where`` is interpreted as a Y coordinate; if false, then ``where`` is interpreted as an X coordinate. Returns: A list of two line segments (each line segment being two 2D tuples) if the line was successfully split, or a list containing the original line. Example:: >>> printSegments(splitLine((0, 0), (100, 100), 50, True)) ((0, 0), (50, 50)) ((50, 50), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 100, True)) ((0, 0), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 0, True)) ((0, 0), (0, 0)) ((0, 0), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 0, False)) ((0, 0), (0, 0)) ((0, 0), (100, 100)) >>> printSegments(splitLine((100, 0), (0, 0), 50, False)) ((100, 0), (50, 0)) ((50, 0), (0, 0)) >>> printSegments(splitLine((0, 100), (0, 0), 50, True)) ((0, 100), (0, 50)) ((0, 50), (0, 0)) """ pt1x, pt1y = pt1 pt2x, pt2y = pt2 ax = (pt2x - pt1x) ay = (pt2y - pt1y) bx = pt1x by = pt1y a = (ax, ay)[isHorizontal] if a == 0: return [(pt1, pt2)] t = (where - (bx, by)[isHorizontal]) / a if 0 <= t < 1: midPt = ax * t + bx, ay * t + by return [(pt1, midPt), (midPt, pt2)] else: return [(pt1, pt2)] def splitQuadratic(pt1, pt2, pt3, where, isHorizontal): """Split a quadratic Bezier curve at a given coordinate. Args: pt1,pt2,pt3: Control points of the Bezier as 2D tuples. where: Position at which to split the curve. isHorizontal: Direction of the ray splitting the curve. If true, ``where`` is interpreted as a Y coordinate; if false, then ``where`` is interpreted as an X coordinate. Returns: A list of two curve segments (each curve segment being three 2D tuples) if the curve was successfully split, or a list containing the original curve. Example:: >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 150, False)) ((0, 0), (50, 100), (100, 0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, False)) ((0, 0), (25, 50), (50, 50)) ((50, 50), (75, 50), (100, 0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, False)) ((0, 0), (12.5, 25), (25, 37.5)) ((25, 37.5), (62.5, 75), (100, 0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, True)) ((0, 0), (7.32233, 14.6447), (14.6447, 25)) ((14.6447, 25), (50, 75), (85.3553, 25)) ((85.3553, 25), (92.6777, 14.6447), (100, -7.10543e-15)) >>> # XXX I'm not at all sure if the following behavior is desirable: >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, True)) ((0, 0), (25, 50), (50, 50)) ((50, 50), (50, 50), (50, 50)) ((50, 50), (75, 50), (100, 0)) """ a, b, c = calcQuadraticParameters(pt1, pt2, pt3) solutions = solveQuadratic(a[isHorizontal], b[isHorizontal], c[isHorizontal] - where) solutions = sorted([t for t in solutions if 0 <= t < 1]) if not solutions: return [(pt1, pt2, pt3)] return _splitQuadraticAtT(a, b, c, *solutions) def splitCubic(pt1, pt2, pt3, pt4, where, isHorizontal): """Split a cubic Bezier curve at a given coordinate. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. where: Position at which to split the curve. isHorizontal: Direction of the ray splitting the curve. If true, ``where`` is interpreted as a Y coordinate; if false, then ``where`` is interpreted as an X coordinate. Returns: A list of two curve segments (each curve segment being four 2D tuples) if the curve was successfully split, or a list containing the original curve. Example:: >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 150, False)) ((0, 0), (25, 100), (75, 100), (100, 0)) >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 50, False)) ((0, 0), (12.5, 50), (31.25, 75), (50, 75)) ((50, 75), (68.75, 75), (87.5, 50), (100, 0)) >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 25, True)) ((0, 0), (2.29379, 9.17517), (4.79804, 17.5085), (7.47414, 25)) ((7.47414, 25), (31.2886, 91.6667), (68.7114, 91.6667), (92.5259, 25)) ((92.5259, 25), (95.202, 17.5085), (97.7062, 9.17517), (100, 1.77636e-15)) """ a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) solutions = solveCubic(a[isHorizontal], b[isHorizontal], c[isHorizontal], d[isHorizontal] - where) solutions = sorted([t for t in solutions if 0 <= t < 1]) if not solutions: return [(pt1, pt2, pt3, pt4)] return _splitCubicAtT(a, b, c, d, *solutions) def splitQuadraticAtT(pt1, pt2, pt3, *ts): """Split a quadratic Bezier curve at one or more values of t. Args: pt1,pt2,pt3: Control points of the Bezier as 2D tuples. *ts: Positions at which to split the curve. Returns: A list of curve segments (each curve segment being three 2D tuples). Examples:: >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5)) ((0, 0), (25, 50), (50, 50)) ((50, 50), (75, 50), (100, 0)) >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5, 0.75)) ((0, 0), (25, 50), (50, 50)) ((50, 50), (62.5, 50), (75, 37.5)) ((75, 37.5), (87.5, 25), (100, 0)) """ a, b, c = calcQuadraticParameters(pt1, pt2, pt3) return _splitQuadraticAtT(a, b, c, *ts) def splitCubicAtT(pt1, pt2, pt3, pt4, *ts): """Split a cubic Bezier curve at one or more values of t. Args: pt1,pt2,pt3,pt4: Control points of the Bezier as 2D tuples. *ts: Positions at which to split the curve. Returns: A list of curve segments (each curve segment being four 2D tuples). Examples:: >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5)) ((0, 0), (12.5, 50), (31.25, 75), (50, 75)) ((50, 75), (68.75, 75), (87.5, 50), (100, 0)) >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5, 0.75)) ((0, 0), (12.5, 50), (31.25, 75), (50, 75)) ((50, 75), (59.375, 75), (68.75, 68.75), (77.3438, 56.25)) ((77.3438, 56.25), (85.9375, 43.75), (93.75, 25), (100, 0)) """ a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) return _splitCubicAtT(a, b, c, d, *ts) def _splitQuadraticAtT(a, b, c, *ts): ts = list(ts) segments = [] ts.insert(0, 0.0) ts.append(1.0) ax, ay = a bx, by = b cx, cy = c for i in range(len(ts) - 1): t1 = ts[i] t2 = ts[i+1] delta = (t2 - t1) # calc new a, b and c delta_2 = delta*delta a1x = ax * delta_2 a1y = ay * delta_2 b1x = (2*ax*t1 + bx) * delta b1y = (2*ay*t1 + by) * delta t1_2 = t1*t1 c1x = ax*t1_2 + bx*t1 + cx c1y = ay*t1_2 + by*t1 + cy pt1, pt2, pt3 = calcQuadraticPoints((a1x, a1y), (b1x, b1y), (c1x, c1y)) segments.append((pt1, pt2, pt3)) return segments def _splitCubicAtT(a, b, c, d, *ts): ts = list(ts) ts.insert(0, 0.0) ts.append(1.0) segments = [] ax, ay = a bx, by = b cx, cy = c dx, dy = d for i in range(len(ts) - 1): t1 = ts[i] t2 = ts[i+1] delta = (t2 - t1) delta_2 = delta*delta delta_3 = delta*delta_2 t1_2 = t1*t1 t1_3 = t1*t1_2 # calc new a, b, c and d a1x = ax * delta_3 a1y = ay * delta_3 b1x = (3*ax*t1 + bx) * delta_2 b1y = (3*ay*t1 + by) * delta_2 c1x = (2*bx*t1 + cx + 3*ax*t1_2) * delta c1y = (2*by*t1 + cy + 3*ay*t1_2) * delta d1x = ax*t1_3 + bx*t1_2 + cx*t1 + dx d1y = ay*t1_3 + by*t1_2 + cy*t1 + dy pt1, pt2, pt3, pt4 = calcCubicPoints((a1x, a1y), (b1x, b1y), (c1x, c1y), (d1x, d1y)) segments.append((pt1, pt2, pt3, pt4)) return segments # # Equation solvers. # from math import sqrt, acos, cos, pi def solveQuadratic(a, b, c, sqrt=sqrt): """Solve a quadratic equation. Solves *a*x*x + b*x + c = 0* where a, b and c are real. Args: a: coefficient of *x²* b: coefficient of *x* c: constant term Returns: A list of roots. Note that the returned list is neither guaranteed to be sorted nor to contain unique values! """ if abs(a) < epsilon: if abs(b) < epsilon: # We have a non-equation; therefore, we have no valid solution roots = [] else: # We have a linear equation with 1 root. roots = [-c/b] else: # We have a true quadratic equation. Apply the quadratic formula to find two roots. DD = b*b - 4.0*a*c if DD >= 0.0: rDD = sqrt(DD) roots = [(-b+rDD)/2.0/a, (-b-rDD)/2.0/a] else: # complex roots, ignore roots = [] return roots def solveCubic(a, b, c, d): """Solve a cubic equation. Solves *a*x*x*x + b*x*x + c*x + d = 0* where a, b, c and d are real. Args: a: coefficient of *x³* b: coefficient of *x²* c: coefficient of *x* d: constant term Returns: A list of roots. Note that the returned list is neither guaranteed to be sorted nor to contain unique values! Examples:: >>> solveCubic(1, 1, -6, 0) [-3.0, -0.0, 2.0] >>> solveCubic(-10.0, -9.0, 48.0, -29.0) [-2.9, 1.0, 1.0] >>> solveCubic(-9.875, -9.0, 47.625, -28.75) [-2.911392, 1.0, 1.0] >>> solveCubic(1.0, -4.5, 6.75, -3.375) [1.5, 1.5, 1.5] >>> solveCubic(-12.0, 18.0, -9.0, 1.50023651123) [0.5, 0.5, 0.5] >>> solveCubic( ... 9.0, 0.0, 0.0, -7.62939453125e-05 ... ) == [-0.0, -0.0, -0.0] True """ # # adapted from: # CUBIC.C - Solve a cubic polynomial # public domain by Ross Cottrell # found at: http://www.strangecreations.com/library/snippets/Cubic.C # if abs(a) < epsilon: # don't just test for zero; for very small values of 'a' solveCubic() # returns unreliable results, so we fall back to quad. return solveQuadratic(b, c, d) a = float(a) a1 = b/a a2 = c/a a3 = d/a Q = (a1*a1 - 3.0*a2)/9.0 R = (2.0*a1*a1*a1 - 9.0*a1*a2 + 27.0*a3)/54.0 R2 = R*R Q3 = Q*Q*Q R2 = 0 if R2 < epsilon else R2 Q3 = 0 if abs(Q3) < epsilon else Q3 R2_Q3 = R2 - Q3 if R2 == 0. and Q3 == 0.: x = round(-a1/3.0, epsilonDigits) return [x, x, x] elif R2_Q3 <= epsilon * .5: # The epsilon * .5 above ensures that Q3 is not zero. theta = acos(max(min(R/sqrt(Q3), 1.0), -1.0)) rQ2 = -2.0*sqrt(Q) a1_3 = a1/3.0 x0 = rQ2*cos(theta/3.0) - a1_3 x1 = rQ2*cos((theta+2.0*pi)/3.0) - a1_3 x2 = rQ2*cos((theta+4.0*pi)/3.0) - a1_3 x0, x1, x2 = sorted([x0, x1, x2]) # Merge roots that are close-enough if x1 - x0 < epsilon and x2 - x1 < epsilon: x0 = x1 = x2 = round((x0 + x1 + x2) / 3., epsilonDigits) elif x1 - x0 < epsilon: x0 = x1 = round((x0 + x1) / 2., epsilonDigits) x2 = round(x2, epsilonDigits) elif x2 - x1 < epsilon: x0 = round(x0, epsilonDigits) x1 = x2 = round((x1 + x2) / 2., epsilonDigits) else: x0 = round(x0, epsilonDigits) x1 = round(x1, epsilonDigits) x2 = round(x2, epsilonDigits) return [x0, x1, x2] else: x = pow(sqrt(R2_Q3)+abs(R), 1/3.0) x = x + Q/x if R >= 0.0: x = -x x = round(x - a1/3.0, epsilonDigits) return [x] # # Conversion routines for points to parameters and vice versa # def calcQuadraticParameters(pt1, pt2, pt3): x2, y2 = pt2 x3, y3 = pt3 cx, cy = pt1 bx = (x2 - cx) * 2.0 by = (y2 - cy) * 2.0 ax = x3 - cx - bx ay = y3 - cy - by return (ax, ay), (bx, by), (cx, cy) def calcCubicParameters(pt1, pt2, pt3, pt4): x2, y2 = pt2 x3, y3 = pt3 x4, y4 = pt4 dx, dy = pt1 cx = (x2 -dx) * 3.0 cy = (y2 -dy) * 3.0 bx = (x3 - x2) * 3.0 - cx by = (y3 - y2) * 3.0 - cy ax = x4 - dx - cx - bx ay = y4 - dy - cy - by return (ax, ay), (bx, by), (cx, cy), (dx, dy) def calcQuadraticPoints(a, b, c): ax, ay = a bx, by = b cx, cy = c x1 = cx y1 = cy x2 = (bx * 0.5) + cx y2 = (by * 0.5) + cy x3 = ax + bx + cx y3 = ay + by + cy return (x1, y1), (x2, y2), (x3, y3) def calcCubicPoints(a, b, c, d): ax, ay = a bx, by = b cx, cy = c dx, dy = d x1 = dx y1 = dy x2 = (cx / 3.0) + dx y2 = (cy / 3.0) + dy x3 = (bx + cx) / 3.0 + x2 y3 = (by + cy) / 3.0 + y2 x4 = ax + dx + cx + bx y4 = ay + dy + cy + by return (x1, y1), (x2, y2), (x3, y3), (x4, y4) def _segmentrepr(obj): """ >>> _segmentrepr([1, [2, 3], [], [[2, [3, 4], [0.1, 2.2]]]]) '(1, (2, 3), (), ((2, (3, 4), (0.1, 2.2))))' """ try: it = iter(obj) except TypeError: return "%g" % obj else: return "(%s)" % ", ".join([_segmentrepr(x) for x in it]) def printSegments(segments): """Helper for the doctests, displaying each segment in a list of segments on a single line as a tuple. """ for segment in segments: print(_segmentrepr(segment)) if __name__ == "__main__": import sys import doctest sys.exit(doctest.testmod().failed)