aboutsummaryrefslogtreecommitdiff
path: root/Lib/fontTools/misc/arrayTools.py
blob: ed20230c91fdea4a15011e6b28ea09cb79a97587 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#
# Various array and rectangle tools, but mostly rectangles, hence the
# name of this module (not).
#


from __future__ import print_function, division, absolute_import
from fontTools.misc.py23 import *
from fontTools.misc.fixedTools import otRound
from numbers import Number
import math
import operator

def calcBounds(array):
    """Return the bounding rectangle of a 2D points array as a tuple:
    (xMin, yMin, xMax, yMax)
    """
    if len(array) == 0:
        return 0, 0, 0, 0
    xs = [x for x, y in array]
    ys = [y for x, y in array]
    return min(xs), min(ys), max(xs), max(ys)

def calcIntBounds(array, round=otRound):
    """Return the integer bounding rectangle of a 2D points array as a
    tuple: (xMin, yMin, xMax, yMax)
    Values are rounded to closest integer towards +Infinity using otRound
    function by default, unless an optional 'round' function is passed.
    """
    return tuple(round(v) for v in calcBounds(array))


def updateBounds(bounds, p, min=min, max=max):
    """Return the bounding recangle of rectangle bounds and point (x, y)."""
    (x, y) = p
    xMin, yMin, xMax, yMax = bounds
    return min(xMin, x), min(yMin, y), max(xMax, x), max(yMax, y)

def pointInRect(p, rect):
    """Return True when point (x, y) is inside rect."""
    (x, y) = p
    xMin, yMin, xMax, yMax = rect
    return (xMin <= x <= xMax) and (yMin <= y <= yMax)

def pointsInRect(array, rect):
    """Find out which points or array are inside rect.
    Returns an array with a boolean for each point.
    """
    if len(array) < 1:
        return []
    xMin, yMin, xMax, yMax = rect
    return [(xMin <= x <= xMax) and (yMin <= y <= yMax) for x, y in array]

def vectorLength(vector):
    """Return the length of the given vector."""
    x, y = vector
    return math.sqrt(x**2 + y**2)

def asInt16(array):
    """Round and cast to 16 bit integer."""
    return [int(math.floor(i+0.5)) for i in array]


def normRect(rect):
    """Normalize the rectangle so that the following holds:
        xMin <= xMax and yMin <= yMax
    """
    (xMin, yMin, xMax, yMax) = rect
    return min(xMin, xMax), min(yMin, yMax), max(xMin, xMax), max(yMin, yMax)

def scaleRect(rect, x, y):
    """Scale the rectangle by x, y."""
    (xMin, yMin, xMax, yMax) = rect
    return xMin * x, yMin * y, xMax * x, yMax * y

def offsetRect(rect, dx, dy):
    """Offset the rectangle by dx, dy."""
    (xMin, yMin, xMax, yMax) = rect
    return xMin+dx, yMin+dy, xMax+dx, yMax+dy

def insetRect(rect, dx, dy):
    """Inset the rectangle by dx, dy on all sides."""
    (xMin, yMin, xMax, yMax) = rect
    return xMin+dx, yMin+dy, xMax-dx, yMax-dy

def sectRect(rect1, rect2):
    """Return a boolean and a rectangle. If the input rectangles intersect, return
    True and the intersecting rectangle. Return False and (0, 0, 0, 0) if the input
    rectangles don't intersect.
    """
    (xMin1, yMin1, xMax1, yMax1) = rect1
    (xMin2, yMin2, xMax2, yMax2) = rect2
    xMin, yMin, xMax, yMax = (max(xMin1, xMin2), max(yMin1, yMin2),
                              min(xMax1, xMax2), min(yMax1, yMax2))
    if xMin >= xMax or yMin >= yMax:
        return False, (0, 0, 0, 0)
    return True, (xMin, yMin, xMax, yMax)

def unionRect(rect1, rect2):
    """Return the smallest rectangle in which both input rectangles are fully
    enclosed. In other words, return the total bounding rectangle of both input
    rectangles.
    """
    (xMin1, yMin1, xMax1, yMax1) = rect1
    (xMin2, yMin2, xMax2, yMax2) = rect2
    xMin, yMin, xMax, yMax = (min(xMin1, xMin2), min(yMin1, yMin2),
                              max(xMax1, xMax2), max(yMax1, yMax2))
    return (xMin, yMin, xMax, yMax)

def rectCenter(rect0):
    """Return the center of the rectangle as an (x, y) coordinate."""
    (xMin, yMin, xMax, yMax) = rect0
    return (xMin+xMax)/2, (yMin+yMax)/2

def intRect(rect1):
    """Return the rectangle, rounded off to integer values, but guaranteeing that
    the resulting rectangle is NOT smaller than the original.
    """
    (xMin, yMin, xMax, yMax) = rect1
    xMin = int(math.floor(xMin))
    yMin = int(math.floor(yMin))
    xMax = int(math.ceil(xMax))
    yMax = int(math.ceil(yMax))
    return (xMin, yMin, xMax, yMax)


class Vector(object):
    """A math-like vector."""

    def __init__(self, values, keep=False):
        self.values = values if keep else list(values)

    def __getitem__(self, index):
        return self.values[index]

    def __len__(self):
        return len(self.values)

    def __repr__(self):
        return "Vector(%s)" % self.values

    def _vectorOp(self, other, op):
        if isinstance(other, Vector):
            assert len(self.values) == len(other.values)
            a = self.values
            b = other.values
            return [op(a[i], b[i]) for i in range(len(self.values))]
        if isinstance(other, Number):
            return [op(v, other) for v in self.values]
        raise NotImplementedError

    def _scalarOp(self, other, op):
        if isinstance(other, Number):
            return [op(v, other) for v in self.values]
        raise NotImplementedError

    def _unaryOp(self, op):
        return [op(v) for v in self.values]

    def __add__(self, other):
        return Vector(self._vectorOp(other, operator.add), keep=True)
    def __iadd__(self, other):
        self.values = self._vectorOp(other, operator.add)
        return self
    __radd__ = __add__

    def __sub__(self, other):
        return Vector(self._vectorOp(other, operator.sub), keep=True)
    def __isub__(self, other):
        self.values = self._vectorOp(other, operator.sub)
        return self
    def __rsub__(self, other):
        return other + (-self)

    def __mul__(self, other):
        return Vector(self._scalarOp(other, operator.mul), keep=True)
    def __imul__(self, other):
        self.values = self._scalarOp(other, operator.mul)
        return self
    __rmul__ = __mul__

    def __truediv__(self, other):
        return Vector(self._scalarOp(other, operator.div), keep=True)
    def __itruediv__(self, other):
        self.values = self._scalarOp(other, operator.div)
        return self

    def __pos__(self):
        return Vector(self._unaryOp(operator.pos), keep=True)
    def __neg__(self):
        return Vector(self._unaryOp(operator.neg), keep=True)
    def __round__(self):
        return Vector(self._unaryOp(round), keep=True)
    def toInt(self):
        return self.__round__()

    def __eq__(self, other):
        if type(other) == Vector:
            return self.values == other.values
        else:
            return self.values == other
    def __ne__(self, other):
        return not self.__eq__(other)

    def __bool__(self):
        return any(self.values)
    __nonzero__ = __bool__

    def __abs__(self):
        return math.sqrt(sum([x*x for x in self.values]))
    def dot(self, other):
        a = self.values
        b = other.values if type(other) == Vector else b
        assert len(a) == len(b)
        return sum([a[i] * b[i] for i in range(len(a))])


def pairwise(iterable, reverse=False):
    """Iterate over current and next items in iterable, optionally in
    reverse order.

    >>> tuple(pairwise([]))
    ()
    >>> tuple(pairwise([], reverse=True))
    ()
    >>> tuple(pairwise([0]))
    ((0, 0),)
    >>> tuple(pairwise([0], reverse=True))
    ((0, 0),)
    >>> tuple(pairwise([0, 1]))
    ((0, 1), (1, 0))
    >>> tuple(pairwise([0, 1], reverse=True))
    ((1, 0), (0, 1))
    >>> tuple(pairwise([0, 1, 2]))
    ((0, 1), (1, 2), (2, 0))
    >>> tuple(pairwise([0, 1, 2], reverse=True))
    ((2, 1), (1, 0), (0, 2))
    >>> tuple(pairwise(['a', 'b', 'c', 'd']))
    (('a', 'b'), ('b', 'c'), ('c', 'd'), ('d', 'a'))
    >>> tuple(pairwise(['a', 'b', 'c', 'd'], reverse=True))
    (('d', 'c'), ('c', 'b'), ('b', 'a'), ('a', 'd'))
    """
    if not iterable:
        return
    if reverse:
        it = reversed(iterable)
    else:
        it = iter(iterable)
    first = next(it, None)
    a = first
    for b in it:
        yield (a, b)
        a = b
    yield (a, first)


def _test():
    """
    >>> import math
    >>> calcBounds([])
    (0, 0, 0, 0)
    >>> calcBounds([(0, 40), (0, 100), (50, 50), (80, 10)])
    (0, 10, 80, 100)
    >>> updateBounds((0, 0, 0, 0), (100, 100))
    (0, 0, 100, 100)
    >>> pointInRect((50, 50), (0, 0, 100, 100))
    True
    >>> pointInRect((0, 0), (0, 0, 100, 100))
    True
    >>> pointInRect((100, 100), (0, 0, 100, 100))
    True
    >>> not pointInRect((101, 100), (0, 0, 100, 100))
    True
    >>> list(pointsInRect([(50, 50), (0, 0), (100, 100), (101, 100)], (0, 0, 100, 100)))
    [True, True, True, False]
    >>> vectorLength((3, 4))
    5.0
    >>> vectorLength((1, 1)) == math.sqrt(2)
    True
    >>> list(asInt16([0, 0.1, 0.5, 0.9]))
    [0, 0, 1, 1]
    >>> normRect((0, 10, 100, 200))
    (0, 10, 100, 200)
    >>> normRect((100, 200, 0, 10))
    (0, 10, 100, 200)
    >>> scaleRect((10, 20, 50, 150), 1.5, 2)
    (15.0, 40, 75.0, 300)
    >>> offsetRect((10, 20, 30, 40), 5, 6)
    (15, 26, 35, 46)
    >>> insetRect((10, 20, 50, 60), 5, 10)
    (15, 30, 45, 50)
    >>> insetRect((10, 20, 50, 60), -5, -10)
    (5, 10, 55, 70)
    >>> intersects, rect = sectRect((0, 10, 20, 30), (0, 40, 20, 50))
    >>> not intersects
    True
    >>> intersects, rect = sectRect((0, 10, 20, 30), (5, 20, 35, 50))
    >>> intersects
    1
    >>> rect
    (5, 20, 20, 30)
    >>> unionRect((0, 10, 20, 30), (0, 40, 20, 50))
    (0, 10, 20, 50)
    >>> rectCenter((0, 0, 100, 200))
    (50.0, 100.0)
    >>> rectCenter((0, 0, 100, 199.0))
    (50.0, 99.5)
    >>> intRect((0.9, 2.9, 3.1, 4.1))
    (0, 2, 4, 5)
    """

if __name__ == "__main__":
    import sys
    import doctest
    sys.exit(doctest.testmod().failed)