aboutsummaryrefslogtreecommitdiff
path: root/standalone/cache_counters.cc
diff options
context:
space:
mode:
Diffstat (limited to 'standalone/cache_counters.cc')
-rw-r--r--standalone/cache_counters.cc404
1 files changed, 404 insertions, 0 deletions
diff --git a/standalone/cache_counters.cc b/standalone/cache_counters.cc
new file mode 100644
index 0000000..24e971c
--- /dev/null
+++ b/standalone/cache_counters.cc
@@ -0,0 +1,404 @@
+#include <asm/unistd.h>
+#include <linux/perf_event.h>
+#include <sys/ioctl.h>
+#include <unistd.h>
+#include <algorithm>
+#include <cstdint>
+#include <cstdio>
+#include <cstdlib>
+#include <cstring>
+#include <random>
+
+#ifndef __aarch64__
+#error This program is for 64-bit ARM only.
+#endif
+
+struct PerfEvent {
+ perf_event_attr pe;
+ int fd = -1;
+
+ PerfEvent(std::uint32_t type, std::uint64_t config) {
+ memset(&pe, 0, sizeof(pe));
+ pe.size = sizeof(pe);
+ pe.type = type;
+ pe.config = config;
+ pe.disabled = 1;
+ pe.exclude_kernel = 1;
+ pe.exclude_hv = 1;
+ fd = syscall(__NR_perf_event_open, &pe, 0, -1, -1, 0);
+ if (fd == -1) {
+ fprintf(stderr, "perf_event_open failed for config 0x%lx\n", config);
+ abort();
+ }
+ }
+
+ void Start() {
+ ioctl(fd, PERF_EVENT_IOC_RESET, 0);
+ ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
+ }
+
+ std::int64_t Stop() {
+ ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
+ std::int64_t count = 0;
+ read(fd, &count, sizeof(count));
+ return count;
+ }
+
+ ~PerfEvent() { close(fd); }
+};
+
+struct ArmPmuEvent : PerfEvent {
+ static constexpr std::uint16_t L1I_CACHE_REFILL = 0x01;
+ static constexpr std::uint16_t L1I_TLB_REFILL = 0x02;
+ static constexpr std::uint16_t L1D_CACHE_REFILL = 0x03;
+ static constexpr std::uint16_t L1D_CACHE = 0x04;
+ static constexpr std::uint16_t L1D_TLB_REFILL = 0x05;
+ static constexpr std::uint16_t LD_RETIRED = 0x06;
+ static constexpr std::uint16_t ST_RETIRED = 0x07;
+ static constexpr std::uint16_t INST_RETIRED = 0x08;
+ static constexpr std::uint16_t EXC_TAKEN = 0x09;
+ static constexpr std::uint16_t EXC_RETURN = 0x0A;
+ static constexpr std::uint16_t CID_WRITE_RETIRED = 0x0B;
+ static constexpr std::uint16_t PC_WRITE_RETIRED = 0x0C;
+ static constexpr std::uint16_t BR_IMMED_RETIRED = 0x0D;
+ static constexpr std::uint16_t BR_RETURN_RETIRED = 0x0E;
+ static constexpr std::uint16_t UNALIGNED_LDST_RETIRED = 0x0F;
+ static constexpr std::uint16_t BR_MIS_PRED = 0x10;
+ static constexpr std::uint16_t CPU_CYCLES = 0x11;
+ static constexpr std::uint16_t BR_PRED = 0x12;
+ static constexpr std::uint16_t MEM_ACCESS = 0x13;
+ static constexpr std::uint16_t L1I_CACHE = 0x14;
+ static constexpr std::uint16_t L1D_CACHE_WB = 0x15;
+ static constexpr std::uint16_t L2D_CACHE = 0x16;
+ static constexpr std::uint16_t L2D_CACHE_REFILL = 0x17;
+ static constexpr std::uint16_t L2D_CACHE_WB = 0x18;
+ static constexpr std::uint16_t BUS_ACCESS = 0x19;
+ static constexpr std::uint16_t MEMORY_ERROR = 0x1A;
+ static constexpr std::uint16_t INST_SPEC = 0x1B;
+ static constexpr std::uint16_t TTBR_WRITE_RETIRED = 0x1C;
+ static constexpr std::uint16_t BUS_CYCLES = 0x1D;
+ static constexpr std::uint16_t CHAIN = 0x1E;
+ static constexpr std::uint16_t L1D_CACHE_ALLOCATE = 0x1F;
+ static constexpr std::uint16_t L2D_CACHE_ALLOCATE = 0x20;
+ static constexpr std::uint16_t BR_RETIRED = 0x21;
+ static constexpr std::uint16_t BR_MIS_PRED_RETIRED = 0x22;
+ static constexpr std::uint16_t STALL_FRONTEND = 0x23;
+ static constexpr std::uint16_t STALL_BACKEND = 0x24;
+ static constexpr std::uint16_t L1D_TLB = 0x25;
+ static constexpr std::uint16_t L1I_TLB = 0x26;
+ static constexpr std::uint16_t L2I_CACHE = 0x27;
+ static constexpr std::uint16_t L2I_CACHE_REFILL = 0x28;
+ static constexpr std::uint16_t L3D_CACHE_ALLOCATE = 0x29;
+ static constexpr std::uint16_t L3D_CACHE_REFILL = 0x2A;
+ static constexpr std::uint16_t L3D_CACHE = 0x2B;
+ static constexpr std::uint16_t L3D_CACHE_WB = 0x2C;
+ static constexpr std::uint16_t L2D_TLB_REFILL = 0x2D;
+ static constexpr std::uint16_t L2I_TLB_REFILL = 0x2E;
+ static constexpr std::uint16_t L2D_TLB = 0x2F;
+ static constexpr std::uint16_t L2I_TLB = 0x30;
+ static constexpr std::uint16_t LL_CACHE = 0x32;
+ static constexpr std::uint16_t LL_CACHE_MISS = 0x33;
+ static constexpr std::uint16_t DTLB_WALK = 0x34;
+ static constexpr std::uint16_t LL_CACHE_RD = 0x36;
+ static constexpr std::uint16_t LL_CACHE_MISS_RD = 0x37;
+ static constexpr std::uint16_t L1D_CACHE_RD = 0x40;
+ static constexpr std::uint16_t L1D_CACHE_REFILL_RD = 0x42;
+ static constexpr std::uint16_t L1D_TLB_REFILL_RD = 0x4C;
+ static constexpr std::uint16_t L1D_TLB_RD = 0x4E;
+ static constexpr std::uint16_t L2D_CACHE_RD = 0x50;
+ static constexpr std::uint16_t L2D_CACHE_REFILL_RD = 0x52;
+ static constexpr std::uint16_t BUS_ACCESS_RD = 0x60;
+ static constexpr std::uint16_t MEM_ACCESS_RD = 0x66;
+ static constexpr std::uint16_t L3D_CACHE_RD = 0xA0;
+ static constexpr std::uint16_t L3D_CACHE_REFILL_RD = 0xA2;
+ ArmPmuEvent(std::uint16_t number) : PerfEvent(PERF_TYPE_RAW, number) {}
+};
+
+struct CacheCounts {
+ int ld_retired = 0;
+ int mem_access = 0;
+ int ll_cache = 0;
+ int ll_cache_miss = 0;
+ int l1d_cache = 0;
+ int l1d_cache_refill = 0;
+ int l2d_cache = 0;
+ int l2d_cache_refill = 0;
+ int l3d_cache = 0;
+ int l3d_cache_refill = 0;
+};
+
+void PrintCacheCounts(const CacheCounts& cache_counts) {
+ printf("ld_retired = %d\n", cache_counts.ld_retired);
+ printf("mem_access = %d\n", cache_counts.mem_access);
+ printf("ll_cache = %d\n", cache_counts.ll_cache);
+ printf("ll_cache_miss = %d\n", cache_counts.ll_cache_miss);
+ printf("l1d_cache = %d\n", cache_counts.l1d_cache);
+ printf("l1d_cache_refill = %d\n", cache_counts.l1d_cache_refill);
+ printf("l2d_cache = %d\n", cache_counts.l2d_cache);
+ printf("l2d_cache_refill = %d\n", cache_counts.l2d_cache_refill);
+ printf("l3d_cache = %d\n", cache_counts.l3d_cache);
+ printf("l3d_cache_refill = %d\n", cache_counts.l3d_cache_refill);
+}
+
+void Workload(int accesses, int size, std::uint8_t* buf) {
+ // The main reason to do this in assembly is an attempt to make sense
+ // of instruction count counters, such as LD_RETIRED.
+ // Also, if we did this in C++, we would need to be watchful of the compiler
+ // optimizing away operations whose result isn't consumed.
+ //
+ // Note that TWO separate tricks are needed here to prevent Cortex-A76
+ // speculative execution om prefetching data from future loop iterations:
+ // 1. A data-dependency whereby the pointers being dereferenced at the
+ // next loop iteration depend on values loaded at the current iteration.
+ // That is the role of 'dummy'.
+ // 2. A pseudo-random sequence. This is the role of register w0,
+ // where we implement a simple xorshift pseudorandom generator.
+ // BOTH of these tricks are needed: if we disable just one of them,
+ // Cortex-A76 successfully speculates some addresses, resulting in different
+ // L3 / DRAM hit percentages on large sizes.
+ std::uint64_t dummy = 123456789;
+ asm volatile(
+ // w0 := xorshift RNG state. Must be nonzero.
+ "mov w0, #1\n"
+ "1:\n"
+ // xorshift RNG iteration: update w0 with the next pseudorandom value
+ // in [1 .. 2^32-1].
+ // This pseudorandomness is crucial to preventing speculative execution
+ // on Cortex-A76 from prefetching data from future loop iterations.
+ "eor w0, w0, w0, lsl #13\n"
+ "eor w0, w0, w0, lsr #17\n"
+ "eor w0, w0, w0, lsl #5\n"
+ // w1 := size - 1 = size mask (size is required to be power-of-two).
+ "sub w1, %w[size], #1\n"
+ // w2 := (pseudorandom value w0) xor (data-dependent sum).
+ "eor w2, w0, %w[dummy]\n"
+ // w1 := w2 modulo size
+ "and w1, w2, w1\n"
+ // align w1
+ "and w1, w1, #-64\n"
+ // load at offset w1, again using x1 as destination.
+ "ldr x1, [%[buf], w1, uxtw]\n"
+ // Update our dummy so it depends on the value we have just loaded.
+ // This data-dependency is key to preventing speculative execution on
+ // Cortex-A76 from prefetching data from future loop iterations.
+ "add %[dummy], %[dummy], w1, uxtw\n"
+ // loop back.
+ "subs %w[accesses], %w[accesses], #1\n"
+ "bne 1b\n"
+ : [ accesses ] "+r"(accesses), [ dummy ] "+r"(dummy)
+ : [ size ] "r"(size), [ buf ] "r"(buf)
+ : "memory", "cc", "x0", "x1", "x2");
+}
+
+void MeasureCacheCounts(int accesses, int size, std::uint8_t* buf,
+ CacheCounts* cache_counts) {
+ const bool only_reads = getenv("ONLY_READS");
+ ArmPmuEvent ld_retired(ArmPmuEvent::LD_RETIRED);
+ ArmPmuEvent mem_access(only_reads ? ArmPmuEvent::MEM_ACCESS_RD
+ : ArmPmuEvent::MEM_ACCESS);
+ ArmPmuEvent ll_cache(only_reads ? ArmPmuEvent::LL_CACHE_RD
+ : ArmPmuEvent::LL_CACHE);
+ ArmPmuEvent ll_cache_miss(only_reads ? ArmPmuEvent::LL_CACHE_MISS_RD
+ : ArmPmuEvent::LL_CACHE_MISS);
+ ArmPmuEvent l1d_cache(only_reads ? ArmPmuEvent::L1D_CACHE_RD
+ : ArmPmuEvent::L1D_CACHE);
+ ArmPmuEvent l1d_cache_refill(only_reads ? ArmPmuEvent::L1D_CACHE_REFILL_RD
+ : ArmPmuEvent::L1D_CACHE_REFILL);
+ ArmPmuEvent l2d_cache(only_reads ? ArmPmuEvent::L2D_CACHE_RD
+ : ArmPmuEvent::L2D_CACHE);
+ ArmPmuEvent l2d_cache_refill(only_reads ? ArmPmuEvent::L2D_CACHE_REFILL_RD
+ : ArmPmuEvent::L2D_CACHE_REFILL);
+ ArmPmuEvent l3d_cache(only_reads ? ArmPmuEvent::L3D_CACHE_RD
+ : ArmPmuEvent::L3D_CACHE);
+ ArmPmuEvent l3d_cache_refill(only_reads ? ArmPmuEvent::L3D_CACHE_REFILL_RD
+ : ArmPmuEvent::L3D_CACHE_REFILL);
+
+ ld_retired.Start();
+ mem_access.Start();
+ ll_cache.Start();
+ ll_cache_miss.Start();
+ l1d_cache.Start();
+ l1d_cache_refill.Start();
+ l2d_cache.Start();
+ l2d_cache_refill.Start();
+ l3d_cache.Start();
+ l3d_cache_refill.Start();
+
+ Workload(accesses, size, buf);
+
+ cache_counts->ld_retired = ld_retired.Stop();
+ cache_counts->mem_access = mem_access.Stop();
+ cache_counts->ll_cache = ll_cache.Stop();
+ cache_counts->ll_cache_miss = ll_cache_miss.Stop();
+ cache_counts->l1d_cache = l1d_cache.Stop();
+ cache_counts->l1d_cache_refill = l1d_cache_refill.Stop();
+ cache_counts->l2d_cache = l2d_cache.Stop();
+ cache_counts->l2d_cache_refill = l2d_cache_refill.Stop();
+ cache_counts->l3d_cache = l3d_cache.Stop();
+ cache_counts->l3d_cache_refill = l3d_cache_refill.Stop();
+}
+
+struct PieChart {
+ // How many accesses were recorded, total? The other fields must sum to that.
+ int total;
+ // How many accesses were serviced with the typical cost of a L1 cache hit?
+ int l1_hits;
+ // How many accesses were serviced with the typical cost of a L2 cache hit?
+ int l2_hits;
+ // How many accesses were serviced with the typical cost of a L3 cache hit?
+ int l3_hits;
+ // How many accesses were serviced with the typical cost of a DRAM access?
+ int dram_hits;
+
+ ~PieChart() {
+ // Consistency check
+ if (total != l1_hits + l2_hits + l3_hits + dram_hits) {
+ fprintf(stderr, "inconsistent pie-chart\n");
+ abort();
+ }
+ }
+};
+
+struct Hypothesis {
+ virtual ~Hypothesis() {}
+ virtual const char* Name() const = 0;
+ virtual void Analyze(const CacheCounts& cache_counts,
+ PieChart* pie) const = 0;
+};
+
+struct Hypothesis1 : Hypothesis {
+ const char* Name() const override { return "Hypothesis1"; }
+ void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override {
+ pie->total = cache_counts.l1d_cache + cache_counts.l1d_cache_refill;
+ pie->l1_hits = cache_counts.l1d_cache - cache_counts.l2d_cache_refill -
+ cache_counts.l3d_cache_refill;
+ pie->l2_hits = cache_counts.l1d_cache_refill;
+ pie->l3_hits = cache_counts.l2d_cache_refill;
+ pie->dram_hits = cache_counts.l3d_cache_refill;
+ }
+};
+
+struct Hypothesis2 : Hypothesis {
+ const char* Name() const override { return "Hypothesis2"; }
+ void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override {
+ pie->total = cache_counts.l1d_cache;
+ pie->l1_hits = cache_counts.l1d_cache - cache_counts.l2d_cache;
+ pie->l2_hits = cache_counts.l2d_cache - cache_counts.l3d_cache;
+ pie->l3_hits = cache_counts.l3d_cache - cache_counts.l3d_cache_refill;
+ pie->dram_hits = cache_counts.l3d_cache_refill;
+ }
+};
+
+struct Hypothesis3 : Hypothesis {
+ const char* Name() const override { return "Hypothesis3"; }
+ void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override {
+ pie->total = cache_counts.l1d_cache;
+ int corrected_l2 = std::min(cache_counts.l2d_cache, cache_counts.l1d_cache);
+ int corrected_l3 = std::min(cache_counts.l3d_cache, corrected_l2);
+ pie->l1_hits = cache_counts.l1d_cache - corrected_l2;
+ pie->l2_hits = corrected_l2 - corrected_l3;
+ pie->l3_hits = corrected_l3 - cache_counts.l3d_cache_refill;
+ pie->dram_hits = cache_counts.l3d_cache_refill;
+ }
+};
+
+struct Hypothesis4 : Hypothesis {
+ const char* Name() const override { return "Hypothesis4"; }
+ void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override {
+ pie->total = cache_counts.l1d_cache;
+ pie->l1_hits = cache_counts.l1d_cache - cache_counts.l1d_cache_refill;
+ pie->l2_hits =
+ cache_counts.l1d_cache_refill - cache_counts.l2d_cache_refill;
+ pie->l3_hits =
+ cache_counts.l2d_cache_refill - cache_counts.l3d_cache_refill;
+ pie->dram_hits = cache_counts.l3d_cache_refill;
+ }
+};
+
+struct Hypothesis5 : Hypothesis {
+ const char* Name() const override { return "Hypothesis5"; }
+ void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override {
+ pie->l1_hits =
+ std::max(0, cache_counts.l1d_cache - cache_counts.l1d_cache_refill);
+ pie->l2_hits = std::max(
+ 0, cache_counts.l1d_cache_refill - cache_counts.l2d_cache_refill);
+ const int l3_misses =
+ std::max(cache_counts.ll_cache_miss, cache_counts.l3d_cache_refill);
+ pie->l3_hits = std::max(0, cache_counts.l2d_cache_refill - l3_misses);
+ pie->dram_hits = l3_misses;
+ pie->total = pie->l1_hits + pie->l2_hits + pie->l3_hits + pie->dram_hits;
+ }
+};
+
+void PrintPieChart(const PieChart& pie) {
+ printf("total accesses: %d\n", pie.total);
+ double l1_hits_pct = 100. * pie.l1_hits / pie.total;
+ double l2_hits_pct = 100. * pie.l2_hits / pie.total;
+ double l3_hits_pct = 100. * pie.l3_hits / pie.total;
+ double dram_hits_pct = 100. * pie.dram_hits / pie.total;
+ printf("L1 hits: %.2f%%\n", l1_hits_pct);
+ printf("L2 hits: %.2f%%\n", l2_hits_pct);
+ printf("L1/2 hits: %.2f%%\n", l1_hits_pct + l2_hits_pct);
+ printf("L3 hits: %.2f%%\n", l3_hits_pct);
+ printf("L1/2/3 hits: %.2f%%\n", l1_hits_pct + l2_hits_pct + l3_hits_pct);
+ printf("DRAM hits: %.2f%%\n", dram_hits_pct);
+}
+
+void PrintPieChartCsvNoNewline(const PieChart& pie) {
+ double l1_hits_pct = 100. * pie.l1_hits / pie.total;
+ double l2_hits_pct = 100. * pie.l2_hits / pie.total;
+ double l3_hits_pct = 100. * pie.l3_hits / pie.total;
+ double dram_hits_pct = 100. * pie.dram_hits / pie.total;
+ printf("%.2f,%.2f,%.2f,%.2f", l1_hits_pct, l2_hits_pct, l3_hits_pct,
+ dram_hits_pct);
+}
+
+void Study(int accesses, int size, std::uint8_t* buf) {
+ CacheCounts cache_counts;
+ MeasureCacheCounts(accesses, size, buf, &cache_counts);
+ const Hypothesis* hypotheses[] = {
+ new Hypothesis5, new Hypothesis4, new Hypothesis3,
+ new Hypothesis2, new Hypothesis1,
+ };
+ if (getenv("DUMP_CSV")) {
+ printf("%d", size);
+ for (const Hypothesis* hypothesis : hypotheses) {
+ printf(",");
+ PieChart pie;
+ hypothesis->Analyze(cache_counts, &pie);
+ PrintPieChartCsvNoNewline(pie);
+ }
+ printf("\n");
+ } else {
+ printf("\n\n\naccesses=%d, size=%d:\n", accesses, size);
+ printf("\nCache counts:\n");
+ PrintCacheCounts(cache_counts);
+ for (const Hypothesis* hypothesis : hypotheses) {
+ printf("\n%s:\n", hypothesis->Name());
+ PieChart pie;
+ hypothesis->Analyze(cache_counts, &pie);
+ PrintPieChart(pie);
+ }
+ }
+ fflush(stdout);
+ for (const Hypothesis* hypothesis : hypotheses) {
+ delete hypothesis;
+ }
+}
+
+int main() {
+ const int kMinSize = 1 << 12;
+ const int kMaxSize = 1 << 24;
+ const int kAccesses = 1e8;
+ void* buf_void = nullptr;
+ posix_memalign(&buf_void, 64, kMaxSize);
+ std::uint8_t* buf = static_cast<std::uint8_t*>(buf_void);
+ std::default_random_engine random_engine;
+ for (int i = 0; i < kMaxSize; i++) {
+ buf[i] = random_engine();
+ }
+ for (int size = kMinSize; size <= kMaxSize; size *= 2) {
+ Study(kAccesses, size, buf);
+ }
+ delete[] buf;
+}