// Copyright 2015 The Gemmlowp Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // block_params.h: Logic to choose L1 and L2 block sizes // to optimize cache-friendliness. #ifndef GEMMLOWP_INTERNAL_BLOCK_PARAMS_H_ #define GEMMLOWP_INTERNAL_BLOCK_PARAMS_H_ #include "common.h" namespace gemmlowp { // A BlockParams instance contains a full description of all the block size // parameters to be used by a Gemm. // There are two nested levels of block subdivisions: first a subdivision // into large blocks that should fit in last-level cache (what we call L2 here) // and then another subdivision into smaller blocks that should fit in // L1 cache. There is then actually a third level of subdivision to fit // in registers, but we are not concerned with that here. struct BlockParams { // L1 block parameters determine the size of small blocks that should // fit in L1 cache. int l1_rows; int l1_cols; int l1_depth; // L2 block parameters determine the size of larger blocks that should // fit in L2 cache. int l2_rows; int l2_cols; int l2_depth; template void Init(int rows, int cols, int depth, int num_threads, int l1_bytes_to_use, int l2_bytes_to_use, float l2_rhs_factor) { FindL2BlockSizes(rows, cols, depth, num_threads, l2_bytes_to_use, l2_rhs_factor, &l2_rows, &l2_cols, &l2_depth); FindL1BlockSizes(l2_rows, l2_cols, l2_depth, l1_bytes_to_use, &l1_rows, &l1_cols, &l1_depth); } template static void FindL2BlockSizes(int rows, int cols, int depth, int num_threads, int l2_bytes_to_use, float l2_rhs_factor, int* out_l2_rows, int* out_l2_cols, int* out_l2_depth) { int l2_rows = 0; int l2_cols = 0; int l2_depth = 0; // No L2 blocking in the depth dimension at the moment. // Too much loss of accuracy due to storing intermediate results in // low precision. // However, we still want to round l2_depth up to the next multiple // of register size, so as to avoid having to special-case unaligned depths. l2_depth = RoundUp(depth); { int max_cache_friendly_l2_cols = std::max( 1, static_cast(l2_rhs_factor * (l2_bytes_to_use / l2_depth))); int min_l2_cols_blocks = std::max(1, CeilQuotient(cols, max_cache_friendly_l2_cols)); l2_cols = RoundUp(CeilQuotient(cols, min_l2_cols_blocks)); } // No L2 blocking in the row dimension if l2_rhs_factor is 1.0 as the row // dimension concerns only the LHS. Blocking only RHS matrix for L2 enhances // the performance on x86. if (l2_rhs_factor == 1.0f) { l2_rows = RoundUp(rows); } else { int max_cache_friendly_l2_rows = std::max(1, (l2_bytes_to_use - l2_depth * l2_cols) / (num_threads * (l2_depth + 4 * l2_cols))); int min_l2_rows_blocks = std::max(1, CeilQuotient(rows, max_cache_friendly_l2_rows)); l2_rows = RoundUp(CeilQuotient(rows, min_l2_rows_blocks)); } *out_l2_rows = l2_rows; *out_l2_cols = l2_cols; *out_l2_depth = l2_depth; } template static void FindL1BlockSizes(int rows, int cols, int depth, int l1_bytes_to_use, int* out_l1_rows, int* out_l1_cols, int* out_l1_depth) { int l1_rows = 0; int l1_cols = 0; int l1_depth = 0; // L2 block sizes should already be multiples of kernel block sizes. assert(rows % KernelFormat::kRows == 0); assert(cols % KernelFormat::kCols == 0); assert(depth % KernelFormat::kDepth == 0); // No L1 blocking in the columns dimension at the moment. // Thought not to be needed. Similar to Eigen. l1_cols = cols; { int max_cache_friendly_l1_depth = std::max( 1, (l1_bytes_to_use - 4 * KernelFormat::kRows * KernelFormat::kCols) / (KernelFormat::kRows + KernelFormat::kCols)); int min_l1_depth_blocks = std::max(1, CeilQuotient(depth, max_cache_friendly_l1_depth)); l1_depth = RoundUp(CeilQuotient(depth, min_l1_depth_blocks)); } { int max_cache_friendly_l1_rows = std::max(1, l1_bytes_to_use / (l1_depth + 4 * l1_cols)); int min_l1_rows_blocks = std::max(1, CeilQuotient(rows, max_cache_friendly_l1_rows)); l1_rows = RoundUp(CeilQuotient(rows, min_l1_rows_blocks)); } *out_l1_rows = l1_rows; *out_l1_cols = l1_cols; *out_l1_depth = l1_depth; } }; // A SideBlockParams instance contains only the block params relevant to // one side (LHS or RHS), expressed in terms of 'width' instead of // rows/colums. See the explanation in kernel.h: in the LHS, 'width' means // the number of rows, while in the RHS, 'width' means the number of columns. // That allows us to write generic code that applies to either LHS or RHS. struct SideBlockParams { // L1 block parameters determine the size of small blocks that should // fit in L1 cache. int l1_width; int l1_depth; // L2 block parameters determine the size of larger blocks that should // fit in L2 cache. int l2_width; int l2_depth; }; enum class Side { Lhs, Rhs }; inline void GetSideBlockParams(Side side, SideBlockParams* side_block_params, const BlockParams& block_params) { side_block_params->l1_width = side == Side::Lhs ? block_params.l1_rows : block_params.l1_cols; side_block_params->l2_width = side == Side::Lhs ? block_params.l2_rows : block_params.l2_cols; side_block_params->l1_depth = block_params.l1_depth; side_block_params->l2_depth = block_params.l2_depth; } } // namespace gemmlowp #endif // GEMMLOWP_INTERNAL_BLOCK_PARAMS_H_