// Copyright 2015 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // multi_thread_gemv.h: Entry point to the multithreaded version of the // generated (meta) gemv library. #ifndef GEMMLOWP_META_MULTI_THREAD_GEMV_H_ #define GEMMLOWP_META_MULTI_THREAD_GEMV_H_ #ifdef GEMMLOWP_NEON_32 #include "multi_thread_common.h" #include "operations_common.h" #include "single_thread_gemm.h" namespace gemmlowp { namespace meta { namespace internal { class GemvQuantized8BitOperation : public Quantized8BitOperation { public: GemvQuantized8BitOperation(std::int32_t lhs_offset, std::int32_t rhs_offset, std::int32_t sum_offset, std::int32_t multiplier, std::int32_t shift) : Quantized8BitOperation(lhs_offset, rhs_offset, sum_offset, multiplier, shift) {} void ExecuteMatrixMatrix(std::uint8_t* scratch, const std::uint8_t* lhs, const std::uint8_t* rhs, std::int32_t m, std::int32_t n, std::int32_t k, std::uint8_t* result, std::int32_t result_stride) const { gemv_q8(scratch, lhs, rhs, n, k, lhs_offset, rhs_offset, sum_offset, multiplier, shift, result); } static std::int32_t ScratchPerThread(std::int32_t m, std::int32_t n, std::int32_t k) { return 128 * 1024; } }; class GemvFloatOperation : public FloatOperation { public: GemvFloatOperation(std::int32_t lhs_offset, std::int32_t rhs_offset, float result_offset) : FloatOperation(lhs_offset, rhs_offset, result_offset) {} void ExecuteMatrixMatrix(std::uint8_t* scratch, const std::uint8_t* lhs, const std::uint8_t* rhs, std::int32_t m, std::int32_t n, std::int32_t k, float* result, std::int32_t result_stride) const { gemv_f(scratch, lhs, rhs, n, k, lhs_offset, rhs_offset, result_offset, result); } static std::int32_t ScratchPerThread(std::int32_t m, std::int32_t n, std::int32_t k) { return 128 * 1024; } }; class GemvInt32Operation : public Int32Operation { public: GemvInt32Operation(std::int32_t lhs_offset, std::int32_t rhs_offset) : Int32Operation(lhs_offset, rhs_offset) {} void ExecuteMatrixMatrix(std::uint8_t* scratch, const std::uint8_t* lhs, const std::uint8_t* rhs, std::int32_t m, std::int32_t n, std::int32_t k, std::int32_t* result, std::int32_t result_stride) const { gemv_i32(scratch, lhs, rhs, n, k, lhs_offset, rhs_offset, result); } static std::int32_t ScratchPerThread(std::int32_t m, std::int32_t n, std::int32_t k) { return 128 * 1024; } }; } // namespace internal std::int32_t gemv_q8_scratch(std::int32_t m, std::int32_t n, std::int32_t k, std::int32_t max_threads) { return internal::ResolveMaxThreads(max_threads) * internal::GemvQuantized8BitOperation::ScratchPerThread(m, n, k); } void multi_thread_gemv_q8(gemmlowp::WorkersPool* pool, std::int32_t max_threads, std::uint8_t* scratch, const std::uint8_t* lhs, const std::uint8_t* rhs, std::int32_t n, std::int32_t k, std::int32_t lhs_offset, std::int32_t rhs_offset, std::int32_t sum_offset, std::int32_t multiplier, std::int32_t shift, std::uint8_t* result) { max_threads = internal::ResolveMaxThreads(max_threads); internal::GemvQuantized8BitOperation operation(lhs_offset, rhs_offset, sum_offset, multiplier, shift); if (max_threads == 1) { operation.ExecuteMatrixMatrix(scratch, lhs, rhs, 1, n, k, result, n); } else { internal::MultiThreadedMatrixMatrix(pool, max_threads, scratch, lhs, rhs, 1, n, k, result, n, operation); } } std::int32_t gemv_f_scratch(std::int32_t m, std::int32_t n, std::int32_t k, std::int32_t max_threads) { return internal::ResolveMaxThreads(max_threads) * internal::GemvFloatOperation::ScratchPerThread(m, n, k); } void multi_thread_gemv_f(gemmlowp::WorkersPool* pool, std::int32_t max_threads, std::uint8_t* scratch, const std::uint8_t* lhs, const std::uint8_t* rhs, std::int32_t n, std::int32_t k, std::int32_t lhs_offset, std::int32_t rhs_offset, float result_offset, float* result) { max_threads = internal::ResolveMaxThreads(max_threads); internal::GemvFloatOperation operation(lhs_offset, rhs_offset, result_offset); if (max_threads == 1) { operation.ExecuteMatrixMatrix(scratch, lhs, rhs, 1, n, k, result, n); } else { internal::MultiThreadedMatrixMatrix(pool, max_threads, scratch, lhs, rhs, 1, n, k, result, n, operation); } } std::int32_t gemv_i32_scratch(std::int32_t m, std::int32_t n, std::int32_t k, std::int32_t max_threads) { return internal::ResolveMaxThreads(max_threads) * internal::GemvInt32Operation::ScratchPerThread(m, n, k); } void multi_thread_gemv_i32(gemmlowp::WorkersPool* pool, std::int32_t max_threads, std::uint8_t* scratch, const std::uint8_t* lhs, const std::uint8_t* rhs, std::int32_t n, std::int32_t k, std::int32_t lhs_offset, std::int32_t rhs_offset, std::int32_t* result) { max_threads = internal::ResolveMaxThreads(max_threads); internal::GemvInt32Operation operation(lhs_offset, rhs_offset); if (max_threads == 1) { operation.ExecuteMatrixMatrix(scratch, lhs, rhs, 1, n, k, result, n); } else { internal::MultiThreadedMatrixMatrix(pool, max_threads, scratch, lhs, rhs, 1, n, k, result, n, operation); } } } // namespace meta } // namespace gemmlowp #else #warning "Meta gemm fast-path requires GEMMLOWP_NEON_32!" #endif #endif // GEMMLOWP_META_MULTI_THREAD_GEMV_H_