aboutsummaryrefslogtreecommitdiff
path: root/fixedpoint/fixedpoint_avx.h
blob: f3fe7321bc2d98d9dc3320dc857e119966cdc006 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// fixedpoint_avx.h: optimized avx specializations of the templates
// in fixedpoint.h.

#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_
#define GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_

#include <immintrin.h>
#include "fixedpoint.h"
#include "fixedpoint_sse.h"

namespace gemmlowp {

struct int16x16_m256i {
  __m256i v;
};

// Keep int16x16_m256i trivially constructible/destructible and provide
// easily optimized helper function.
inline int16x16_m256i to_int16x16_m256i(__m256i w) {
  int16x16_m256i r;
  r.v = w;
  return r;
}

template <>
struct FixedPointRawTypeTraits<__m256i> {
  typedef std::int32_t ScalarRawType;
  // TODO: This can actually support up to 8 lanes, so we should either
  // change to 8 or create int32x8_m256i struct to handle that case.
  static const int kLanes = 4;
};

template <>
struct FixedPointRawTypeTraits<int16x16_m256i> {
  typedef std::int16_t ScalarRawType;
  static const int kLanes = 16;
};

template <>
inline __m256i BitAnd(__m256i a, __m256i b) {
  return _mm256_and_si256(a, b);
}

template <>
inline int16x16_m256i BitAnd(int16x16_m256i a, int16x16_m256i b) {
  return to_int16x16_m256i(_mm256_and_si256(a.v, b.v));
}

template <>
inline __m256i BitOr(__m256i a, __m256i b) {
  return _mm256_or_si256(a, b);
}

template <>
inline int16x16_m256i BitOr(int16x16_m256i a, int16x16_m256i b) {
  return to_int16x16_m256i(_mm256_or_si256(a.v, b.v));
}

template <>
inline __m256i BitXor(__m256i a, __m256i b) {
  return _mm256_xor_si256(a, b);
}

template <>
inline int16x16_m256i BitXor(int16x16_m256i a, int16x16_m256i b) {
  return to_int16x16_m256i(_mm256_xor_si256(a.v, b.v));
}

template <>
inline __m256i BitNot(__m256i a) {
  return _mm256_andnot_si256(a, _mm256_set1_epi32(-1));
}

template <>
inline int16x16_m256i BitNot(int16x16_m256i a) {
  return to_int16x16_m256i(_mm256_andnot_si256(a.v, _mm256_set1_epi16(-1)));
}

template <>
inline __m256i Add(__m256i a, __m256i b) {
  return _mm256_add_epi32(a, b);
}

template <>
inline int16x16_m256i Add(int16x16_m256i a, int16x16_m256i b) {
  return to_int16x16_m256i(_mm256_add_epi16(a.v, b.v));
}

template <>
inline __m256i Mul(__m256i a, __m256i b) {
  return _mm256_mullo_epi32(a, b);
}

template <>
inline int16x16_m256i Mul(int16x16_m256i a, int16x16_m256i b) {
  return to_int16x16_m256i(_mm256_mullo_epi16(a.v, b.v));
}

template <>
inline __m256i Sub(__m256i a, __m256i b) {
  return _mm256_sub_epi32(a, b);
}

template <>
inline int16x16_m256i Sub(int16x16_m256i a, int16x16_m256i b) {
  return to_int16x16_m256i(_mm256_sub_epi16(a.v, b.v));
}

template <>
inline __m256i Neg(__m256i a) {
  return _mm256_sign_epi32(a, _mm256_set1_epi32(-1));
}

template <>
inline int16x16_m256i Neg(int16x16_m256i a) {
  return to_int16x16_m256i(_mm256_sign_epi16(a.v, _mm256_set1_epi16(-1)));
}

template <>
inline __m256i ShiftLeft(__m256i a, int offset) {
  return _mm256_slli_epi32(a, offset);
}

template <>
inline int16x16_m256i ShiftLeft(int16x16_m256i a, int offset) {
  return to_int16x16_m256i(_mm256_slli_epi16(a.v, offset));
}

template <>
inline __m256i ShiftRight(__m256i a, int offset) {
  return _mm256_srai_epi32(a, offset);
}

template <>
inline int16x16_m256i ShiftRight(int16x16_m256i a, int offset) {
  return to_int16x16_m256i(_mm256_srai_epi16(a.v, offset));
}

template <>
inline __m256i SelectUsingMask(__m256i if_mask, __m256i then_val,
                               __m256i else_val) {
  return _mm256_castps_si256(_mm256_blendv_ps(_mm256_castsi256_ps(else_val),
                                              _mm256_castsi256_ps(then_val),
                                              _mm256_castsi256_ps(if_mask)));
}

template <>
inline int16x16_m256i SelectUsingMask(int16x16_m256i if_mask,
                                      int16x16_m256i then_val,
                                      int16x16_m256i else_val) {
  // Borrowed from Intel's arm_neon_sse.h header.
  return to_int16x16_m256i(
      _mm256_or_si256(_mm256_and_si256(if_mask.v, then_val.v),
                      _mm256_andnot_si256(if_mask.v, else_val.v)));
}

template <>
inline __m256i MaskIfEqual(__m256i a, __m256i b) {
  return _mm256_cmpeq_epi32(a, b);
}

template <>
inline int16x16_m256i MaskIfEqual(int16x16_m256i a, int16x16_m256i b) {
  return to_int16x16_m256i(_mm256_cmpeq_epi16(a.v, b.v));
}

template <>
inline __m256i MaskIfNotEqual(__m256i a, __m256i b) {
  return BitNot(MaskIfEqual(a, b));
}

template <>
inline int16x16_m256i MaskIfNotEqual(int16x16_m256i a, int16x16_m256i b) {
  return BitNot(MaskIfEqual(a, b));
}

template <>
inline __m256i MaskIfZero(__m256i a) {
  return MaskIfEqual(a, _mm256_set1_epi32(0));
}

template <>
inline int16x16_m256i MaskIfZero(int16x16_m256i a) {
  return MaskIfEqual(a, to_int16x16_m256i(_mm256_set1_epi16(0)));
}

template <>
inline __m256i MaskIfNonZero(__m256i a) {
  return MaskIfNotEqual(a, _mm256_set1_epi32(0));
}

template <>
inline int16x16_m256i MaskIfNonZero(int16x16_m256i a) {
  return MaskIfNotEqual(a, to_int16x16_m256i(_mm256_set1_epi16(0)));
}

template <>
inline __m256i MaskIfGreaterThan(__m256i a, __m256i b) {
  return _mm256_cmpgt_epi32(a, b);
}

template <>
inline int16x16_m256i MaskIfGreaterThan(int16x16_m256i a, int16x16_m256i b) {
  return to_int16x16_m256i(_mm256_cmpgt_epi16(a.v, b.v));
}

template <>
inline __m256i MaskIfLessThan(__m256i a, __m256i b) {
  return _mm256_cmpgt_epi32(b, a);
}

template <>
inline int16x16_m256i MaskIfLessThan(int16x16_m256i a, int16x16_m256i b) {
  return to_int16x16_m256i(_mm256_cmpgt_epi16(b.v, a.v));
}

template <>
inline __m256i MaskIfGreaterThanOrEqual(__m256i a, __m256i b) {
  return BitNot(MaskIfLessThan(a, b));
}

template <>
inline int16x16_m256i MaskIfGreaterThanOrEqual(int16x16_m256i a,
                                               int16x16_m256i b) {
  return BitNot(MaskIfLessThan(a, b));
}

template <>
inline __m256i MaskIfLessThanOrEqual(__m256i a, __m256i b) {
  return BitNot(MaskIfGreaterThan(a, b));
}

template <>
inline int16x16_m256i MaskIfLessThanOrEqual(int16x16_m256i a,
                                            int16x16_m256i b) {
  return BitNot(MaskIfGreaterThan(a, b));
}

/* Assumptions:
   - All and Any are used on masks.
   - masks are all_ones for true lanes, all_zeroes otherwise.
Hence, All means all 128bits set, and Any means any bit set.
*/

template <>
inline bool All(__m256i a) {
  return _mm256_testc_si256(a, a);
}

template <>
inline bool All(int16x16_m256i a) {
  return _mm256_testc_si256(a.v, a.v);
}

template <>
inline bool Any(__m256i a) {
  return BitNot(_mm256_testz_si256(a, a));
}

template <>
inline bool Any(int16x16_m256i a) {
  return BitNot(_mm256_testz_si256(a.v, a.v));
}

template <>
inline __m256i RoundingHalfSum(__m256i a, __m256i b) {
  /* __m256i round_bit_mask, a_over_2, b_over_2, round_bit, sum; */
  /* We divide the inputs before the add to avoid the overflow and costly test
   */
  /* of checking if an overflow occured on signed add */
  /* round_bit_mask = _mm_set1_epi32(1); */
  /* a_over_2 = _mm_srai_epi32(a, 1); */
  /* b_over_2 = _mm_srai_epi32(b, 1); */
  /* sum = Add(a_over_2, b_over_2); */
  /* round_bit = _mm_sign_epi32(BitAnd(BitOr(a,b), round_bit_mask), sum); */
  /* return Add(sum, round_bit); */

  /* Other possibility detecting overflow and xor the sign if an overflow
   * happened*/
  __m256i one, sign_bit_mask, sum, rounded_half_sum, overflow, result;
  one = _mm256_set1_epi32(1);
  sign_bit_mask = _mm256_set1_epi32(0x80000000);
  sum = Add(a, b);
  rounded_half_sum = _mm256_srai_epi32(Add(sum, one), 1);
  overflow =
      BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)),
             sign_bit_mask);
  result = BitXor(rounded_half_sum, overflow);
  return result;
}

template <>
inline int16x16_m256i RoundingHalfSum(int16x16_m256i a, int16x16_m256i b) {
  // Borrowed from Intel's arm_neon_sse.h header.
  __m256i constant_neg_32768 = _mm256_set1_epi16(-32768);
  __m256i a_unsigned = _mm256_sub_epi16(a.v, constant_neg_32768);
  __m256i b_unsigned = _mm256_sub_epi16(b.v, constant_neg_32768);
  __m256i avg_unsigned = _mm256_avg_epu16(a_unsigned, b_unsigned);
  __m256i avg = _mm256_add_epi16(avg_unsigned, constant_neg_32768);
  return to_int16x16_m256i(avg);
}

template <>
inline __m256i SaturatingRoundingDoublingHighMul(__m256i a, __m256i b) {
  __m256i min, saturation_mask, a0_a2, a1_a3, b0_b2, b1_b3;
  __m256i a0b0_a2b2, a1b1_a3b3, a0b0_a2b2_rounded, a1b1_a3b3_rounded;
  __m256i a0b0_a2b2_rounded_2x, a1b1_a3b3_rounded_2x, result;
  __m256i nudge;

  // saturation only happen if a == b == INT_MIN
  min = _mm256_set1_epi32(std::numeric_limits<std::int32_t>::min());
  saturation_mask = BitAnd(MaskIfEqual(a, b), MaskIfEqual(a, min));

  // a = a0 | a1 | a2 | a3
  // b = b0 | b1 | b2 | b3
  a0_a2 = a;
  a1_a3 = _mm256_srli_si256(a, 4);
  b0_b2 = b;
  b1_b3 = _mm256_srli_si256(b, 4);

  a0b0_a2b2 = _mm256_mul_epi32(a0_a2, b0_b2);
  a1b1_a3b3 = _mm256_mul_epi32(a1_a3, b1_b3);

  // do the rounding and take into account that it will be doubled
  nudge = _mm256_set1_epi64x(1 << 30);
  a0b0_a2b2_rounded = _mm256_add_epi64(a0b0_a2b2, nudge);
  a1b1_a3b3_rounded = _mm256_add_epi64(a1b1_a3b3, nudge);

  // do the doubling
  a0b0_a2b2_rounded_2x = _mm256_slli_epi64(a0b0_a2b2_rounded, 1);
  a1b1_a3b3_rounded_2x = _mm256_slli_epi64(a1b1_a3b3_rounded, 1);

  // get the high part of the products
  result = _mm256_blend_epi16(_mm256_srli_si256(a0b0_a2b2_rounded_2x, 4),
                              a1b1_a3b3_rounded_2x, 0xcc);

  // saturate those which overflowed
  return SelectUsingMask(saturation_mask, min, result);
}

template <>
inline int16x16_m256i SaturatingRoundingDoublingHighMul(int16x16_m256i a,
                                                        int16x16_m256i b) {
  // Use _mm256_mulhrs_epi16 then saturate with a bit-operation,
  // borrowed from Intel's arm_neon_sse.h header.
  __m256i result_unsaturated = _mm256_mulhrs_epi16(a.v, b.v);
  __m256i saturation_mask =
      _mm256_cmpeq_epi16(result_unsaturated, _mm256_set1_epi16(0x8000));
  __m256i result = _mm256_xor_si256(result_unsaturated, saturation_mask);
  return to_int16x16_m256i(result);
}

template <>
inline __m256i Dup<__m256i>(std::int32_t x) {
  return _mm256_set1_epi32(x);
}

template <>
inline int16x16_m256i Dup<int16x16_m256i>(std::int16_t x) {
  return to_int16x16_m256i(_mm256_set1_epi16(x));
}

// So far this is only needed for int16.
template <>
inline int16x16_m256i SaturatingAdd(int16x16_m256i a, int16x16_m256i b) {
  return to_int16x16_m256i(_mm256_adds_epi16(a.v, b.v));
}

}  // end namespace gemmlowp

#endif  // GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_