aboutsummaryrefslogtreecommitdiff
path: root/fixedpoint/fixedpoint_msa.h
blob: c7a110cb533466ff07014946bb07187dda0a5d92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// Copyright 2018 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// fixedpoint_msa.h: optimized MSA specializations of the templates
// in fixedpoint.h.

#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_MSA_H_
#define GEMMLOWP_INTERNAL_FIXEDPOINT_MSA_H_

#include <msa.h>

namespace gemmlowp {

template <>
struct FixedPointRawTypeTraits<v4i32> {
  typedef std::int32_t ScalarRawType;
  static const int kLanes = 4;
};

template <>
struct FixedPointRawTypeTraits<v8i16> {
  typedef std::int16_t ScalarRawType;
  static const int kLanes = 8;
};

template <>
inline v4i32 BitAnd(v4i32 a, v4i32 b) {
  return reinterpret_cast<v4i32>(__builtin_msa_and_v(reinterpret_cast<v16u8>(a),
                                                     reinterpret_cast<v16u8>(b)));
}

template <>
inline v8i16 BitAnd(v8i16 a, v8i16 b) {
  return reinterpret_cast<v8i16>(__builtin_msa_and_v(reinterpret_cast<v16u8>(a),
                                                     reinterpret_cast<v16u8>(b)));
}

template <>
inline v4i32 BitOr(v4i32 a, v4i32 b) {
  return reinterpret_cast<v4i32>(__builtin_msa_or_v(reinterpret_cast<v16u8>(a),
                                                    reinterpret_cast<v16u8>(b)));
}

template <>
inline v8i16 BitOr(v8i16 a, v8i16 b) {
  return reinterpret_cast<v8i16>(__builtin_msa_or_v(reinterpret_cast<v16u8>(a),
                                                    reinterpret_cast<v16u8>(b)));
}

template <>
inline v4i32 BitXor(v4i32 a, v4i32 b) {
  return reinterpret_cast<v4i32>(__builtin_msa_xor_v(reinterpret_cast<v16u8>(a),
                                                     reinterpret_cast<v16u8>(b)));
}

template <>
inline v8i16 BitXor(v8i16 a, v8i16 b) {
  return reinterpret_cast<v8i16>(__builtin_msa_xor_v(reinterpret_cast<v16u8>(a),
                                                     reinterpret_cast<v16u8>(b)));
}

template <>
inline v4i32 BitNot(v4i32 a) {
  return reinterpret_cast<v4i32>(__builtin_msa_nor_v(reinterpret_cast<v16u8>(a),
                                                     reinterpret_cast<v16u8>(a)));
}

template <>
inline v8i16 BitNot(v8i16 a) {
  return reinterpret_cast<v8i16>(__builtin_msa_nor_v(reinterpret_cast<v16u8>(a),
                                                     reinterpret_cast<v16u8>(a)));
}

template <>
inline v4i32 Add(v4i32 a, v4i32 b) {
  return __builtin_msa_addv_w(a, b);
}

template <>
inline v8i16 Add(v8i16 a, v8i16 b) {
  return __builtin_msa_addv_h(a, b);
}

template <>
inline v4i32 Sub(v4i32 a, v4i32 b) {
  return __builtin_msa_subv_w(a, b);
}

template <>
inline v8i16 Sub(v8i16 a, v8i16 b) {
  return __builtin_msa_subv_h(a, b);
}

template <>
inline v4i32 Neg(v4i32 a) {
  v4i32 zeroes = __builtin_msa_ldi_w(0);
  return __builtin_msa_subv_w(zeroes, a);
}

template <>
inline v8i16 Neg(v8i16 a) {
  v8i16 zeroes = __builtin_msa_ldi_h(0);
  return __builtin_msa_subv_h(zeroes, a);
}

template <>
inline v4i32 ShiftLeft(v4i32 a, int offset) {
  return __builtin_msa_sll_w(a, __builtin_msa_fill_w(offset));
}

template <>
inline v8i16 ShiftLeft(v8i16 a, int offset) {
  return __builtin_msa_sll_h(a, __builtin_msa_fill_h(offset));
}

template <>
inline v4i32 ShiftRight(v4i32 a, int offset) {
  return __builtin_msa_sra_w(a, __builtin_msa_fill_w(offset));
}

template <>
inline v8i16 ShiftRight(v8i16 a, int offset) {
  return __builtin_msa_sra_h(a, __builtin_msa_fill_h(offset));
}

template <>
inline v4i32 SelectUsingMask(v4i32 if_mask, v4i32 then_val, v4i32 else_val) {
  if_mask = reinterpret_cast<v4i32>(__builtin_msa_bsel_v(reinterpret_cast<v16u8>(if_mask),
                                                         reinterpret_cast<v16u8>(else_val),
                                                         reinterpret_cast<v16u8>(then_val)));
  return if_mask;
}

template <>
inline v8i16 SelectUsingMask(v8i16 if_mask, v8i16 then_val, v8i16 else_val) {
  if_mask = reinterpret_cast<v8i16>(__builtin_msa_bsel_v(reinterpret_cast<v16u8>(if_mask),
                                                         reinterpret_cast<v16u8>(else_val),
                                                         reinterpret_cast<v16u8>(then_val)));
  return if_mask;
}

template <>
inline v4i32 MaskIfEqual(v4i32 a, v4i32 b) {
  return __builtin_msa_ceq_w(a, b);
}

template <>
inline v8i16 MaskIfEqual(v8i16 a, v8i16 b) {
  return __builtin_msa_ceq_h(a, b);
}

template <>
inline v4i32 MaskIfNotEqual(v4i32 a, v4i32 b) {
  return BitNot(MaskIfEqual(a, b));
}

template <>
inline v8i16 MaskIfNotEqual(v8i16 a, v8i16 b) {
  return BitNot(MaskIfEqual(a, b));
}

template <>
inline v4i32 MaskIfZero(v4i32 a) {
  return __builtin_msa_ceqi_w(a, 0);
}

template <>
inline v8i16 MaskIfZero(v8i16 a) {
  return __builtin_msa_ceqi_h(a, 0);
}

template <>
inline v4i32 MaskIfNonZero(v4i32 a) {
  return BitNot(MaskIfZero(a));
}

template <>
inline v8i16 MaskIfNonZero(v8i16 a) {
  return BitNot(MaskIfZero(a));
}

template <>
inline v4i32 MaskIfGreaterThan(v4i32 a, v4i32 b) {
  return __builtin_msa_clt_s_w(b, a);
}

template <>
inline v8i16 MaskIfGreaterThan(v8i16 a, v8i16 b) {
  return __builtin_msa_clt_s_h(b, a);
}

template <>
inline v4i32 MaskIfGreaterThanOrEqual(v4i32 a, v4i32 b) {
  return __builtin_msa_cle_s_w(b, a);
}

template <>
inline v8i16 MaskIfGreaterThanOrEqual(v8i16 a, v8i16 b) {
  return __builtin_msa_cle_s_h(b, a);
}

template <>
inline v4i32 MaskIfLessThan(v4i32 a, v4i32 b) {
  return __builtin_msa_clt_s_w(a, b);
}

template <>
inline v8i16 MaskIfLessThan(v8i16 a, v8i16 b) {
  return __builtin_msa_clt_s_h(a, b);
}

template <>
inline v4i32 MaskIfLessThanOrEqual(v4i32 a, v4i32 b) {
  return __builtin_msa_cle_s_w(a, b);
}

template <>
inline v8i16 MaskIfLessThanOrEqual(v8i16 a, v8i16 b) {
  return __builtin_msa_cle_s_h(a, b);
}

template <>
inline bool All(v4i32 a) {
  return __builtin_msa_bz_v(reinterpret_cast<v16u8>(BitNot(a)));
}

template <>
inline bool All(v8i16 a) {
  return __builtin_msa_bz_v(reinterpret_cast<v16u8>(BitNot(a)));
}

template <>
inline bool Any(v4i32 a) {
  return __builtin_msa_bnz_v(reinterpret_cast<v16u8>(a));
}

template <>
inline bool Any(v8i16 a) {
  return __builtin_msa_bnz_v(reinterpret_cast<v16u8>(a));
}

template <>
inline v4i32 RoundingHalfSum(v4i32 a, v4i32 b) {
  return __builtin_msa_aver_s_w(a, b);
}

template <>
inline v8i16 RoundingHalfSum(v8i16 a, v8i16 b) {
  return __builtin_msa_aver_s_h(a, b);
}

template <>
inline v4i32 SaturatingRoundingDoublingHighMul(v4i32 a, v4i32 b) {
  return __builtin_msa_mulr_q_w(a, b);
}

template <>
inline v8i16 SaturatingRoundingDoublingHighMul(v8i16 a, v8i16 b) {
  return __builtin_msa_mulr_q_h(a, b);
}

template <int Exponent>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, v4i32, 1> {
  static v4i32 eval(v4i32 x) {
    static_assert(Exponent >= 0 && Exponent < 32, "");
    if (Exponent < 5) {
      for (int i = 0; i < Exponent; i++) {
        x = __builtin_msa_adds_s_w(x, x);
      }
      return x;
    } else {
      // Saturate each signed 32-bit element to (32 - Exponent)
      // bits (this takes full care of negative elements).
      v4i32 res = __builtin_msa_sat_s_w(x, 31 - Exponent);
      // Set tmp to 0x7FFFFFFF for those elements which staturated
      // to smaller (positive) values and 0 for all others.
      v4i32 tmp = __builtin_msa_srli_w(__builtin_msa_clt_s_w(res, x), 1);
      // Shift the saturated elements. The positive saturated elements
      // will have Exponent trailing zero bits after the shift. Those
      // need to be ones, not zeroes.
      res = __builtin_msa_slli_w(res, Exponent);
      // Finally, set those trailing zero bits to ones.
      res = reinterpret_cast<v4i32>(__builtin_msa_or_v(reinterpret_cast<v16u8>(res),
                                                       reinterpret_cast<v16u8>(tmp)));
      return res;
    }
  }
};

template <int Exponent>
struct ImplSaturatingRoundingMultiplyByPOT<Exponent, v8i16, 1> {
  static v8i16 eval(v8i16 x) {
    static_assert(Exponent >= 0 && Exponent < 16, "");
    if (Exponent < 5) {
      for (int i = 0; i < Exponent; i++) {
        x = __builtin_msa_adds_s_h(x, x);
      }
      return x;
    } else {
      // Saturate each signed 16-bit element to (16 - Exponent)
      // bits (this takes full care of negative elements).
      v8i16 res = __builtin_msa_sat_s_h(x, 15 - Exponent);
      // Set tmp to 0x7FFF for those elements which staturated
      // to smaller (positive) values and 0 for all others.
      v8i16 tmp = __builtin_msa_srli_h(__builtin_msa_clt_s_h(res, x), 1);
      // Shift the saturated elements. The positive saturated elements
      // will have Exponent trailing zero bits after the shift. Those
      // need to be ones, not zeroes.
      res = __builtin_msa_slli_h(res, Exponent);
      // Finally, set those trailing zero bits to ones.
      res = reinterpret_cast<v8i16>(__builtin_msa_or_v(reinterpret_cast<v16u8>(res),
                                                       reinterpret_cast<v16u8>(tmp)));
      return res;
    }
  }
};

// TODO: possibly implement:
// template <> v4i32 RoundingDivideByPOT(v4i32, int)
// template <> v8i16 RoundingDivideByPOT(v8i16, int)
// template <int Exponent> struct ImplSaturatingRoundingMultiplyByPOT<Exponent, v4i32, -1>
// template <int Exponent> struct ImplSaturatingRoundingMultiplyByPOT<Exponent, v8i16, -1>

template <>
inline v4i32 Dup<v4i32>(std::int32_t x) {
  return __builtin_msa_fill_w(x);
}

template <>
inline v8i16 Dup<v8i16>(std::int16_t x) {
  return __builtin_msa_fill_h(x);
}

// So far this is only needed for int16.
template <>
inline v8i16 SaturatingAdd(v8i16 a, v8i16 b) {
  return __builtin_msa_adds_s_h(a, b);
  return a;
}

}  // end namespace gemmlowp

#endif  // GEMMLOWP_INTERNAL_FIXEDPOINT_MSA_H_