aboutsummaryrefslogtreecommitdiff
path: root/internal/dispatch_gemm_shape.h
blob: b844f7895661193ca868c62545252eddff878785 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright 2017 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// dispatch_gemm_shape.h: dispatch GEMM calls according to their shape

#ifndef GEMMLOWP_INTERNAL_DISPATCH_GEMM_SHAPE_H_
#define GEMMLOWP_INTERNAL_DISPATCH_GEMM_SHAPE_H_

#include "../internal/kernel_default.h"
#include "../public/map.h"
#include "../public/output_stages.h"
#include "multi_thread_gemm.h"

namespace gemmlowp {

template <typename T>
struct TransposeImpl {
  typedef T DstType;
  static T Run(const T& t) { return t; }
};

template <typename T>
using TransposeType = typename TransposeImpl<T>::DstType;

template <typename T>
TransposeType<T> Transpose(const T& t) {
  return TransposeImpl<T>::Run(t);
}

template <MapOrder Order>
struct TransposeMapOrder {
  static constexpr MapOrder Value =
      Order == MapOrder::RowMajor ? MapOrder::ColMajor : MapOrder::RowMajor;
};

template <VectorShape Shape>
struct TransposeVectorShape {
  static constexpr VectorShape Value =
      Shape == VectorShape::Row ? VectorShape::Col : VectorShape::Row;
};

template <typename Scalar, VectorShape Shape>
struct TransposeImpl<VectorMap<Scalar, Shape>> {
  typedef VectorMap<Scalar, Shape> SrcType;
  static constexpr VectorShape TransposedShape =
      TransposeVectorShape<Shape>::Value;
  typedef VectorMap<Scalar, TransposedShape> DstType;
  static DstType Run(const SrcType& src) {
    return DstType(src.data(), src.size());
  }
};

template <typename Scalar, MapOrder Order>
struct TransposeImpl<MatrixMap<Scalar, Order>> {
  typedef MatrixMap<Scalar, Order> SrcType;
  static constexpr MapOrder TransposedOrder = TransposeMapOrder<Order>::Value;
  typedef MatrixMap<Scalar, TransposedOrder> DstType;
  static DstType Run(const SrcType& src) {
    return DstType(src.data(), src.cols(), src.rows(), src.stride());
  }
};

template <VectorShape Shape>
struct TransposeImpl<OutputStageQuantizeDownInt32ToUint8ScalePC<Shape>> {
  typedef OutputStageQuantizeDownInt32ToUint8ScalePC<Shape> SrcType;
  static constexpr VectorShape TransposedShape =
      TransposeVectorShape<Shape>::Value;
  typedef OutputStageQuantizeDownInt32ToUint8ScalePC<TransposedShape> DstType;
  static DstType Run(const SrcType& src) {
    DstType dst;
    dst.result_shift = src.result_shift;
    dst.result_offset = Transpose(src.result_offset);
    dst.result_mult_int = Transpose(src.result_mult_int);
    return dst;
  }
};

template <VectorShape Shape>
struct TransposeImpl<OutputStageScaleInt32ByFixedPointAndExponentPC<Shape>> {
  typedef OutputStageScaleInt32ByFixedPointAndExponentPC<Shape> SrcType;
  static constexpr VectorShape TransposedShape =
      TransposeVectorShape<Shape>::Value;
  typedef OutputStageScaleInt32ByFixedPointAndExponentPC<TransposedShape>
      DstType;
  static DstType Run(const SrcType& src) {
    DstType dst;
    dst.result_fixedpoint_multiplier =
        Transpose(src.result_fixedpoint_multiplier);
    dst.result_exponent = Transpose(src.result_exponent);
    dst.result_offset_after_shift = src.result_offset_after_shift;
    return dst;
  }
};

template <typename VectorMapType>
struct TransposeImpl<OutputStageBiasAddition<VectorMapType>> {
  typedef OutputStageBiasAddition<VectorMapType> SrcType;
  typedef TransposeType<VectorMapType> TransposedVectorMapType;
  typedef OutputStageBiasAddition<TransposedVectorMapType> DstType;
  static DstType Run(const SrcType& src) {
    DstType dst;
    dst.bias_vector = Transpose(src.bias_vector);
    return dst;
  }
};

// TODO(benoitjacob) - does anyone understand C++ variadic templates?
// How to use them to implement TransposeTuple? Note: there are lots
// of answers on StackOverflow but they seem to all involve either
// C++14/C++17 (we can only use C++11) or lots of abstract nonsense.
inline std::tuple<> TransposeTuple(const std::tuple<>& t) { return t; }

template <typename T0>
std::tuple<TransposeType<T0>> TransposeTuple(const std::tuple<T0>& t) {
  return std::make_tuple(Transpose(std::get<0>(t)));
}

template <typename T0, typename T1>
std::tuple<TransposeType<T0>, TransposeType<T1>> TransposeTuple(
    const std::tuple<T0, T1>& t) {
  return std::make_tuple(Transpose(std::get<0>(t)), Transpose(std::get<1>(t)));
}

template <typename T0, typename T1, typename T2>
std::tuple<TransposeType<T0>, TransposeType<T1>, TransposeType<T2>>
TransposeTuple(const std::tuple<T0, T1, T2>& t) {
  return std::make_tuple(Transpose(std::get<0>(t)), Transpose(std::get<1>(t)),
                         Transpose(std::get<2>(t)));
}

template <typename T0, typename T1, typename T2, typename T3>
std::tuple<TransposeType<T0>, TransposeType<T1>, TransposeType<T2>,
           TransposeType<T3>>
TransposeTuple(const std::tuple<T0, T1, T2, T3>& t) {
  return std::make_tuple(Transpose(std::get<0>(t)), Transpose(std::get<1>(t)),
                         Transpose(std::get<2>(t)), Transpose(std::get<3>(t)));
}

template <typename T0, typename T1, typename T2, typename T3, typename T4>
std::tuple<TransposeType<T0>, TransposeType<T1>, TransposeType<T2>,
           TransposeType<T3>, TransposeType<T4>>
TransposeTuple(const std::tuple<T0, T1, T2, T3, T4>& t) {
  return std::make_tuple(Transpose(std::get<0>(t)), Transpose(std::get<1>(t)),
                         Transpose(std::get<2>(t)), Transpose(std::get<3>(t)),
                         Transpose(std::get<4>(t)));
}

template <typename T0, typename T1, typename T2, typename T3, typename T4,
          typename T5>
std::tuple<TransposeType<T0>, TransposeType<T1>, TransposeType<T2>,
           TransposeType<T3>, TransposeType<T4>, TransposeType<T5>>
TransposeTuple(const std::tuple<T0, T1, T2, T3, T4, T5>& t) {
  return std::make_tuple(Transpose(std::get<0>(t)), Transpose(std::get<1>(t)),
                         Transpose(std::get<2>(t)), Transpose(std::get<3>(t)),
                         Transpose(std::get<4>(t)), Transpose(std::get<5>(t)));
}

template <typename InputScalar, typename OutputScalar, typename BitDepthParams,
          MapOrder LhsOrder, MapOrder RhsOrder, MapOrder ResultOrder,
          typename LhsOffset, typename RhsOffset, typename OutputPipelineType,
          typename GemmContextType>
void DispatchGemmShape(GemmContextType* context,
                       const MatrixMap<const InputScalar, LhsOrder>& lhs,
                       const MatrixMap<const InputScalar, RhsOrder>& rhs,
                       MatrixMap<OutputScalar, ResultOrder>* result,
                       const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
                       const OutputPipelineType& output_pipeline) {
  assert(lhs.cols() == rhs.rows());

  int rows = result->rows();
  int cols = result->cols();
  int depth = lhs.cols();

  if (rows == 0 || cols == 0 || depth == 0) {
    // Vacuous GEMM, return early to avoid having to deal with
    // zero sizes below.
    return;
  }

  if (rows < cols) {
    auto transposed_result_map = Transpose(*result);
    return DispatchGemmShape<InputScalar, OutputScalar, BitDepthParams>(
        context, Transpose(rhs), Transpose(lhs), &transposed_result_map,
        Transpose(rhs_offset), Transpose(lhs_offset),
        TransposeTuple(output_pipeline));
  }

  typedef DefaultKernel<BitDepthParams> Kernel;
  MultiThreadGemm<typename Kernel::Format, InputScalar, OutputScalar,
                  BitDepthParams>(context, Kernel(), lhs, rhs, result,
                                  lhs_offset, rhs_offset, output_pipeline);
}

}  // end namespace gemmlowp

#endif  // GEMMLOWP_INTERNAL_DISPATCH_GEMM_SHAPE_H_