aboutsummaryrefslogtreecommitdiff
path: root/standalone/cache_counters.cc
blob: 24e971c94e49ba1a61c4ff5c0434737cd1ffd678 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#include <asm/unistd.h>
#include <linux/perf_event.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <algorithm>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <random>

#ifndef __aarch64__
#error This program is for 64-bit ARM only.
#endif

struct PerfEvent {
  perf_event_attr pe;
  int fd = -1;

  PerfEvent(std::uint32_t type, std::uint64_t config) {
    memset(&pe, 0, sizeof(pe));
    pe.size = sizeof(pe);
    pe.type = type;
    pe.config = config;
    pe.disabled = 1;
    pe.exclude_kernel = 1;
    pe.exclude_hv = 1;
    fd = syscall(__NR_perf_event_open, &pe, 0, -1, -1, 0);
    if (fd == -1) {
      fprintf(stderr, "perf_event_open failed for config 0x%lx\n", config);
      abort();
    }
  }

  void Start() {
    ioctl(fd, PERF_EVENT_IOC_RESET, 0);
    ioctl(fd, PERF_EVENT_IOC_ENABLE, 0);
  }

  std::int64_t Stop() {
    ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);
    std::int64_t count = 0;
    read(fd, &count, sizeof(count));
    return count;
  }

  ~PerfEvent() { close(fd); }
};

struct ArmPmuEvent : PerfEvent {
  static constexpr std::uint16_t L1I_CACHE_REFILL = 0x01;
  static constexpr std::uint16_t L1I_TLB_REFILL = 0x02;
  static constexpr std::uint16_t L1D_CACHE_REFILL = 0x03;
  static constexpr std::uint16_t L1D_CACHE = 0x04;
  static constexpr std::uint16_t L1D_TLB_REFILL = 0x05;
  static constexpr std::uint16_t LD_RETIRED = 0x06;
  static constexpr std::uint16_t ST_RETIRED = 0x07;
  static constexpr std::uint16_t INST_RETIRED = 0x08;
  static constexpr std::uint16_t EXC_TAKEN = 0x09;
  static constexpr std::uint16_t EXC_RETURN = 0x0A;
  static constexpr std::uint16_t CID_WRITE_RETIRED = 0x0B;
  static constexpr std::uint16_t PC_WRITE_RETIRED = 0x0C;
  static constexpr std::uint16_t BR_IMMED_RETIRED = 0x0D;
  static constexpr std::uint16_t BR_RETURN_RETIRED = 0x0E;
  static constexpr std::uint16_t UNALIGNED_LDST_RETIRED = 0x0F;
  static constexpr std::uint16_t BR_MIS_PRED = 0x10;
  static constexpr std::uint16_t CPU_CYCLES = 0x11;
  static constexpr std::uint16_t BR_PRED = 0x12;
  static constexpr std::uint16_t MEM_ACCESS = 0x13;
  static constexpr std::uint16_t L1I_CACHE = 0x14;
  static constexpr std::uint16_t L1D_CACHE_WB = 0x15;
  static constexpr std::uint16_t L2D_CACHE = 0x16;
  static constexpr std::uint16_t L2D_CACHE_REFILL = 0x17;
  static constexpr std::uint16_t L2D_CACHE_WB = 0x18;
  static constexpr std::uint16_t BUS_ACCESS = 0x19;
  static constexpr std::uint16_t MEMORY_ERROR = 0x1A;
  static constexpr std::uint16_t INST_SPEC = 0x1B;
  static constexpr std::uint16_t TTBR_WRITE_RETIRED = 0x1C;
  static constexpr std::uint16_t BUS_CYCLES = 0x1D;
  static constexpr std::uint16_t CHAIN = 0x1E;
  static constexpr std::uint16_t L1D_CACHE_ALLOCATE = 0x1F;
  static constexpr std::uint16_t L2D_CACHE_ALLOCATE = 0x20;
  static constexpr std::uint16_t BR_RETIRED = 0x21;
  static constexpr std::uint16_t BR_MIS_PRED_RETIRED = 0x22;
  static constexpr std::uint16_t STALL_FRONTEND = 0x23;
  static constexpr std::uint16_t STALL_BACKEND = 0x24;
  static constexpr std::uint16_t L1D_TLB = 0x25;
  static constexpr std::uint16_t L1I_TLB = 0x26;
  static constexpr std::uint16_t L2I_CACHE = 0x27;
  static constexpr std::uint16_t L2I_CACHE_REFILL = 0x28;
  static constexpr std::uint16_t L3D_CACHE_ALLOCATE = 0x29;
  static constexpr std::uint16_t L3D_CACHE_REFILL = 0x2A;
  static constexpr std::uint16_t L3D_CACHE = 0x2B;
  static constexpr std::uint16_t L3D_CACHE_WB = 0x2C;
  static constexpr std::uint16_t L2D_TLB_REFILL = 0x2D;
  static constexpr std::uint16_t L2I_TLB_REFILL = 0x2E;
  static constexpr std::uint16_t L2D_TLB = 0x2F;
  static constexpr std::uint16_t L2I_TLB = 0x30;
  static constexpr std::uint16_t LL_CACHE = 0x32;
  static constexpr std::uint16_t LL_CACHE_MISS = 0x33;
  static constexpr std::uint16_t DTLB_WALK = 0x34;
  static constexpr std::uint16_t LL_CACHE_RD = 0x36;
  static constexpr std::uint16_t LL_CACHE_MISS_RD = 0x37;
  static constexpr std::uint16_t L1D_CACHE_RD = 0x40;
  static constexpr std::uint16_t L1D_CACHE_REFILL_RD = 0x42;
  static constexpr std::uint16_t L1D_TLB_REFILL_RD = 0x4C;
  static constexpr std::uint16_t L1D_TLB_RD = 0x4E;
  static constexpr std::uint16_t L2D_CACHE_RD = 0x50;
  static constexpr std::uint16_t L2D_CACHE_REFILL_RD = 0x52;
  static constexpr std::uint16_t BUS_ACCESS_RD = 0x60;
  static constexpr std::uint16_t MEM_ACCESS_RD = 0x66;
  static constexpr std::uint16_t L3D_CACHE_RD = 0xA0;
  static constexpr std::uint16_t L3D_CACHE_REFILL_RD = 0xA2;
  ArmPmuEvent(std::uint16_t number) : PerfEvent(PERF_TYPE_RAW, number) {}
};

struct CacheCounts {
  int ld_retired = 0;
  int mem_access = 0;
  int ll_cache = 0;
  int ll_cache_miss = 0;
  int l1d_cache = 0;
  int l1d_cache_refill = 0;
  int l2d_cache = 0;
  int l2d_cache_refill = 0;
  int l3d_cache = 0;
  int l3d_cache_refill = 0;
};

void PrintCacheCounts(const CacheCounts& cache_counts) {
  printf("ld_retired = %d\n", cache_counts.ld_retired);
  printf("mem_access = %d\n", cache_counts.mem_access);
  printf("ll_cache = %d\n", cache_counts.ll_cache);
  printf("ll_cache_miss = %d\n", cache_counts.ll_cache_miss);
  printf("l1d_cache = %d\n", cache_counts.l1d_cache);
  printf("l1d_cache_refill = %d\n", cache_counts.l1d_cache_refill);
  printf("l2d_cache = %d\n", cache_counts.l2d_cache);
  printf("l2d_cache_refill = %d\n", cache_counts.l2d_cache_refill);
  printf("l3d_cache = %d\n", cache_counts.l3d_cache);
  printf("l3d_cache_refill = %d\n", cache_counts.l3d_cache_refill);
}

void Workload(int accesses, int size, std::uint8_t* buf) {
  // The main reason to do this in assembly is an attempt to make sense
  // of instruction count counters, such as LD_RETIRED.
  // Also, if we did this in C++, we would need to be watchful of the compiler
  // optimizing away operations whose result isn't consumed.
  //
  // Note that TWO separate tricks are needed here to prevent Cortex-A76
  // speculative execution om prefetching data from future loop iterations:
  //   1. A data-dependency whereby the pointers being dereferenced at the
  //      next loop iteration depend on values loaded at the current iteration.
  //      That is the role of 'dummy'.
  //   2. A pseudo-random sequence. This is the role of register w0,
  //      where we implement a simple xorshift pseudorandom generator.
  // BOTH of these tricks are needed: if we disable just one of them,
  // Cortex-A76 successfully speculates some addresses, resulting in different
  // L3 / DRAM hit percentages on large sizes.
  std::uint64_t dummy = 123456789;
  asm volatile(
      // w0 := xorshift RNG state. Must be nonzero.
      "mov w0, #1\n"
      "1:\n"
      // xorshift RNG iteration: update w0 with the next pseudorandom value
      // in [1 .. 2^32-1].
      // This pseudorandomness is crucial to preventing speculative execution
      // on Cortex-A76 from prefetching data from future loop iterations.
      "eor w0, w0, w0, lsl #13\n"
      "eor w0, w0, w0, lsr #17\n"
      "eor w0, w0, w0, lsl #5\n"
      // w1 := size - 1 = size mask (size is required to be power-of-two).
      "sub w1, %w[size], #1\n"
      // w2 := (pseudorandom value w0) xor (data-dependent sum).
      "eor w2, w0, %w[dummy]\n"
      // w1 := w2 modulo size
      "and w1, w2, w1\n"
      // align w1
      "and w1, w1, #-64\n"
      // load at offset w1, again using x1 as destination.
      "ldr x1, [%[buf], w1, uxtw]\n"
      // Update our dummy so it depends on the value we have just loaded.
      // This data-dependency is key to preventing speculative execution on
      // Cortex-A76 from prefetching data from future loop iterations.
      "add %[dummy], %[dummy], w1, uxtw\n"
      // loop back.
      "subs %w[accesses], %w[accesses], #1\n"
      "bne 1b\n"
      : [ accesses ] "+r"(accesses), [ dummy ] "+r"(dummy)
      : [ size ] "r"(size), [ buf ] "r"(buf)
      : "memory", "cc", "x0", "x1", "x2");
}

void MeasureCacheCounts(int accesses, int size, std::uint8_t* buf,
                        CacheCounts* cache_counts) {
  const bool only_reads = getenv("ONLY_READS");
  ArmPmuEvent ld_retired(ArmPmuEvent::LD_RETIRED);
  ArmPmuEvent mem_access(only_reads ? ArmPmuEvent::MEM_ACCESS_RD
                                    : ArmPmuEvent::MEM_ACCESS);
  ArmPmuEvent ll_cache(only_reads ? ArmPmuEvent::LL_CACHE_RD
                                  : ArmPmuEvent::LL_CACHE);
  ArmPmuEvent ll_cache_miss(only_reads ? ArmPmuEvent::LL_CACHE_MISS_RD
                                       : ArmPmuEvent::LL_CACHE_MISS);
  ArmPmuEvent l1d_cache(only_reads ? ArmPmuEvent::L1D_CACHE_RD
                                   : ArmPmuEvent::L1D_CACHE);
  ArmPmuEvent l1d_cache_refill(only_reads ? ArmPmuEvent::L1D_CACHE_REFILL_RD
                                          : ArmPmuEvent::L1D_CACHE_REFILL);
  ArmPmuEvent l2d_cache(only_reads ? ArmPmuEvent::L2D_CACHE_RD
                                   : ArmPmuEvent::L2D_CACHE);
  ArmPmuEvent l2d_cache_refill(only_reads ? ArmPmuEvent::L2D_CACHE_REFILL_RD
                                          : ArmPmuEvent::L2D_CACHE_REFILL);
  ArmPmuEvent l3d_cache(only_reads ? ArmPmuEvent::L3D_CACHE_RD
                                   : ArmPmuEvent::L3D_CACHE);
  ArmPmuEvent l3d_cache_refill(only_reads ? ArmPmuEvent::L3D_CACHE_REFILL_RD
                                          : ArmPmuEvent::L3D_CACHE_REFILL);

  ld_retired.Start();
  mem_access.Start();
  ll_cache.Start();
  ll_cache_miss.Start();
  l1d_cache.Start();
  l1d_cache_refill.Start();
  l2d_cache.Start();
  l2d_cache_refill.Start();
  l3d_cache.Start();
  l3d_cache_refill.Start();

  Workload(accesses, size, buf);

  cache_counts->ld_retired = ld_retired.Stop();
  cache_counts->mem_access = mem_access.Stop();
  cache_counts->ll_cache = ll_cache.Stop();
  cache_counts->ll_cache_miss = ll_cache_miss.Stop();
  cache_counts->l1d_cache = l1d_cache.Stop();
  cache_counts->l1d_cache_refill = l1d_cache_refill.Stop();
  cache_counts->l2d_cache = l2d_cache.Stop();
  cache_counts->l2d_cache_refill = l2d_cache_refill.Stop();
  cache_counts->l3d_cache = l3d_cache.Stop();
  cache_counts->l3d_cache_refill = l3d_cache_refill.Stop();
}

struct PieChart {
  // How many accesses were recorded, total? The other fields must sum to that.
  int total;
  // How many accesses were serviced with the typical cost of a L1 cache hit?
  int l1_hits;
  // How many accesses were serviced with the typical cost of a L2 cache hit?
  int l2_hits;
  // How many accesses were serviced with the typical cost of a L3 cache hit?
  int l3_hits;
  // How many accesses were serviced with the typical cost of a DRAM access?
  int dram_hits;

  ~PieChart() {
    // Consistency check
    if (total != l1_hits + l2_hits + l3_hits + dram_hits) {
      fprintf(stderr, "inconsistent pie-chart\n");
      abort();
    }
  }
};

struct Hypothesis {
  virtual ~Hypothesis() {}
  virtual const char* Name() const = 0;
  virtual void Analyze(const CacheCounts& cache_counts,
                       PieChart* pie) const = 0;
};

struct Hypothesis1 : Hypothesis {
  const char* Name() const override { return "Hypothesis1"; }
  void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override {
    pie->total = cache_counts.l1d_cache + cache_counts.l1d_cache_refill;
    pie->l1_hits = cache_counts.l1d_cache - cache_counts.l2d_cache_refill -
                   cache_counts.l3d_cache_refill;
    pie->l2_hits = cache_counts.l1d_cache_refill;
    pie->l3_hits = cache_counts.l2d_cache_refill;
    pie->dram_hits = cache_counts.l3d_cache_refill;
  }
};

struct Hypothesis2 : Hypothesis {
  const char* Name() const override { return "Hypothesis2"; }
  void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override {
    pie->total = cache_counts.l1d_cache;
    pie->l1_hits = cache_counts.l1d_cache - cache_counts.l2d_cache;
    pie->l2_hits = cache_counts.l2d_cache - cache_counts.l3d_cache;
    pie->l3_hits = cache_counts.l3d_cache - cache_counts.l3d_cache_refill;
    pie->dram_hits = cache_counts.l3d_cache_refill;
  }
};

struct Hypothesis3 : Hypothesis {
  const char* Name() const override { return "Hypothesis3"; }
  void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override {
    pie->total = cache_counts.l1d_cache;
    int corrected_l2 = std::min(cache_counts.l2d_cache, cache_counts.l1d_cache);
    int corrected_l3 = std::min(cache_counts.l3d_cache, corrected_l2);
    pie->l1_hits = cache_counts.l1d_cache - corrected_l2;
    pie->l2_hits = corrected_l2 - corrected_l3;
    pie->l3_hits = corrected_l3 - cache_counts.l3d_cache_refill;
    pie->dram_hits = cache_counts.l3d_cache_refill;
  }
};

struct Hypothesis4 : Hypothesis {
  const char* Name() const override { return "Hypothesis4"; }
  void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override {
    pie->total = cache_counts.l1d_cache;
    pie->l1_hits = cache_counts.l1d_cache - cache_counts.l1d_cache_refill;
    pie->l2_hits =
        cache_counts.l1d_cache_refill - cache_counts.l2d_cache_refill;
    pie->l3_hits =
        cache_counts.l2d_cache_refill - cache_counts.l3d_cache_refill;
    pie->dram_hits = cache_counts.l3d_cache_refill;
  }
};

struct Hypothesis5 : Hypothesis {
  const char* Name() const override { return "Hypothesis5"; }
  void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override {
    pie->l1_hits =
        std::max(0, cache_counts.l1d_cache - cache_counts.l1d_cache_refill);
    pie->l2_hits = std::max(
        0, cache_counts.l1d_cache_refill - cache_counts.l2d_cache_refill);
    const int l3_misses =
        std::max(cache_counts.ll_cache_miss, cache_counts.l3d_cache_refill);
    pie->l3_hits = std::max(0, cache_counts.l2d_cache_refill - l3_misses);
    pie->dram_hits = l3_misses;
    pie->total = pie->l1_hits + pie->l2_hits + pie->l3_hits + pie->dram_hits;
  }
};

void PrintPieChart(const PieChart& pie) {
  printf("total accesses: %d\n", pie.total);
  double l1_hits_pct = 100. * pie.l1_hits / pie.total;
  double l2_hits_pct = 100. * pie.l2_hits / pie.total;
  double l3_hits_pct = 100. * pie.l3_hits / pie.total;
  double dram_hits_pct = 100. * pie.dram_hits / pie.total;
  printf("L1 hits: %.2f%%\n", l1_hits_pct);
  printf("L2 hits: %.2f%%\n", l2_hits_pct);
  printf("L1/2 hits: %.2f%%\n", l1_hits_pct + l2_hits_pct);
  printf("L3 hits: %.2f%%\n", l3_hits_pct);
  printf("L1/2/3 hits: %.2f%%\n", l1_hits_pct + l2_hits_pct + l3_hits_pct);
  printf("DRAM hits: %.2f%%\n", dram_hits_pct);
}

void PrintPieChartCsvNoNewline(const PieChart& pie) {
  double l1_hits_pct = 100. * pie.l1_hits / pie.total;
  double l2_hits_pct = 100. * pie.l2_hits / pie.total;
  double l3_hits_pct = 100. * pie.l3_hits / pie.total;
  double dram_hits_pct = 100. * pie.dram_hits / pie.total;
  printf("%.2f,%.2f,%.2f,%.2f", l1_hits_pct, l2_hits_pct, l3_hits_pct,
         dram_hits_pct);
}

void Study(int accesses, int size, std::uint8_t* buf) {
  CacheCounts cache_counts;
  MeasureCacheCounts(accesses, size, buf, &cache_counts);
  const Hypothesis* hypotheses[] = {
      new Hypothesis5, new Hypothesis4, new Hypothesis3,
      new Hypothesis2, new Hypothesis1,
  };
  if (getenv("DUMP_CSV")) {
    printf("%d", size);
    for (const Hypothesis* hypothesis : hypotheses) {
      printf(",");
      PieChart pie;
      hypothesis->Analyze(cache_counts, &pie);
      PrintPieChartCsvNoNewline(pie);
    }
    printf("\n");
  } else {
    printf("\n\n\naccesses=%d, size=%d:\n", accesses, size);
    printf("\nCache counts:\n");
    PrintCacheCounts(cache_counts);
    for (const Hypothesis* hypothesis : hypotheses) {
      printf("\n%s:\n", hypothesis->Name());
      PieChart pie;
      hypothesis->Analyze(cache_counts, &pie);
      PrintPieChart(pie);
    }
  }
  fflush(stdout);
  for (const Hypothesis* hypothesis : hypotheses) {
    delete hypothesis;
  }
}

int main() {
  const int kMinSize = 1 << 12;
  const int kMaxSize = 1 << 24;
  const int kAccesses = 1e8;
  void* buf_void = nullptr;
  posix_memalign(&buf_void, 64, kMaxSize);
  std::uint8_t* buf = static_cast<std::uint8_t*>(buf_void);
  std::default_random_engine random_engine;
  for (int i = 0; i < kMaxSize; i++) {
    buf[i] = random_engine();
  }
  for (int size = kMinSize; size <= kMaxSize; size *= 2) {
    Study(kAccesses, size, buf);
  }
  delete[] buf;
}