aboutsummaryrefslogtreecommitdiff
path: root/standalone/neon-gemm-kernel-benchmark.cc
blob: 2a936c150841b9884235fc013ad8cc3c5bc214ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
// Copyright 2016 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// This is a standalone testbed and benchmark for gemmlowp-style GEMM kernels,
// either doing integer or float arithmetic.
// It verifies that a kernel produces correct results, then benchmarks it.
//
// Some benchmark results are recorded in this spreadsheet:
//
// https://docs.google.com/spreadsheets/d/1UPbzbp9rdsD6RXxOr5q6AZ0n1omgEknLYO2ogiw6Kqk/edit?usp=sharing
//
// This program is entirely self-contained, and can be compiled manually
// such as suggested in the command lines below.
// It currently supports only Android/ARM but would trivially generalize to
// other OSes (it's mostly standard POSIX) or architectures (each kernel
// targets a specific architecture, one may simply add more).

/*
 Build and run this benchmark on Android/ARM/32bit:
 ~/android/toolchains/arm-linux-androideabi/bin/arm-linux-androideabi-clang++ \
 -fPIE -pie -O3 --std=c++11 standalone/neon-gemm-kernel-benchmark.cc -o \
 /tmp/benchmark -mfloat-abi=softfp -mfpu=neon-vfpv4 && adb push /tmp/benchmark \
 /data/local/tmp && adb shell /data/local/tmp/benchmark
 Build and run this benchmark on Android/ARM/64bit:
 ~/android/toolchains/aarch64-linux-android/bin/aarch64-linux-android-clang++ \
 -fPIE -static -O3 --std=c++11 standalone/neon-gemm-kernel-benchmark.cc -o \
 /tmp/benchmark && adb push /tmp/benchmark /data/local/tmp && adb shell \
 /data/local/tmp/benchmark
 */

// For big.LITTLE devices, use 'taskset' to select which cores to benchmark.
//
// The syntax is: taskset <mask> <commandline>
// where mask is a binary mask where each bit corresponds to a core,
// and low bits are little cores.
//
// Examples:
// Nexus 5X big cores: taskset 30
// Nexus 5X little cores: taskset 0f
// Pixel XL big cores: taskset 0c
// Pixel XL little cores: taskset 03
//
// Full example:
// adb shell taskset 0c /data/local/tmp/benchmark

#include <sched.h>
#include <unistd.h>

#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iostream>
#include <random>
#include <type_traits>

#if !defined __arm__ && !defined __aarch64__
#error This benchmark assumes ARM (for inline assembly sections).
#endif

#include <arm_neon.h>

// Typically one wants to fit in L1 cache, and GEMM implementations
// are carefully optimized to tune their access patterns to that effect.
// Most devices have at least 16k of L1 cache. The Kraits have exactly 16k.
const int kDefaultCacheSizeK = 16;

const int kCacheLineSize = 64;

// These definitions are used for labels within assembly code. Required for
// iOS toolchain compatibility.
#define GEMMLOWP_LABEL_AFTER_LOOP "1"
#define GEMMLOWP_LABEL_LOOP "2"
#define GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES "3"
#define GEMMLOWP_LABEL_STORE "4"

// BEGIN code copied from gemmlowp/internal/kernel.h

// Explanation of general gemmlowp terminology
// ===========================================
//
// We use the following abbreviations:
// LHS = "left-hand side"
// RHS = "right-hand side"
// Sometimes when referring to either LHS or RHS, we just say a "Side".
//
// In a matrix product of a MxK matrix times a KxN matrix,
// we call K the 'depth'. Note that M is the number of rows
// of the result (and of the LHS), and N is the number of columns
// of the result (and of the RHS).
//
// In each of the LHS and RHS matrices, we call 'width' the
// other dimension, besides the depth. So in the LHS, 'width'
// is the number of rows, while in the RHS, 'width' is the number
// of columns.
//
//  So in the LHS MxK matrix, the depth is K and the width in M.
// And in the RHS KxN matrix, the depth is K and the width in N.
//
// This is illustrated in this picture:
//
//                             RHS width
//                        <----------------->
//                        +-----------------+ ^
//                        |       RHS       | | Depth
//                        +-----------------+ v
//                 ^ +--+ +-----------------+
//                 | |L | |                 |
//       LHS width | |H | |      Result     |
//                 | |S | |                 |
//                 v +--+ +-----------------+
//                   <-->
//                   Depth

// Explanation of gemmlowp kernel formats and "cells"
// ==================================================
//
// Kernels operate on small LHS and RHS blocks that fit in registers.
// These blocks are stored contiguously in memory, but not always
// in a traditional column-major or row-major order; instead,
// they consist of a number of sub-blocks, which we call "cells",
// that are stored in column-major or row-major order. However,
// what really matters to us is not so much rows vs columns, but
// rather width vs depth. So we refer to "width-major" and "depth-major"
// storage orders. In the LHS, width-major means row-major,
// while in the RHS, width-major means column-major.
// There is also a third possibility, "diagonal order",
// which is unused at the moment.
//
// We aim to treat both sides, LHS and RHS, on an equal footing,
// so we call them both 'sides'. A KernelFormat thus is just a pair
// of KernelSideFormat's, one for LHS and one for RHS; each KernelSideFormat
// contains a CellFormat and a number of cells; cells are only ever
// stacked in the width dimension, which means stacked vertically in the
// LHS and stacked horizondally in the RHS.
//
// Example
// =======
//
// Let's work out the data layout expected by a kernel having the
// following format (the struct names here are defined below in this file):
//
// KernelFormat<
//   KernelSideFormat<CellFormat<3, 4>, 3>,
//   KernelSideFormat<CellFormat<5, 4>, 2>
// >
//
// The LHS format, KernelSideFormat<CellFormat<3, 4>, 3>, means:
// 3 cells, each cell having dimensions (width=3, depth=4), laid out in
// DepthMajor order (the default value, see CellFormat). In the LHS,
// DepthMajor means column-major, so the LHS cells are of size 3x4 in
// column-major order, so the LHS layout is:
//
// 0  3  6  9
// 1  4  7  10
// 2  5  8  11
// 12 15 18 21
// 13 16 19 22
// 14 17 20 23
// 24 27 30 33
// 25 28 31 34
// 26 29 32 35
//
// The RHS format, KernelSideFormat<CellFormat<5, 4>, 2>, means:
// 2 cells each having dimensions (width=5, depth=4), laid out in
// DepthMajor order (the default value, see CellFormat). In the RHS,
// DepthMajor means row-major, so the RHS cells are of size 4x5 in
// row-major order, so the RHS layout is:
//
// 0  1  2  3  4  20 21 22 23 24
// 5  6  7  8  9  25 26 27 28 29
// 10 11 12 13 14 30 31 32 33 34
// 15 16 17 18 19 35 36 37 38 39

// CellOrder enumerates the possible storage orders (=layouts) for
// a cell (see explanation above).
enum class CellOrder { DepthMajor, WidthMajor, Diagonal };

// CellFormat describes how data is laid
// out in a cell. That is, a CellOrder together with actual dimensions.
template <int tWidth, int tDepth, CellOrder tOrder>
struct CellFormat {
  static const int kWidth = tWidth;
  static const int kDepth = tDepth;
  static const CellOrder kOrder = tOrder;

  static const int kSize = kWidth * kDepth;
};

// KernelSideFormat describes how data is laid out in a kernel side
// (i.e. LHS or RHS). That is, a CellFormat together with a number of
// cells. These cells are always stacked in the Width dimension.
// For example, in the LHS case, the Width dimension is the rows dimension,
// se we're saying that in the LHS, cells are stacked vertically.
// We never stack cells in the Depth dimension.
template <typename tCellFormat, int tCells>
struct KernelSideFormat {
  typedef tCellFormat Cell;
  static const int kCells = tCells;
  static const int kWidth = kCells * Cell::kWidth;
  static const int kDepth = Cell::kDepth;
};

// KernelFormat describes fully the input data layout that a kernel expects.
// It consists of two KernelSideFormat's, one for LHS and one for RHS.
template <typename tLhs, typename tRhs>
struct KernelFormat {
  typedef tLhs Lhs;
  typedef tRhs Rhs;

  static_assert(Lhs::Cell::kDepth == Rhs::Cell::kDepth, "");
  static const int kDepth = Lhs::Cell::kDepth;
  static const int kRows = Lhs::Cell::kWidth * Lhs::kCells;
  static const int kCols = Rhs::Cell::kWidth * Rhs::kCells;
};

inline const char* CellOrderName(CellOrder o) {
  switch (o) {
    case CellOrder::DepthMajor:
      return "DepthMajor";
    case CellOrder::WidthMajor:
      return "WidthMajor";
    case CellOrder::Diagonal:
      return "Diagonal";
    default:
      assert(false);
      return nullptr;
  }
}

// Returns the offset into a cell, at which a given coefficient is stored.
template <typename CellFormat>
inline int OffsetIntoCell(int w, int d) {
  switch (CellFormat::kOrder) {
    case CellOrder::DepthMajor:
      return w + d * CellFormat::kWidth;
    case CellOrder::WidthMajor:
      return d + w * CellFormat::kDepth;
    case CellOrder::Diagonal:
      assert(CellFormat::kWidth == CellFormat::kDepth);
      static const int size = CellFormat::kWidth;
      return ((size + w - d) * size + d) % (size * size);
    default:
      assert(false);
      return 0;
  }
}

// END code copied from gemmlowp/internal/kernel.h

#ifdef __arm__

// This is the current standard kernel in gemmlowp, see:
// https://github.com/google/gemmlowp/blob/b1e2a29ff866680028f3080efc244e10e8dd7f46/internal/kernel_neon.h#L33
struct NEON_32bit_GEMM_Uint8Operands_Uint32Accumulators {
  typedef std::uint8_t OperandType;
  typedef std::uint32_t AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 2, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 2, CellOrder::DepthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load 1 Rhs cell of size 2x4
        "vld1.8 {d0}, [%[rhs_ptr]]!\n"
        // Load 3 Lhs cells of size 4x2 each
        "vld1.8 {d2}, [%[lhs_ptr]]!\n"
        "vld1.8 {d4}, [%[lhs_ptr]]!\n"
        "vld1.8 {d6}, [%[lhs_ptr]]!\n"
        // Load accumulators
        "mov r0, %[accum_ptr]\n"
        "vld1.32 {d8, d9},   [r0]!\n"
        "vld1.32 {d16, d17}, [r0]!\n"
        "vld1.32 {d24, d25}, [r0]!\n"
        "vld1.32 {d10, d11}, [r0]!\n"
        "vld1.32 {d18, d19}, [r0]!\n"
        "vld1.32 {d26, d27}, [r0]!\n"
        "vld1.32 {d12, d13}, [r0]!\n"
        "vld1.32 {d20, d21}, [r0]!\n"
        "vld1.32 {d28, d29}, [r0]!\n"
        "vld1.32 {d14, d15}, [r0]!\n"
        "vld1.32 {d22, d23}, [r0]!\n"
        "vld1.32 {d30, d31}, [r0]!\n"

        "subs %[depth], #2\n"

        "beq " GEMMLOWP_LABEL_AFTER_LOOP "f\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"
        // Overview of register layout:
        //
        // A 2x4 cell of Rhs is stored in 16bit in d0--d1 (q0).
        // A 12x2 block of 3 4x2 cells Lhs is stored in 16bit in d2--d7
        // (q1--q3).
        // A 12x4 block of accumulators is stored in 32bit in q4--q15.
        //
        //                   +-----+-----+-----+-----+
        //                   |d0[0]|d0[1]|d0[2]|d0[3]|
        //              Rhs  +-----+-----+-----+-----+
        //                   |d1[0]|d1[1]|d1[2]|d1[3]|
        //                   +-----+-----+-----+-----+
        //
        //                   |     |     |     |     |
        //
        //    Lhs            |     |     |     |     |
        //
        //  +--+--+ - - - -  +-----+-----+-----+-----+
        //  |d2|d3|          | q4  | q5  | q6  | q7  |
        //  |d2|d3|          | q4  | q5  | q6  | q7  |
        //  |d2|d3|          | q4  | q5  | q6  | q7  |
        //  |d2|d3|          | q4  | q5  | q6  | q7  |
        //  +--+--+ - - - -  +-----+-----+-----+-----+
        //  |d4|d5|          | q8  | q9  | q10 | q11 |
        //  |d4|d5|          | q8  | q9  | q10 | q11 |
        //  |d4|d5|          | q8  | q9  | q10 | q11 |
        //  |d4|d5|          | q8  | q9  | q10 | q11 |
        //  +--+--+ - - - -  +-----+-----+-----+-----+
        //  |d6|d7|          | q12 | q13 | q14 | q15 |
        //  |d6|d7|          | q12 | q13 | q14 | q15 |
        //  |d6|d7|          | q12 | q13 | q14 | q15 |
        //  |d6|d7|          | q12 | q13 | q14 | q15 |
        //  +--+--+ - - - -  +-----+-----+-----+-----+
        //
        //                            Accumulator

        // Expand Lhs/Rhs cells to 16 bit.
        // Note: moving theses vmovls further down to allow for
        // longer data pipelining helps a little on A57 but is
        // harmful on A53 --- It looks as if A53 doesn't like
        // interleaving vmovl's into the vmlal's.
        "vmovl.u8 q0, d0\n"
        "vmovl.u8 q1, d2\n"
        "vmovl.u8 q2, d4\n"
        "vmovl.u8 q3, d6\n"

        // Multiply-accumulate, level of depth 0
        "vmlal.u16 q4, d2, d0[0]\n"
        "vmlal.u16 q5, d2, d0[1]\n"
        "vmlal.u16 q6, d2, d0[2]\n"
        "vmlal.u16 q7, d2, d0[3]\n"
        "vldr d2, [%[lhs_ptr]]\n"
        "vmlal.u16 q8, d4, d0[0]\n"
        "vmlal.u16 q9, d4, d0[1]\n"
        "vmlal.u16 q10, d4, d0[2]\n"
        "vmlal.u16 q11, d4, d0[3]\n"
        "vldr d4, [%[lhs_ptr], #8]\n"
        "vmlal.u16 q12, d6, d0[0]\n"
        "vmlal.u16 q13, d6, d0[1]\n"
        "vmlal.u16 q14, d6, d0[2]\n"
        "vmlal.u16 q15, d6, d0[3]\n"
        "vldr d6, [%[lhs_ptr], #16]\n"
        "vldr d0, [%[rhs_ptr]]\n"

        // Multiply-accumulate, level of depth 1
        "vmlal.u16 q4, d3, d1[0]\n"
        "vmlal.u16 q5, d3, d1[1]\n"
        "add %[lhs_ptr], #24\n"
        "vmlal.u16 q6, d3, d1[2]\n"
        "vmlal.u16 q7, d3, d1[3]\n"
        "add %[rhs_ptr], #8\n"
        "vmlal.u16 q8, d5, d1[0]\n"
        "vmlal.u16 q9, d5, d1[1]\n"
        "subs %[depth], #2\n"
        "vmlal.u16 q10, d5, d1[2]\n"
        "vmlal.u16 q11, d5, d1[3]\n"
        "vmlal.u16 q12, d7, d1[0]\n"
        "vmlal.u16 q13, d7, d1[1]\n"
        "vmlal.u16 q14, d7, d1[2]\n"
        "vmlal.u16 q15, d7, d1[3]\n"

        "bne " GEMMLOWP_LABEL_LOOP "b\n"

        GEMMLOWP_LABEL_AFTER_LOOP
        ":\n"

        // Expand Lhs/Rhs cells to 16 bit.
        "vmovl.u8 q0, d0\n"
        "vmovl.u8 q1, d2\n"
        "vmovl.u8 q2, d4\n"
        "vmovl.u8 q3, d6\n"

        // Multiply-accumulate, level of depth 0
        "vmlal.u16 q4, d2, d0[0]\n"
        "vmlal.u16 q5, d2, d0[1]\n"
        "vmlal.u16 q6, d2, d0[2]\n"
        "vmlal.u16 q7, d2, d0[3]\n"
        "vmlal.u16 q8, d4, d0[0]\n"
        "vmlal.u16 q9, d4, d0[1]\n"
        "vmlal.u16 q10, d4, d0[2]\n"
        "vmlal.u16 q11, d4, d0[3]\n"
        "vmlal.u16 q12, d6, d0[0]\n"
        "vmlal.u16 q13, d6, d0[1]\n"
        "vmlal.u16 q14, d6, d0[2]\n"
        "vmlal.u16 q15, d6, d0[3]\n"

        // Multiply-accumulate, level of depth 1
        "vmlal.u16 q4, d3, d1[0]\n"
        "vmlal.u16 q5, d3, d1[1]\n"
        "vmlal.u16 q6, d3, d1[2]\n"
        "vmlal.u16 q7, d3, d1[3]\n"
        "vmlal.u16 q8, d5, d1[0]\n"
        "vmlal.u16 q9, d5, d1[1]\n"
        "vmlal.u16 q10, d5, d1[2]\n"
        "vmlal.u16 q11, d5, d1[3]\n"
        "vmlal.u16 q12, d7, d1[0]\n"
        "vmlal.u16 q13, d7, d1[1]\n"
        "vmlal.u16 q14, d7, d1[2]\n"
        "vmlal.u16 q15, d7, d1[3]\n"

        // Store accumulators
        "mov r0, %[accum_ptr]\n"
        "vst1.32 {d8, d9},   [r0]!\n"
        "vst1.32 {d16, d17}, [r0]!\n"
        "vst1.32 {d24, d25}, [r0]!\n"
        "vst1.32 {d10, d11}, [r0]!\n"
        "vst1.32 {d18, d19}, [r0]!\n"
        "vst1.32 {d26, d27}, [r0]!\n"
        "vst1.32 {d12, d13}, [r0]!\n"
        "vst1.32 {d20, d21}, [r0]!\n"
        "vst1.32 {d28, d29}, [r0]!\n"
        "vst1.32 {d14, d15}, [r0]!\n"
        "vst1.32 {d22, d23}, [r0]!\n"
        "vst1.32 {d30, d31}, [r0]!\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
        "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17",
        "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27",
        "d28", "d29", "d30", "d31");
  }
};

// This is Maciek Chociej's fast kernel not expanding operands,
// from gemmlowp/meta/. Search for
//      mul_3x8_3x8_int32_lhsadd_rhsadd
// in this file:
// https://raw.githubusercontent.com/google/gemmlowp/e4b9d858b6637d5d0058bfa3d869d2b95864251b/meta/single_thread_gemm.h
struct NEON_32bit_GEMM_Uint8Operands_Uint32Accumulators_noexpand {
  typedef std::uint8_t OperandType;
  typedef std::uint32_t AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<3, 8, CellOrder::WidthMajor>, 1>,
      KernelSideFormat<CellFormat<3, 8, CellOrder::WidthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Clear aggregators.
        "vmov.i32 q0, #0\n"
        "vmov.i32 q1, #0\n"
        "vmov.i32 q2, #0\n"
        "vmov.i32 q3, q0\n"
        "vmov.i32 q4, q1\n"
        "vmov.i32 q5, q2\n"
        "vmov.i32 q6, q3\n"
        "vmov.i32 q7, q4\n"
        "vmov.i32 q8, q5\n"

        // Loop head
        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Subtract counter.
        "subs %[depth], %[depth], #8\n"

        "vld1.8 {d18, d19, d20}, [%[rhs_ptr]]!\n"
        "vld1.8 {d21, d22, d23}, [%[lhs_ptr]]!\n"
        "vmull.u8 q12, d18, d21\n"
        "vmull.u8 q13, d18, d22\n"
        "vmull.u8 q14, d18, d23\n"
        "vmull.u8 q15, d19, d21\n"
        "vpadal.u16 q0, q12\n"
        "vpadal.u16 q1, q13\n"
        "vpadal.u16 q2, q14\n"
        "vpadal.u16 q3, q15\n"
        "vmull.u8 q12, d19, d22\n"
        "vmull.u8 q13, d19, d23\n"
        "vmull.u8 q14, d20, d21\n"
        "vmull.u8 q15, d20, d22\n"
        "vmull.u8 q9, d20, d23\n"
        "vpadal.u16 q4, q12\n"
        "vpadal.u16 q5, q13\n"
        "vpadal.u16 q6, q14\n"
        "vpadal.u16 q7, q15\n"
        "vpadal.u16 q8, q9\n"

        // Loop branch
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Horizontal reduce aggregators, step 1
        "vpadd.u32 d0, d0, d1\n"
        "vpadd.u32 d2, d2, d3\n"
        "vpadd.u32 d4, d4, d5\n"
        "vpadd.u32 d6, d6, d7\n"
        "vpadd.u32 d8, d8, d9\n"
        "vpadd.u32 d10, d10, d11\n"
        "vpadd.u32 d12, d12, d13\n"
        "vpadd.u32 d14, d14, d15\n"
        "vpadd.u32 d16, d16, d17\n"

        // Horizontal reduce aggregators, step 2
        "vpadd.u32 d0, d0, d2\n"
        "vpadd.u32 d1, d4, d4\n"
        "vpadd.u32 d6, d6, d8\n"
        "vpadd.u32 d7, d10, d10\n"
        "vpadd.u32 d12, d12, d14\n"
        "vpadd.u32 d13, d16, d16\n"

        // Load accumulators
        "mov r0, %[accum_ptr]\n"
        "vld1.32 {d2}, [r0]!\n"
        "vld1.32 {d3[0]}, [r0]!\n"

        "vld1.32 {d8}, [r0]!\n"
        "vld1.32 {d9[0]}, [r0]!\n"

        "vld1.32 {d14}, [r0]!\n"
        "vld1.32 {d15[0]}, [r0]!\n"

        // Accumulate
        "vadd.s32 q0, q0, q1\n"
        "vadd.s32 q3, q3, q4\n"
        "vadd.s32 q6, q6, q7\n"

        // Store accumulators
        "mov r0, %[accum_ptr]\n"
        "vst1.32 {d0}, [r0]!\n"
        "vst1.32 {d1[0]}, [r0]!\n"

        "vst1.32 {d6}, [r0]!\n"
        "vst1.32 {d7[0]}, [r0]!\n"

        "vst1.32 {d12}, [r0]!\n"
        "vst1.32 {d13[0]}, [r0]!\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
        "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17",
        "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27",
        "d28", "d29", "d30", "d31");
  }
};

// Fast kernel operating on int8 operands.
// It is assumed that one of the two int8 operands only takes values
// in [-127, 127], while the other may freely range in [-128, 127].
// The issue with both operands taking the value -128 is that:
// -128*-128 + -128*-128 == -32768 overflows int16.
// Every other expression a*b + c*d, for any int8 a,b,c,d, fits in int16
// range. That is the basic idea of this kernel.
struct NEON_32bit_GEMM_Int8Operands_AccumTwoWithin16Bits {
  typedef std::int8_t OperandType;
  typedef std::int32_t AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 16, CellOrder::WidthMajor>, 1>,
      KernelSideFormat<CellFormat<2, 16, CellOrder::WidthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    std::size_t start_depth = 123;
    std::size_t run_depth = depth;
    std::size_t dst_col_stride = 4;
    AccumulatorType* dst_ptr = accum_ptr;
    asm volatile(

        // Overview of register layout:
        //
        // A 2x16 block of Rhs is stored in 8 bit in d0--d3.
        // A 4x16 block of Lhs is stored in 8 bit in d4--d7. That is only
        // half of the register space required, so we loop over these registers
        // twice. Only half of it, a 2x16 block, is stored in d4--d7 at
        // any given time.
        //
        // A 4x2 block of accumulators is stored in q8--q15 (as 4x32 bit
        // components which need to be horizontally-added at the end)
        //
        // The Lhs vectors are multiplied by the Rhs vectors with a widening
        // multiply over the 8 first levels of depth, producing int16x8
        // vectors of products for each position in the accumulator matrix.
        // Here comes the special trick: since the operands are signed int8,
        // their range being [ -2^7 , 2^7 ), their products are in range
        // [ -2^14 , 2^14 - 1 ), meaning that we can add two such values
        // without any risk of overflowing int16.
        // We thus proceed with the 8 next levels of depth, multiplying
        // again Lhs by Rhs, accumulating into this existing int16x8 vector.
        //
        // Only then, having processed 16 levels of depth, do we need to
        // horizontally add these int16x8 accumulators into the final
        // int32x4 accumulators.
        //
        // As we do not have enough registers to store all 16 int16x8
        // temporary-16bit-accumulators, we have them cycle through q4--q7.
        //
        //
        // Register layout (ignoring the q4--q7 temporary 16bit accumulators):
        //
        //                               +----+----+
        //                               | d0 | d2 |
        //                               | .  | .  |
        //                               | .  | .  |
        //                               | .  | .  |
        //                       Rhs     +----+----+
        //                               | d1 | d3 |
        //                               | .  | .  |
        //                               | .  | .  |
        //                               | .  | .  |
        //                               +----+----+
        //
        //                               |    |    |
        //
        //    Lhs                        |    |    |
        //
        //  +--------+--------+ - - - -  +----+----+
        //  | d4 ... | d5 ... |          | q8 | q9 |
        //  | d6 ... | d7 ... |          | q10| q11|
        //  | d4 ... | d5 ... |          | q12| q13|
        //  | d6 ... | d7 ... |          | q14| q15|
        //  +--------+--------+ - - - -  +----+----+
        //
        //                               Accumulator
        //

        // Clear accumulators, and, interleaved with it,
        // initial loads of the first loop iteration,
        // taken out of the loop so that in the loop itself we have
        // optimal streaming of data from memory.
        "vldr d0, [%[rhs_ptr], #0]\n"
        "vmov.i32 q8, #0\n"
        "vldr d4, [%[lhs_ptr], #0]\n"
        "vmov.i32 q9, #0\n"
        "vldr d2, [%[rhs_ptr], #16]\n"
        "vmov.i32 q10, q8\n"
        "vldr d6, [%[lhs_ptr], #16]\n"
        "vmov.i32 q11, q8\n"
        "vldr d1, [%[rhs_ptr], #8]\n"
        "vmov.i32 q12, q8\n"
        "vldr d5, [%[lhs_ptr], #8]\n"
        "vmov.i32 q13, q8\n"
        "vldr d3, [%[rhs_ptr], #24]\n"
        "vmov.i32 q14, q8\n"
        "vldr d7, [%[lhs_ptr], #24]\n"
        "vmov.i32 q15, q8\n"

        // General loop.
        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Multiply 8 first levels of depth.
        "vmull.s8    q4,  d0,  d4\n"
        "add %[rhs_ptr], %[rhs_ptr], #32\n"
        "vmull.s8    q5,  d2,  d4\n"
        "vldr d4, [%[lhs_ptr], #32]\n"
        "vmull.s8    q6,  d0,  d6\n"
        "vmull.s8    q7,  d2,  d6\n"
        "vldr d6, [%[lhs_ptr], #48]\n"

        // Multiply-accumulate second-half, again into the same
        // 16bit local accumulator registers. This is where we
        // take advantage of having int8 instead of uint8 and therefore
        // being able to accumulate two products into int16.
        "vmlal.s8    q4,  d1,  d5\n"
        "vmlal.s8    q5,  d3,  d5\n"
        "vldr d5, [%[lhs_ptr], #40]\n"
        "vmlal.s8    q6,  d1,  d7\n"
        "vmlal.s8    q7,  d3,  d7\n"
        "vldr d7, [%[lhs_ptr], #56]\n"

        // Add pairwise, accumulate into 32-bit accumulators.
        "vpadal.s16   q8,  q4\n"
        "add %[lhs_ptr], %[lhs_ptr], #64\n"
        "vpadal.s16   q9,  q5\n"
        "subs %[run_depth], %[run_depth], #16\n"
        "vpadal.s16   q10, q6\n"
        "vpadal.s16   q11, q7\n"

        "beq " GEMMLOWP_LABEL_AFTER_LOOP
        "f\n"

        // Multiply first half.
        "vmull.s8    q4,  d0,  d4\n"
        "vmull.s8    q5,  d2,  d4\n"
        "vldr d4, [%[lhs_ptr], #0]\n"
        "vmull.s8    q6,  d0,  d6\n"
        "vldr d0, [%[rhs_ptr], #0]\n"
        "vmull.s8    q7,  d2,  d6\n"
        "vldr d2, [%[rhs_ptr], #16]\n"

        // Multiply-accumulate second-half, again into the same
        // 16bit local accumulator registers. This is where we
        // take advantage of having int8 instead of uint8 and therefore
        // being able to accumulate two products into int16.
        "vmlal.s8    q4,  d1,  d5\n"
        "vldr d6, [%[lhs_ptr], #16]\n"
        "vmlal.s8    q5,  d3,  d5\n"
        "vldr d5, [%[lhs_ptr], #8]\n"
        "vmlal.s8    q6,  d1,  d7\n"
        "vldr d1, [%[rhs_ptr], #8]\n"
        "vmlal.s8    q7,  d3,  d7\n"
        "vldr d3, [%[rhs_ptr], #24]\n"

        // Add pairwise, accumulate into 32-bit accumulators.
        "vpadal.s16   q12, q4\n"
        "vldr d7, [%[lhs_ptr], #24]\n"
        "vpadal.s16   q13, q5\n"
        "vpadal.s16   q14, q6\n"
        "vpadal.s16   q15, q7\n"

        "b " GEMMLOWP_LABEL_LOOP "b\n"

        GEMMLOWP_LABEL_AFTER_LOOP
        ":\n"

        // Multiply first half.
        "vmull.s8    q4,  d0,  d4\n"
        "vmull.s8    q5,  d2,  d4\n"
        "vmull.s8    q6,  d0,  d6\n"
        "vmull.s8    q7,  d2,  d6\n"

        // Multiply-accumulate second-half, again into the same
        // 16bit local accumulator registers. This is where we
        // take advantage of having int8 instead of uint8 and therefore
        // being able to accumulate two products into int16.
        "vmlal.s8    q4,  d1,  d5\n"
        "vmlal.s8    q5,  d3,  d5\n"
        "vmlal.s8    q6,  d1,  d7\n"
        "vmlal.s8    q7,  d3,  d7\n"

        // Add pairwise, accumulate into 32-bit accumulators.
        "vpadal.s16   q12, q4\n"
        "vpadal.s16   q13, q5\n"
        "vpadal.s16   q14, q6\n"
        "vpadal.s16   q15, q7\n"
        "cmp %[start_depth], #0\n"

        // Reduce 32bit accumulators horizontally.
        "vpadd.s32 d0, d16, d17\n"
        "vpadd.s32 d1, d18, d19\n"
        "vpadd.s32 d2, d20, d21\n"
        "vpadd.s32 d3, d22, d23\n"
        "vpadd.s32 d4, d24, d25\n"
        "vpadd.s32 d5, d26, d27\n"
        "vpadd.s32 d6, d28, d29\n"
        "vpadd.s32 d7, d30, d31\n"

        "bne " GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES
        "f\n"

        // Reduce 32bit accumulators horizontally, second pass
        // (each pass adds pairwise. we need to add 4-wise).
        "vpadd.s32 d8, d0, d2\n"
        "vpadd.s32 d9, d4, d6\n"
        "vpadd.s32 d10, d1, d3\n"
        "vpadd.s32 d11, d5, d7\n"

        "b " GEMMLOWP_LABEL_STORE "f\n"

        GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES
        ":\n"

        // Reduce 32bit accumulators horizontally, second pass
        // (each pass adds pairwise. we need to add 4-wise),
        // and load destination values from memory.
        "mov r0, %[dst_ptr]\n"
        "vld1.32 {d16, d17}, [r0]!\n"
        "vpadd.s32 d8, d0, d2\n"
        "vpadd.s32 d9, d4, d6\n"
        "vld1.32 {d18, d19}, [r0]\n"
        "vpadd.s32 d10, d1, d3\n"
        "vpadd.s32 d11, d5, d7\n"

        // Add horizontally-reduced accumulators into
        // the values loaded from memory
        "vadd.s32 q4, q8, q4\n"
        "vadd.s32 q5, q9, q5\n"

        GEMMLOWP_LABEL_STORE
        ":\n"
        // Store back into memory
        "mov r0, %[dst_ptr]\n"
        "vst1.32 {d8, d9}, [r0]!\n"
        "vst1.32 {d10, d11}, [r0]\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [dst_ptr] "+r"(dst_ptr), [run_depth] "+r"(run_depth)
        :  // inputs
        [start_depth] "r"(start_depth)
        :  // clobbers
        "cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
        "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17",
        "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27",
        "d28", "d29", "d30", "d31");
  }
};

// We don't actually use int32*int32 in production. This is just an
// experiment to help dissociate the effect of integer-vs-float, from the
// effect of operands width.
struct NEON_32bit_GEMM_Int32_WithScalar {
  typedef std::int32_t OperandType;
  typedef std::int32_t AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov r0, %[accum_ptr]\n"
        "vld1.32 {d8, d9},   [r0]!\n"
        "vld1.32 {d16, d17}, [r0]!\n"
        "vld1.32 {d24, d25}, [r0]!\n"
        "vld1.32 {d10, d11}, [r0]!\n"
        "vld1.32 {d18, d19}, [r0]!\n"
        "vld1.32 {d26, d27}, [r0]!\n"
        "vld1.32 {d12, d13}, [r0]!\n"
        "vld1.32 {d20, d21}, [r0]!\n"
        "vld1.32 {d28, d29}, [r0]!\n"
        "vld1.32 {d14, d15}, [r0]!\n"
        "vld1.32 {d22, d23}, [r0]!\n"
        "vld1.32 {d30, d31}, [r0]!\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Load 1 Rhs cell of size 1x4
        "vld1.32 {d0, d1}, [%[rhs_ptr]]!\n"

        // Load 3 Lhs cells of size 4x1 each
        "vld1.32 {d2, d3}, [%[lhs_ptr]]!\n"
        "vld1.32 {d4, d5}, [%[lhs_ptr]]!\n"
        "vld1.32 {d6, d7}, [%[lhs_ptr]]!\n"

        // Multiply-accumulate
        "vmla.s32 q4, q1, d0[0]\n"
        "vmla.s32 q5, q1, d0[1]\n"
        "vmla.s32 q6, q1, d1[0]\n"
        "vmla.s32 q7, q1, d1[1]\n"
        "vmla.s32 q8, q2, d0[0]\n"
        "vmla.s32 q9, q2, d0[1]\n"
        "vmla.s32 q10, q2, d1[0]\n"
        "vmla.s32 q11, q2, d1[1]\n"
        "vmla.s32 q12, q3, d0[0]\n"
        "vmla.s32 q13, q3, d0[1]\n"
        "vmla.s32 q14, q3, d1[0]\n"
        "vmla.s32 q15, q3, d1[1]\n"

        // Loop. Decrement loop index (depth) by 1, since we just handled 1
        // level of depth.
        "subs %[depth], #1\n"
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov r0, %[accum_ptr]\n"
        "vst1.32 {d8, d9},   [r0]!\n"
        "vst1.32 {d16, d17}, [r0]!\n"
        "vst1.32 {d24, d25}, [r0]!\n"
        "vst1.32 {d10, d11}, [r0]!\n"
        "vst1.32 {d18, d19}, [r0]!\n"
        "vst1.32 {d26, d27}, [r0]!\n"
        "vst1.32 {d12, d13}, [r0]!\n"
        "vst1.32 {d20, d21}, [r0]!\n"
        "vst1.32 {d28, d29}, [r0]!\n"
        "vst1.32 {d14, d15}, [r0]!\n"
        "vst1.32 {d22, d23}, [r0]!\n"
        "vst1.32 {d30, d31}, [r0]!\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
        "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17",
        "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27",
        "d28", "d29", "d30", "d31");
  }
};

// Not very efficient kernel, just an experiment to see what we can do
// without using NEON multiply-with-scalar instructions.
struct NEON_32bit_GEMM_Float32_MLA_WithVectorDuplicatingScalar {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov r0, %[accum_ptr]\n"
        "vld1.32 {d8, d9},   [r0]!\n"
        "vld1.32 {d16, d17}, [r0]!\n"
        "vld1.32 {d24, d25}, [r0]!\n"
        "vld1.32 {d10, d11}, [r0]!\n"
        "vld1.32 {d18, d19}, [r0]!\n"
        "vld1.32 {d26, d27}, [r0]!\n"
        "vld1.32 {d12, d13}, [r0]!\n"
        "vld1.32 {d20, d21}, [r0]!\n"
        "vld1.32 {d28, d29}, [r0]!\n"
        "vld1.32 {d14, d15}, [r0]!\n"
        "vld1.32 {d22, d23}, [r0]!\n"
        "vld1.32 {d30, d31}, [r0]!\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Load 3 Lhs cells of size 4x1 each
        "vld1.32 {d2, d3}, [%[lhs_ptr]]!\n"
        "vld1.32 {d4, d5}, [%[lhs_ptr]]!\n"
        "vld1.32 {d6, d7}, [%[lhs_ptr]]!\n"

        // Multiply-accumulate
        "vld1.32 {d0[], d1[]}, [%[rhs_ptr]]!\n"
        "vmla.f32 q4, q1, q0\n"
        "vmla.f32 q8, q2, q0\n"
        "vmla.f32 q12, q3, q0\n"
        "vld1.32 {d0[], d1[]}, [%[rhs_ptr]]!\n"
        "vmla.f32 q5, q1, q0\n"
        "vmla.f32 q9, q2, q0\n"
        "vmla.f32 q13, q3, q0\n"
        "vld1.32 {d0[], d1[]}, [%[rhs_ptr]]!\n"
        "vmla.f32 q6, q1, q0\n"
        "vmla.f32 q10, q2, q0\n"
        "vmla.f32 q14, q3, q0\n"
        "vld1.32 {d0[], d1[]}, [%[rhs_ptr]]!\n"
        "vmla.f32 q7, q1, q0\n"
        "vmla.f32 q11, q2, q0\n"
        "vmla.f32 q15, q3, q0\n"

        // Loop. Decrement loop index (depth) by 1, since we just handled 1
        // level of depth.
        "subs %[depth], #1\n"
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov r0, %[accum_ptr]\n"
        "vst1.32 {d8, d9},   [r0]!\n"
        "vst1.32 {d16, d17}, [r0]!\n"
        "vst1.32 {d24, d25}, [r0]!\n"
        "vst1.32 {d10, d11}, [r0]!\n"
        "vst1.32 {d18, d19}, [r0]!\n"
        "vst1.32 {d26, d27}, [r0]!\n"
        "vst1.32 {d12, d13}, [r0]!\n"
        "vst1.32 {d20, d21}, [r0]!\n"
        "vst1.32 {d28, d29}, [r0]!\n"
        "vst1.32 {d14, d15}, [r0]!\n"
        "vst1.32 {d22, d23}, [r0]!\n"
        "vst1.32 {d30, d31}, [r0]!\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
        "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17",
        "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27",
        "d28", "d29", "d30", "d31");
  }
};

// Not very efficient kernel, just an experiment to see what we can do
// without using NEON multiply-with-scalar instructions.
// This variant is relevant as on ARMv7 FMA does not have a with-scalar variant.
struct NEON_32bit_GEMM_Float32_FMA_WithVectorDuplicatingScalar {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov r0, %[accum_ptr]\n"
        "vld1.32 {d8, d9},   [r0]!\n"
        "vld1.32 {d16, d17}, [r0]!\n"
        "vld1.32 {d24, d25}, [r0]!\n"
        "vld1.32 {d10, d11}, [r0]!\n"
        "vld1.32 {d18, d19}, [r0]!\n"
        "vld1.32 {d26, d27}, [r0]!\n"
        "vld1.32 {d12, d13}, [r0]!\n"
        "vld1.32 {d20, d21}, [r0]!\n"
        "vld1.32 {d28, d29}, [r0]!\n"
        "vld1.32 {d14, d15}, [r0]!\n"
        "vld1.32 {d22, d23}, [r0]!\n"
        "vld1.32 {d30, d31}, [r0]!\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Load 3 Lhs cells of size 4x1 each
        "vld1.32 {d2, d3}, [%[lhs_ptr]]!\n"
        "vld1.32 {d4, d5}, [%[lhs_ptr]]!\n"
        "vld1.32 {d6, d7}, [%[lhs_ptr]]!\n"

        // Multiply-accumulate
        "vld1.32 {d0[], d1[]}, [%[rhs_ptr]]!\n"
        "vfma.f32 q4, q1, q0\n"
        "vfma.f32 q8, q2, q0\n"
        "vfma.f32 q12, q3, q0\n"
        "vld1.32 {d0[], d1[]}, [%[rhs_ptr]]!\n"
        "vfma.f32 q5, q1, q0\n"
        "vfma.f32 q9, q2, q0\n"
        "vfma.f32 q13, q3, q0\n"
        "vld1.32 {d0[], d1[]}, [%[rhs_ptr]]!\n"
        "vfma.f32 q6, q1, q0\n"
        "vfma.f32 q10, q2, q0\n"
        "vfma.f32 q14, q3, q0\n"
        "vld1.32 {d0[], d1[]}, [%[rhs_ptr]]!\n"
        "vfma.f32 q7, q1, q0\n"
        "vfma.f32 q11, q2, q0\n"
        "vfma.f32 q15, q3, q0\n"

        // Loop. Decrement loop index (depth) by 1, since we just handled 1
        // level of depth.
        "subs %[depth], #1\n"
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov r0, %[accum_ptr]\n"
        "vst1.32 {d8, d9},   [r0]!\n"
        "vst1.32 {d16, d17}, [r0]!\n"
        "vst1.32 {d24, d25}, [r0]!\n"
        "vst1.32 {d10, d11}, [r0]!\n"
        "vst1.32 {d18, d19}, [r0]!\n"
        "vst1.32 {d26, d27}, [r0]!\n"
        "vst1.32 {d12, d13}, [r0]!\n"
        "vst1.32 {d20, d21}, [r0]!\n"
        "vst1.32 {d28, d29}, [r0]!\n"
        "vst1.32 {d14, d15}, [r0]!\n"
        "vst1.32 {d22, d23}, [r0]!\n"
        "vst1.32 {d30, d31}, [r0]!\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
        "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17",
        "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27",
        "d28", "d29", "d30", "d31");
  }
};

// This is the "most natural" kernel, using NEON multiply-with-scalar
// instructions.
struct NEON_32bit_GEMM_Float32_MLA_WithScalar {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov r0, %[accum_ptr]\n"
        "vld1.32 {d8, d9},   [r0]!\n"
        "vld1.32 {d16, d17}, [r0]!\n"
        "vld1.32 {d24, d25}, [r0]!\n"
        "vld1.32 {d10, d11}, [r0]!\n"
        "vld1.32 {d18, d19}, [r0]!\n"
        "vld1.32 {d26, d27}, [r0]!\n"
        "vld1.32 {d12, d13}, [r0]!\n"
        "vld1.32 {d20, d21}, [r0]!\n"
        "vld1.32 {d28, d29}, [r0]!\n"
        "vld1.32 {d14, d15}, [r0]!\n"
        "vld1.32 {d22, d23}, [r0]!\n"
        "vld1.32 {d30, d31}, [r0]!\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Load 1 Rhs cell of size 1x4
        "vld1.32 {d0, d1}, [%[rhs_ptr]]!\n"

        // Load 3 Lhs cells of size 4x1 each
        "vld1.32 {d2, d3}, [%[lhs_ptr]]!\n"
        "vld1.32 {d4, d5}, [%[lhs_ptr]]!\n"
        "vld1.32 {d6, d7}, [%[lhs_ptr]]!\n"

        // Multiply-accumulate
        "vmla.f32 q4, q1, d0[0]\n"
        "vmla.f32 q5, q1, d0[1]\n"
        "vmla.f32 q6, q1, d1[0]\n"
        "vmla.f32 q7, q1, d1[1]\n"
        "vmla.f32 q8, q2, d0[0]\n"
        "vmla.f32 q9, q2, d0[1]\n"
        "vmla.f32 q10, q2, d1[0]\n"
        "vmla.f32 q11, q2, d1[1]\n"
        "vmla.f32 q12, q3, d0[0]\n"
        "vmla.f32 q13, q3, d0[1]\n"
        "vmla.f32 q14, q3, d1[0]\n"
        "vmla.f32 q15, q3, d1[1]\n"

        // Loop. Decrement loop index (depth) by 1, since we just handled 1
        // level of depth.
        "subs %[depth], #1\n"
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov r0, %[accum_ptr]\n"
        "vst1.32 {d8, d9},   [r0]!\n"
        "vst1.32 {d16, d17}, [r0]!\n"
        "vst1.32 {d24, d25}, [r0]!\n"
        "vst1.32 {d10, d11}, [r0]!\n"
        "vst1.32 {d18, d19}, [r0]!\n"
        "vst1.32 {d26, d27}, [r0]!\n"
        "vst1.32 {d12, d13}, [r0]!\n"
        "vst1.32 {d20, d21}, [r0]!\n"
        "vst1.32 {d28, d29}, [r0]!\n"
        "vst1.32 {d14, d15}, [r0]!\n"
        "vst1.32 {d22, d23}, [r0]!\n"
        "vst1.32 {d30, d31}, [r0]!\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
        "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17",
        "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27",
        "d28", "d29", "d30", "d31");
  }
};

// Faster kernel contributed by ARM in 64bit form
// (see NEON_64bit_GEMM_Float32_WithScalar_A53) then ported to 32bit code.
// Tuned for A53.
struct NEON_32bit_GEMM_Float32_WithScalar_A53 {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov r0, %[accum_ptr]\n"
        "vld1.32 {d8, d9},   [r0]!\n"
        "vld1.32 {d16, d17}, [r0]!\n"
        "vld1.32 {d24, d25}, [r0]!\n"
        "vld1.32 {d10, d11}, [r0]!\n"
        "vld1.32 {d18, d19}, [r0]!\n"
        "vld1.32 {d26, d27}, [r0]!\n"
        "vld1.32 {d12, d13}, [r0]!\n"
        "vld1.32 {d20, d21}, [r0]!\n"
        "vld1.32 {d28, d29}, [r0]!\n"
        "vld1.32 {d14, d15}, [r0]!\n"
        "vld1.32 {d22, d23}, [r0]!\n"
        "vld1.32 {d30, d31}, [r0]!\n"

        // Overview of register layout:
        //
        // A 1x4 cell of Rhs is stored in d0--d1 (q0).
        // A 12x1 block of 3 4x1 cells Lhs is stored in d2--d7
        // (q1--q3).
        // A 12x4 block of accumulators is stored in q4--q15.
        //
        //                   +-----+-----+-----+-----+
        //             Rhs   |d0[0]|d0[1]|d1[0]|d1[1]|
        //                   +-----+-----+-----+-----+
        //
        //                   |     |     |     |     |
        //
        //  Lhs              |     |     |     |     |
        //
        //  +--+- - - - - -  +-----+-----+-----+-----+
        //  |d2|             | q4  | q5  | q6  | q7  |
        //  |d2|             | q4  | q5  | q6  | q7  |
        //  |d3|             | q4  | q5  | q6  | q7  |
        //  |d3|             | q4  | q5  | q6  | q7  |
        //  +--+- - - - - -  +-----+-----+-----+-----+
        //  |d4|             | q8  | q9  | q10 | q11 |
        //  |d4|             | q8  | q9  | q10 | q11 |
        //  |d5|             | q8  | q9  | q10 | q11 |
        //  |d5|             | q8  | q9  | q10 | q11 |
        //  +--+ - - - - - - +-----+-----+-----+-----+
        //  |d6|             | q12 | q13 | q14 | q15 |
        //  |d6|             | q12 | q13 | q14 | q15 |
        //  |d7|             | q12 | q13 | q14 | q15 |
        //  |d7|             | q12 | q13 | q14 | q15 |
        //  +--+- - - - - -  +-----+-----+-----+-----+
        //
        //                            Accumulator

        // Load Rhs cell
        "vldr d0, [%[rhs_ptr]]\n"
        "ldr r2, [%[rhs_ptr], #8]\n"
        "ldr r3, [%[rhs_ptr], #12]\n"

        // Load 1st Lhs Cell
        "vld1.32 {d2, d3}, [%[lhs_ptr]]\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"

        "vldr d4, [%[lhs_ptr], #16]\n"  // Load 1st half of 2nd Lhs cell
        "vmov d1, r2, r3\n"             // Prepare 2nd half of Rhs cell
        "vmla.f32 q4, q1, d0[0]\n"      // Multiply 1st Lhs cell with column 0
        "ldr r2, [%[lhs_ptr], #24]\n"   // Load 2nd half of 2nd Lhs cell, part 1
        "vmla.f32 q5, q1, d0[1]\n"      // Multiply 1st Lhs cell with column 1
        "ldr r3, [%[lhs_ptr], #28]\n"   // Load 2nd half of 2nd Lhs cell, part 2
        "vmla.f32 q6, q1, d1[0]\n"      // Multiply 1st Lhs cell with column 2
        "subs %[depth], #1\n"

        "vldr d6, [%[lhs_ptr], #32]\n"  // Load 1st half of 3rd Lhs cell
        "vmov d5, r2, r3\n"             // Prepare 2nd half of 2nd Lhs cell
        "vmla.f32 q7, q1, d1[1]\n"      // Multiply 1st Lhs cell with column 3
        "ldr r2, [%[lhs_ptr], #40]\n"   // Load 2nd half of 3rd Lhs cell, part 1
        "vmla.f32 q8, q2, d0[0]\n"      // Multiply 2nd Lhs cell with column 0
        "ldr r3, [%[lhs_ptr], #44]\n"   // Load 2nd half of 3rd Lhs cell, part 2
        "vmla.f32 q9, q2, d0[1]\n"      // Multiply 2nd Lhs cell with column 1
        "add %[rhs_ptr], %[rhs_ptr], #16\n"  // Move forward by 1 Rhs cell

        "vldr d2, [%[lhs_ptr], #48]\n"  // Load 1st half of 1st Lhs cell of next
        // iteration
        "vmov d7, r2, r3\n"            // Prepare 2nd half of 3rd Lhs cell
        "vmla.f32 q10, q2, d1[0]\n"    // Multiply 2nd Lhs cell with column 2
        "ldr r2, [%[lhs_ptr], #56]\n"  // Load 2nd half of 1st Lhs cell of next
        // iter, part 1
        "vmla.f32 q12, q3, d0[0]\n"    // Multiply 3rd Lhs cell with column 0
        "ldr r3, [%[lhs_ptr], #60]\n"  // Load 2nd half of 1st Lhs cell of next
        // iter, part 2
        "vmla.f32 q13, q3, d0[1]\n"  // Multiply 3rd Lhs cell with column 1
        "add %[lhs_ptr], %[lhs_ptr], #48\n"  // Move forward by 3 Lhs cells

        "vldr d0, [%[rhs_ptr]]\n"  // Load 1st half of Rhs cell of next
        // iteration
        "vmov d3, r2, r3\n"  // Prepare 2nd half of 1st Lhs cell of next
        // iteration
        "vmla.f32 q11, q2, d1[1]\n"   // Multiply 2nd Lhs cell with column 3
        "ldr r2, [%[rhs_ptr], #8]\n"  // Load 2nd half of Rhs cell of next
        // iteration, part 1
        "vmla.f32 q14, q3, d1[0]\n"    // Multiply 3rd Lhs cell with column 2
        "ldr r3, [%[rhs_ptr], #12]\n"  // Load 2nd half of Rhs cell of next
        // iteration, part 2
        "vmla.f32 q15, q3, d1[1]\n"  // Multiply 3rd Lhs cell with column 3

        // Loop branch.  This will dual issue in fmla cycle 3 of the 4th block.
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov r0, %[accum_ptr]\n"
        "vst1.32 {d8, d9},   [r0]!\n"
        "vst1.32 {d16, d17}, [r0]!\n"
        "vst1.32 {d24, d25}, [r0]!\n"
        "vst1.32 {d10, d11}, [r0]!\n"
        "vst1.32 {d18, d19}, [r0]!\n"
        "vst1.32 {d26, d27}, [r0]!\n"
        "vst1.32 {d12, d13}, [r0]!\n"
        "vst1.32 {d20, d21}, [r0]!\n"
        "vst1.32 {d28, d29}, [r0]!\n"
        "vst1.32 {d14, d15}, [r0]!\n"
        "vst1.32 {d22, d23}, [r0]!\n"
        "vst1.32 {d30, d31}, [r0]!\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "r0", "r2", "r3", "d0", "d1", "d2", "d3", "d4", "d5",
        "d6", "d7", "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16",
        "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26",
        "d27", "d28", "d29", "d30", "d31");
  }
};

struct NEON_32bit_GEMM_Float32_WithScalar_A53_depth2 {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 2, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 2, CellOrder::DepthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov r0, %[accum_ptr]\n"
        "vld1.32 {d8, d9},   [r0]!\n"
        "vld1.32 {d16, d17}, [r0]!\n"
        "vld1.32 {d24, d25}, [r0]!\n"
        "vld1.32 {d10, d11}, [r0]!\n"
        "vld1.32 {d18, d19}, [r0]!\n"
        "vld1.32 {d26, d27}, [r0]!\n"
        "vld1.32 {d12, d13}, [r0]!\n"
        "vld1.32 {d20, d21}, [r0]!\n"
        "vld1.32 {d28, d29}, [r0]!\n"
        "vld1.32 {d14, d15}, [r0]!\n"
        "vld1.32 {d22, d23}, [r0]!\n"
        "vld1.32 {d30, d31}, [r0]!\n"

        // Overview of register layout:
        //
        // A 1x4 cell of Rhs is stored in d0--d1 (q0).
        // A 12x1 block of 3 4x1 cells Lhs is stored in d2--d7
        // (q1--q3).
        // A 12x4 block of accumulators is stored in q4--q15.
        //
        //                   +-----+-----+-----+-----+
        //             Rhs   |d0[0]|d0[1]|d1[0]|d1[1]|
        //                   +-----+-----+-----+-----+
        //
        //                   |     |     |     |     |
        //
        //  Lhs              |     |     |     |     |
        //
        //  +--+- - - - - -  +-----+-----+-----+-----+
        //  |d2|             | q4  | q5  | q6  | q7  |
        //  |d2|             | q4  | q5  | q6  | q7  |
        //  |d3|             | q4  | q5  | q6  | q7  |
        //  |d3|             | q4  | q5  | q6  | q7  |
        //  +--+- - - - - -  +-----+-----+-----+-----+
        //  |d4|             | q8  | q9  | q10 | q11 |
        //  |d4|             | q8  | q9  | q10 | q11 |
        //  |d5|             | q8  | q9  | q10 | q11 |
        //  |d5|             | q8  | q9  | q10 | q11 |
        //  +--+ - - - - - - +-----+-----+-----+-----+
        //  |d6|             | q12 | q13 | q14 | q15 |
        //  |d6|             | q12 | q13 | q14 | q15 |
        //  |d7|             | q12 | q13 | q14 | q15 |
        //  |d7|             | q12 | q13 | q14 | q15 |
        //  +--+- - - - - -  +-----+-----+-----+-----+
        //
        //                            Accumulator

        // Load Rhs cell
        "vldr d0, [%[rhs_ptr]]\n"
        "ldr r2, [%[rhs_ptr], #8]\n"
        "ldr r3, [%[rhs_ptr], #12]\n"

        // Load 1st Lhs Cell
        "vld1.32 {d2, d3}, [%[lhs_ptr]]\n"

        // Loop head - handling 2 levels of depth at once
        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Level of depth 1

        "vldr d4, [%[lhs_ptr], #32]\n"  // Load 1st half of 2nd Lhs cell
        "vmov d1, r2, r3\n"             // Prepare 2nd half of Rhs cell
        "vmla.f32 q4, q1, d0[0]\n"      // Multiply 1st Lhs cell with column 0
        "ldr r2, [%[lhs_ptr], #40]\n"   // Load 2nd half of 2nd Lhs cell, part 1
        "vmla.f32 q5, q1, d0[1]\n"      // Multiply 1st Lhs cell with column 1
        "ldr r3, [%[lhs_ptr], #44]\n"   // Load 2nd half of 2nd Lhs cell, part 2
        "vmla.f32 q6, q1, d1[0]\n"      // Multiply 1st Lhs cell with column 2

        "vldr d6, [%[lhs_ptr], #64]\n"  // Load 1st half of 3rd Lhs cell
        "vmov d5, r2, r3\n"             // Prepare 2nd half of 2nd Lhs cell
        "vmla.f32 q7, q1, d1[1]\n"      // Multiply 1st Lhs cell with column 3
        "ldr r2, [%[lhs_ptr], #72]\n"   // Load 2nd half of 3rd Lhs cell, part 1
        "vmla.f32 q8, q2, d0[0]\n"      // Multiply 2nd Lhs cell with column 0
        "ldr r3, [%[lhs_ptr], #76]\n"   // Load 2nd half of 3rd Lhs cell, part 2
        "vmla.f32 q9, q2, d0[1]\n"      // Multiply 2nd Lhs cell with column 1

        "vldr d2, [%[lhs_ptr], #16]\n"  // Load 1st half of 1st Lhs cell of next
        // iteration
        "vmov d7, r2, r3\n"            // Prepare 2nd half of 3rd Lhs cell
        "vmla.f32 q10, q2, d1[0]\n"    // Multiply 2nd Lhs cell with column 2
        "ldr r2, [%[lhs_ptr], #24]\n"  // Load 2nd half of 1st Lhs cell of next
        // iter, part 1
        "vmla.f32 q12, q3, d0[0]\n"    // Multiply 3rd Lhs cell with column 0
        "ldr r3, [%[lhs_ptr], #28]\n"  // Load 2nd half of 1st Lhs cell of next
        // iter, part 2
        "vmla.f32 q13, q3, d0[1]\n"  // Multiply 3rd Lhs cell with column 1

        "vldr d0, [%[rhs_ptr], #16]\n"  // Load 1st half of Rhs cell of next
        // iteration
        "vmov d3, r2, r3\n"  // Prepare 2nd half of 1st Lhs cell of next
        // iteration
        "vmla.f32 q11, q2, d1[1]\n"    // Multiply 2nd Lhs cell with column 3
        "ldr r2, [%[rhs_ptr], #24]\n"  // Load 2nd half of Rhs cell of next
        // iteration, part 1
        "vmla.f32 q14, q3, d1[0]\n"    // Multiply 3rd Lhs cell with column 2
        "ldr r3, [%[rhs_ptr], #28]\n"  // Load 2nd half of Rhs cell of next
        // iteration, part 2
        "vmla.f32 q15, q3, d1[1]\n"  // Multiply 3rd Lhs cell with column 3

        // Level of depth 2
        "vldr d4, [%[lhs_ptr], #48]\n"  // Load 1st half of 2nd Lhs cell
        "vmov d1, r2, r3\n"             // Prepare 2nd half of Rhs cell
        "vmla.f32 q4, q1, d0[0]\n"      // Multiply 1st Lhs cell with column 0
        "ldr r2, [%[lhs_ptr], #56]\n"   // Load 2nd half of 2nd Lhs cell, part 1
        "vmla.f32 q5, q1, d0[1]\n"      // Multiply 1st Lhs cell with column 1
        "ldr r3, [%[lhs_ptr], #60]\n"   // Load 2nd half of 2nd Lhs cell, part 2
        "vmla.f32 q6, q1, d1[0]\n"      // Multiply 1st Lhs cell with column 2
        "subs %[depth], #2\n"           // Decrement depth counter

        "vldr d6, [%[lhs_ptr], #80]\n"  // Load 1st half of 3rd Lhs cell
        "vmov d5, r2, r3\n"             // Prepare 2nd half of 2nd Lhs cell
        "vmla.f32 q7, q1, d1[1]\n"      // Multiply 1st Lhs cell with column 3
        "ldr r2, [%[lhs_ptr], #88]\n"   // Load 2nd half of 3rd Lhs cell, part 1
        "vmla.f32 q8, q2, d0[0]\n"      // Multiply 2nd Lhs cell with column 0
        "ldr r3, [%[lhs_ptr], #92]\n"   // Load 2nd half of 3rd Lhs cell, part 2
        "vmla.f32 q9, q2, d0[1]\n"      // Multiply 2nd Lhs cell with column 1
        "add %[rhs_ptr], %[rhs_ptr], #32\n"  // Move forward by 1 Rhs cell

        "vldr d2, [%[lhs_ptr], #96]\n"  // Load 1st half of 1st Lhs cell of next
        // iteration
        "vmov d7, r2, r3\n"             // Prepare 2nd half of 3rd Lhs cell
        "vmla.f32 q10, q2, d1[0]\n"     // Multiply 2nd Lhs cell with column 2
        "ldr r2, [%[lhs_ptr], #104]\n"  // Load 2nd half of 1st Lhs cell of next
        // iter, part 1
        "vmla.f32 q12, q3, d0[0]\n"     // Multiply 3rd Lhs cell with column 0
        "ldr r3, [%[lhs_ptr], #108]\n"  // Load 2nd half of 1st Lhs cell of next
        // iter, part 2
        "vmla.f32 q13, q3, d0[1]\n"  // Multiply 3rd Lhs cell with column 1
        "add %[lhs_ptr], %[lhs_ptr], #96\n"  // Move forward by 3 Lhs cells

        "vldr d0, [%[rhs_ptr]]\n"  // Load 1st half of Rhs cell of next
        // iteration
        "vmov d3, r2, r3\n"  // Prepare 2nd half of 1st Lhs cell of next
        // iteration
        "vmla.f32 q11, q2, d1[1]\n"   // Multiply 2nd Lhs cell with column 3
        "ldr r2, [%[rhs_ptr], #8]\n"  // Load 2nd half of Rhs cell of next
        // iteration, part 1
        "vmla.f32 q14, q3, d1[0]\n"    // Multiply 3rd Lhs cell with column 2
        "ldr r3, [%[rhs_ptr], #12]\n"  // Load 2nd half of Rhs cell of next
        // iteration, part 2
        "vmla.f32 q15, q3, d1[1]\n"  // Multiply 3rd Lhs cell with column 3

        // Loop branch.  This will dual issue in fmla cycle 3 of the 4th block.
        //"bne loop_%=\n"
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov r0, %[accum_ptr]\n"
        "vst1.32 {d8, d9},   [r0]!\n"
        "vst1.32 {d16, d17}, [r0]!\n"
        "vst1.32 {d24, d25}, [r0]!\n"
        "vst1.32 {d10, d11}, [r0]!\n"
        "vst1.32 {d18, d19}, [r0]!\n"
        "vst1.32 {d26, d27}, [r0]!\n"
        "vst1.32 {d12, d13}, [r0]!\n"
        "vst1.32 {d20, d21}, [r0]!\n"
        "vst1.32 {d28, d29}, [r0]!\n"
        "vst1.32 {d14, d15}, [r0]!\n"
        "vst1.32 {d22, d23}, [r0]!\n"
        "vst1.32 {d30, d31}, [r0]!\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "r0", "r2", "r3", "d0", "d1", "d2", "d3", "d4", "d5",
        "d6", "d7", "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16",
        "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26",
        "d27", "d28", "d29", "d30", "d31");
  }
};

// This rotating variant performs well when permutations (vext) can be
// dual-issued with arithmetic instructions.
struct NEON_32bit_GEMM_Float32_MLA_Rotating {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov r0, %[accum_ptr]\n"
        "vld1.32 {d8, d9},   [r0]!\n"
        "vld1.32 {d16, d17}, [r0]!\n"
        "vld1.32 {d24, d25}, [r0]!\n"
        "vld1.32 {d10, d11}, [r0]!\n"
        "vld1.32 {d18, d19}, [r0]!\n"
        "vld1.32 {d26, d27}, [r0]!\n"
        "vld1.32 {d12, d13}, [r0]!\n"
        "vld1.32 {d20, d21}, [r0]!\n"
        "vld1.32 {d28, d29}, [r0]!\n"
        "vld1.32 {d14, d15}, [r0]!\n"
        "vld1.32 {d22, d23}, [r0]!\n"
        "vld1.32 {d30, d31}, [r0]!\n"

#define NEON_32BIT_ROTATING_FLOAT_KERNEL_TRANSPOSE_ACCUMULATOR_CELLS \
  "vtrn.32 q4, q5\n"                                                 \
  "vtrn.32 q6, q7\n"                                                 \
  "vswp d9, d12\n"                                                   \
  "vswp d11, d14\n"                                                  \
  "vtrn.32 q8, q9\n"                                                 \
  "vtrn.32 q10, q11\n"                                               \
  "vswp d17, d20\n"                                                  \
  "vswp d19, d22\n"                                                  \
  "vtrn.32 q12, q13\n"                                               \
  "vtrn.32 q14, q15\n"                                               \
  "vswp d25, d28\n"                                                  \
  "vswp d27, d30\n"

#define NEON_32BIT_ROTATING_FLOAT_KERNEL_ROTATE_ACCUMULATOR_CELLS(a, b, c) \
  NEON_32BIT_ROTATING_FLOAT_KERNEL_TRANSPOSE_ACCUMULATOR_CELLS             \
  "vext.32 q5, q5, q5, #" #a                                               \
  "\n"                                                                     \
  "vext.32 q6, q6, q6, #" #b                                               \
  "\n"                                                                     \
  "vext.32 q7, q7, q7, #" #c                                               \
  "\n"                                                                     \
  "vext.32 q9, q9, q9, #" #a                                               \
  "\n"                                                                     \
  "vext.32 q10, q10, q10, #" #b                                            \
  "\n"                                                                     \
  "vext.32 q11, q11, q11, #" #c                                            \
  "\n"                                                                     \
  "vext.32 q13, q13, q13, #" #a                                            \
  "\n"                                                                     \
  "vext.32 q14, q14, q14, #" #b                                            \
  "\n"                                                                     \
  "vext.32 q15, q15, q15, #" #c                                            \
  "\n" NEON_32BIT_ROTATING_FLOAT_KERNEL_TRANSPOSE_ACCUMULATOR_CELLS

        NEON_32BIT_ROTATING_FLOAT_KERNEL_ROTATE_ACCUMULATOR_CELLS(1, 2, 3)

        //"loop_%=:\n"
        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Load 1 Rhs cell of size 1x4
        "vld1.32 {d0, d1}, [%[rhs_ptr]]!\n"

        // Load 3 Lhs cells of size 4x1 each
        "vld1.32 {d2, d3}, [%[lhs_ptr]]!\n"
        "vld1.32 {d4, d5}, [%[lhs_ptr]]!\n"
        "vld1.32 {d6, d7}, [%[lhs_ptr]]!\n"

        // Multiply-accumulate
        "vmla.f32 q4, q1, q0\n"
        "vmla.f32 q8, q2, q0\n"
        "vmla.f32 q12, q3, q0\n"
        "vext.f32 q0, q0, q0, #1\n"
        "vmla.f32 q5, q1, q0\n"
        "vmla.f32 q9, q2, q0\n"
        "vmla.f32 q13, q3, q0\n"
        "vext.f32 q0, q0, q0, #1\n"
        "vmla.f32 q6, q1, q0\n"
        "vmla.f32 q10, q2, q0\n"
        "vmla.f32 q14, q3, q0\n"
        "vext.f32 q0, q0, q0, #1\n"
        "vmla.f32 q7, q1, q0\n"
        "vmla.f32 q11, q2, q0\n"
        "vmla.f32 q15, q3, q0\n"

        // Loop. Decrement loop index (depth) by 1, since we just handled 1
        // level of depth.
        "subs %[depth], #1\n"
        //"bne loop_%=\n"
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov r0, %[accum_ptr]\n"

        NEON_32BIT_ROTATING_FLOAT_KERNEL_ROTATE_ACCUMULATOR_CELLS(3, 2, 1)

            "vst1.32 {d8, d9},   [r0]!\n"
            "vst1.32 {d16, d17}, [r0]!\n"
            "vst1.32 {d24, d25}, [r0]!\n"
            "vst1.32 {d10, d11}, [r0]!\n"
            "vst1.32 {d18, d19}, [r0]!\n"
            "vst1.32 {d26, d27}, [r0]!\n"
            "vst1.32 {d12, d13}, [r0]!\n"
            "vst1.32 {d20, d21}, [r0]!\n"
            "vst1.32 {d28, d29}, [r0]!\n"
            "vst1.32 {d14, d15}, [r0]!\n"
            "vst1.32 {d22, d23}, [r0]!\n"
            "vst1.32 {d30, d31}, [r0]!\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
        "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17",
        "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27",
        "d28", "d29", "d30", "d31");
  }
};

// This rotating variant performs well when permutations (vext) can be
// dual-issued with arithmetic instructions. It is relevant as the rotating
// approach removes the need for multiply-with-scalar instructions, and ARMv7
// FMA does not have a with-scalar variant.
struct NEON_32bit_GEMM_Float32_FMA_Rotating {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov r0, %[accum_ptr]\n"
        "vld1.32 {d8, d9},   [r0]!\n"
        "vld1.32 {d16, d17}, [r0]!\n"
        "vld1.32 {d24, d25}, [r0]!\n"
        "vld1.32 {d10, d11}, [r0]!\n"
        "vld1.32 {d18, d19}, [r0]!\n"
        "vld1.32 {d26, d27}, [r0]!\n"
        "vld1.32 {d12, d13}, [r0]!\n"
        "vld1.32 {d20, d21}, [r0]!\n"
        "vld1.32 {d28, d29}, [r0]!\n"
        "vld1.32 {d14, d15}, [r0]!\n"
        "vld1.32 {d22, d23}, [r0]!\n"
        "vld1.32 {d30, d31}, [r0]!\n"

        NEON_32BIT_ROTATING_FLOAT_KERNEL_ROTATE_ACCUMULATOR_CELLS(1, 2, 3)

        //"loop_%=:\n"
        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Load 1 Rhs cell of size 1x4
        "vld1.32 {d0, d1}, [%[rhs_ptr]]!\n"

        // Load 3 Lhs cells of size 4x1 each
        "vld1.32 {d2, d3}, [%[lhs_ptr]]!\n"
        "vld1.32 {d4, d5}, [%[lhs_ptr]]!\n"
        "vld1.32 {d6, d7}, [%[lhs_ptr]]!\n"

        // Multiply-accumulate
        "vfma.f32 q4, q1, q0\n"
        "vfma.f32 q8, q2, q0\n"
        "vfma.f32 q12, q3, q0\n"
        "vext.f32 q0, q0, q0, #1\n"
        "vfma.f32 q5, q1, q0\n"
        "vfma.f32 q9, q2, q0\n"
        "vfma.f32 q13, q3, q0\n"
        "vext.f32 q0, q0, q0, #1\n"
        "vfma.f32 q6, q1, q0\n"
        "vfma.f32 q10, q2, q0\n"
        "vfma.f32 q14, q3, q0\n"
        "vext.f32 q0, q0, q0, #1\n"
        "vfma.f32 q7, q1, q0\n"
        "vfma.f32 q11, q2, q0\n"
        "vfma.f32 q15, q3, q0\n"

        // Loop. Decrement loop index (depth) by 1, since we just handled 1
        // level of depth.
        "subs %[depth], #1\n"
        //"bne loop_%=\n"
        "bne " GEMMLOWP_LABEL_LOOP "b\n"

        NEON_32BIT_ROTATING_FLOAT_KERNEL_ROTATE_ACCUMULATOR_CELLS(3, 2, 1)

        // Store accumulators
        "mov r0, %[accum_ptr]\n"
        "vst1.32 {d8, d9},   [r0]!\n"
        "vst1.32 {d16, d17}, [r0]!\n"
        "vst1.32 {d24, d25}, [r0]!\n"
        "vst1.32 {d10, d11}, [r0]!\n"
        "vst1.32 {d18, d19}, [r0]!\n"
        "vst1.32 {d26, d27}, [r0]!\n"
        "vst1.32 {d12, d13}, [r0]!\n"
        "vst1.32 {d20, d21}, [r0]!\n"
        "vst1.32 {d28, d29}, [r0]!\n"
        "vst1.32 {d14, d15}, [r0]!\n"
        "vst1.32 {d22, d23}, [r0]!\n"
        "vst1.32 {d30, d31}, [r0]!\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
        "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17",
        "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27",
        "d28", "d29", "d30", "d31");
  }
};

#endif  // __arm__

#ifdef __aarch64__

// This is the current standard kernel in gemmlowp, see:
// https://github.com/google/gemmlowp/blob/b1e2a29ff866680028f3080efc244e10e8dd7f46/internal/kernel_neon.h#L646
struct NEON_64bit_GEMM_Uint8Operands_Uint32Accumulators {
  typedef std::uint8_t OperandType;
  typedef std::uint32_t AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 2, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 2, CellOrder::DepthMajor>, 2> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load 1 Rhs cell of size 2x8
        "ld1 {v5.8b}, [%[rhs_ptr]], #8\n"
        "ld1 {v6.8b}, [%[rhs_ptr]], #8\n"

        // Load 3 Lhs cells of size 4x2 each
        "ld1 {v2.8b}, [%[lhs_ptr]], #8\n"
        "ld1 {v3.8b}, [%[lhs_ptr]], #8\n"
        "ld1 {v4.8b}, [%[lhs_ptr]], #8\n"

        "subs %w[depth], %w[depth], #2\n"

        // Load accumulators
        "mov x0, %[accum_ptr]\n"
        "ld1 {v8.16b}, [x0], #16\n"
        "ld1 {v16.16b}, [x0], #16\n"
        "ld1 {v24.16b}, [x0], #16\n"
        "ld1 {v9.16b}, [x0], #16\n"
        "ld1 {v17.16b}, [x0], #16\n"
        "ld1 {v25.16b}, [x0], #16\n"
        "ld1 {v10.16b}, [x0], #16\n"
        "ld1 {v18.16b}, [x0], #16\n"
        "ld1 {v26.16b}, [x0], #16\n"
        "ld1 {v11.16b}, [x0], #16\n"
        "ld1 {v19.16b}, [x0], #16\n"
        "ld1 {v27.16b}, [x0], #16\n"
        "ld1 {v12.16b}, [x0], #16\n"
        "ld1 {v20.16b}, [x0], #16\n"
        "ld1 {v28.16b}, [x0], #16\n"
        "ld1 {v13.16b}, [x0], #16\n"
        "ld1 {v21.16b}, [x0], #16\n"
        "ld1 {v29.16b}, [x0], #16\n"
        "ld1 {v14.16b}, [x0], #16\n"
        "ld1 {v22.16b}, [x0], #16\n"
        "ld1 {v30.16b}, [x0], #16\n"
        "ld1 {v15.16b}, [x0], #16\n"
        "ld1 {v23.16b}, [x0], #16\n"
        "ld1 {v31.16b}, [x0], #16\n"

        "beq " GEMMLOWP_LABEL_AFTER_LOOP "f\n"

        //"loop_%=:\n"
        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Overview of register layout:
        //
        // A 2x8 block of 2 2x4 cells of Rhs is stored in 16bit in v0--v1.
        // A 12x2 block of 3 4x2 cells Lhs is stored in 16bit in v2--v4.
        // A 12x8 block of accumulators is stored in 32bit in v8--v31.
        //
        //                         +--------+--------+-----+--------+--------+
        //                         |v0.h[0] |v0.h[1] | ... |v1.h[2] |v1.h[3] |
        //                    Rhs  +--------+--------+-----+--------+--------+
        //                         |v0.h[4] |v0.h[5] | ... |v1.h[6] |v1.h[7] |
        //                         +--------+--------+-----+--------+--------+
        //
        //                         |        |        |     |        |        |
        //
        //    Lhs                  |        |        |     |        |        |
        //
        //  +-------+-------+ - -  +--------+--------+-----+--------+--------+
        //  |v2.h[0]|v2.h[4]|      |v8.s[0] |v9.s[0] | ... |v14.s[0]|v15.s[0]|
        //  |v2.h[1]|v2.h[5]|      |v8.s[1] |v9.s[1] | ... |v14.s[1]|v15.s[1]|
        //  |v2.h[2]|v2.h[6]|      |v8.s[2] |v9.s[2] | ... |v14.s[2]|v15.s[2]|
        //  |v2.h[3]|v2.h[7]|      |v8.s[3] |v9.s[3] | ... |v14.s[3]|v15.s[3]|
        //  +-------+-------+ - -  +--------+--------+-----+--------+--------+
        //  |v3.h[0]|v3.h[4]|      |v16.s[0]|v17.s[0]| ... |v22.s[0]|v23.s[0]|
        //  |v3.h[1]|v3.h[5]|      |v16.s[1]|v17.s[1]| ... |v22.s[1]|v23.s[1]|
        //  |v3.h[2]|v3.h[6]|      |v16.s[2]|v17.s[2]| ... |v22.s[2]|v23.s[2]|
        //  |v3.h[3]|v3.h[7]|      |v16.s[3]|v17.s[3]| ... |v22.s[3]|v23.s[3]|
        //  +-------+-------+ - -  +--------+--------+-----+--------+--------+
        //  |v4.h[0]|v4.h[4]|      |v24.s[0]|v25.s[0]| ... |v30.s[0]|v31.s[0]|
        //  |v4.h[1]|v4.h[5]|      |v24.s[1]|v25.s[1]| ... |v30.s[1]|v31.s[1]|
        //  |v4.h[2]|v4.h[6]|      |v24.s[2]|v25.s[2]| ... |v30.s[2]|v31.s[2]|
        //  |v4.h[3]|v4.h[7]|      |v24.s[3]|v25.s[3]| ... |v30.s[3]|v31.s[3]|
        //  +-------+-------+ - -  +--------+--------+-----+--------+--------+
        //
        //                            Accumulator

        // Expand Lhs/Rhs cells to 16 bit.
        "uxtl v0.8h, v5.8b\n"
        "ld1 {v5.8b}, [%[rhs_ptr]], #8\n"
        "uxtl v1.8h, v6.8b\n"
        "ld1 {v6.8b}, [%[rhs_ptr]], #8\n"
        "uxtl v2.8h, v2.8b\n"
        "uxtl v3.8h, v3.8b\n"
        "uxtl v4.8h, v4.8b\n"

        // Multiply-accumulate, top third
        "umlal v8.4s, v2.4h, v0.h[0]\n"
        "umlal v9.4s, v2.4h, v0.h[1]\n"
        "umlal v10.4s, v2.4h, v0.h[2]\n"
        "umlal v11.4s, v2.4h, v0.h[3]\n"
        "umlal v12.4s, v2.4h, v1.h[0]\n"
        "umlal v13.4s, v2.4h, v1.h[1]\n"
        "umlal v14.4s, v2.4h, v1.h[2]\n"
        "umlal v15.4s, v2.4h, v1.h[3]\n"
        "umlal2 v8.4s, v2.8h, v0.h[4]\n"
        "umlal2 v9.4s, v2.8h, v0.h[5]\n"
        "umlal2 v10.4s, v2.8h, v0.h[6]\n"
        "umlal2 v11.4s, v2.8h, v0.h[7]\n"
        "umlal2 v12.4s, v2.8h, v1.h[4]\n"
        "umlal2 v13.4s, v2.8h, v1.h[5]\n"
        "umlal2 v14.4s, v2.8h, v1.h[6]\n"
        "umlal2 v15.4s, v2.8h, v1.h[7]\n"
        "ld1 {v2.8b}, [%[lhs_ptr]], #8\n"

        // Multiply-accumulate, middle third
        "umlal v16.4s, v3.4h, v0.h[0]\n"
        "umlal v17.4s, v3.4h, v0.h[1]\n"
        "umlal v18.4s, v3.4h, v0.h[2]\n"
        "umlal v19.4s, v3.4h, v0.h[3]\n"
        "umlal v20.4s, v3.4h, v1.h[0]\n"
        "umlal v21.4s, v3.4h, v1.h[1]\n"
        "umlal v22.4s, v3.4h, v1.h[2]\n"
        "umlal v23.4s, v3.4h, v1.h[3]\n"
        "umlal2 v16.4s, v3.8h, v0.h[4]\n"
        "umlal2 v17.4s, v3.8h, v0.h[5]\n"
        "umlal2 v18.4s, v3.8h, v0.h[6]\n"
        "umlal2 v19.4s, v3.8h, v0.h[7]\n"
        "umlal2 v20.4s, v3.8h, v1.h[4]\n"
        "umlal2 v21.4s, v3.8h, v1.h[5]\n"
        "umlal2 v22.4s, v3.8h, v1.h[6]\n"
        "umlal2 v23.4s, v3.8h, v1.h[7]\n"
        "ld1 {v3.8b}, [%[lhs_ptr]], #8\n"

        "subs %w[depth], %w[depth], #2\n"

        // Multiply-accumulate, bottom third
        "umlal v24.4s, v4.4h, v0.h[0]\n"
        "umlal v25.4s, v4.4h, v0.h[1]\n"
        "umlal v26.4s, v4.4h, v0.h[2]\n"
        "umlal v27.4s, v4.4h, v0.h[3]\n"
        "umlal v28.4s, v4.4h, v1.h[0]\n"
        "umlal v29.4s, v4.4h, v1.h[1]\n"
        "umlal v30.4s, v4.4h, v1.h[2]\n"
        "umlal v31.4s, v4.4h, v1.h[3]\n"
        "umlal2 v24.4s, v4.8h, v0.h[4]\n"
        "umlal2 v25.4s, v4.8h, v0.h[5]\n"
        "umlal2 v26.4s, v4.8h, v0.h[6]\n"
        "umlal2 v27.4s, v4.8h, v0.h[7]\n"
        "umlal2 v28.4s, v4.8h, v1.h[4]\n"
        "umlal2 v29.4s, v4.8h, v1.h[5]\n"
        "umlal2 v30.4s, v4.8h, v1.h[6]\n"
        "umlal2 v31.4s, v4.8h, v1.h[7]\n"
        "ld1 {v4.8b}, [%[lhs_ptr]], #8\n"

        "bne " GEMMLOWP_LABEL_LOOP "b\n"

        GEMMLOWP_LABEL_AFTER_LOOP
        ":\n"

        // Expand Lhs/Rhs cells to 16 bit.
        "uxtl v0.8h, v5.8b\n"
        "uxtl v1.8h, v6.8b\n"
        "uxtl v2.8h, v2.8b\n"
        "uxtl v3.8h, v3.8b\n"
        "uxtl v4.8h, v4.8b\n"

        // Multiply-accumulate, level of depth 0
        "umlal v8.4s, v2.4h, v0.h[0]\n"
        "umlal v9.4s, v2.4h, v0.h[1]\n"
        "umlal v10.4s, v2.4h, v0.h[2]\n"
        "umlal v11.4s, v2.4h, v0.h[3]\n"
        "umlal v12.4s, v2.4h, v1.h[0]\n"
        "umlal v13.4s, v2.4h, v1.h[1]\n"
        "umlal v14.4s, v2.4h, v1.h[2]\n"
        "umlal v15.4s, v2.4h, v1.h[3]\n"
        "umlal v16.4s, v3.4h, v0.h[0]\n"
        "umlal v17.4s, v3.4h, v0.h[1]\n"
        "umlal v18.4s, v3.4h, v0.h[2]\n"
        "umlal v19.4s, v3.4h, v0.h[3]\n"
        "umlal v20.4s, v3.4h, v1.h[0]\n"
        "umlal v21.4s, v3.4h, v1.h[1]\n"
        "umlal v22.4s, v3.4h, v1.h[2]\n"
        "umlal v23.4s, v3.4h, v1.h[3]\n"
        "umlal v24.4s, v4.4h, v0.h[0]\n"
        "umlal v25.4s, v4.4h, v0.h[1]\n"
        "umlal v26.4s, v4.4h, v0.h[2]\n"
        "umlal v27.4s, v4.4h, v0.h[3]\n"
        "umlal v28.4s, v4.4h, v1.h[0]\n"
        "umlal v29.4s, v4.4h, v1.h[1]\n"
        "umlal v30.4s, v4.4h, v1.h[2]\n"
        "umlal v31.4s, v4.4h, v1.h[3]\n"

        // Multiply-accumulate, level of depth 1
        "umlal2 v8.4s, v2.8h, v0.h[4]\n"
        "umlal2 v9.4s, v2.8h, v0.h[5]\n"
        "umlal2 v10.4s, v2.8h, v0.h[6]\n"
        "umlal2 v11.4s, v2.8h, v0.h[7]\n"
        "umlal2 v12.4s, v2.8h, v1.h[4]\n"
        "umlal2 v13.4s, v2.8h, v1.h[5]\n"
        "umlal2 v14.4s, v2.8h, v1.h[6]\n"
        "umlal2 v15.4s, v2.8h, v1.h[7]\n"
        "umlal2 v16.4s, v3.8h, v0.h[4]\n"
        "umlal2 v17.4s, v3.8h, v0.h[5]\n"
        "umlal2 v18.4s, v3.8h, v0.h[6]\n"
        "umlal2 v19.4s, v3.8h, v0.h[7]\n"
        "umlal2 v20.4s, v3.8h, v1.h[4]\n"
        "umlal2 v21.4s, v3.8h, v1.h[5]\n"
        "umlal2 v22.4s, v3.8h, v1.h[6]\n"
        "umlal2 v23.4s, v3.8h, v1.h[7]\n"
        "umlal2 v24.4s, v4.8h, v0.h[4]\n"
        "umlal2 v25.4s, v4.8h, v0.h[5]\n"
        "umlal2 v26.4s, v4.8h, v0.h[6]\n"
        "umlal2 v27.4s, v4.8h, v0.h[7]\n"
        "umlal2 v28.4s, v4.8h, v1.h[4]\n"
        "umlal2 v29.4s, v4.8h, v1.h[5]\n"
        "umlal2 v30.4s, v4.8h, v1.h[6]\n"
        "umlal2 v31.4s, v4.8h, v1.h[7]\n"

        // Store accumulators
        "mov x0, %[accum_ptr]\n"
        "st1 {v8.16b}, [x0], #16\n"
        "st1 {v16.16b}, [x0], #16\n"
        "st1 {v24.16b}, [x0], #16\n"
        "st1 {v9.16b}, [x0], #16\n"
        "st1 {v17.16b}, [x0], #16\n"
        "st1 {v25.16b}, [x0], #16\n"
        "st1 {v10.16b}, [x0], #16\n"
        "st1 {v18.16b}, [x0], #16\n"
        "st1 {v26.16b}, [x0], #16\n"
        "st1 {v11.16b}, [x0], #16\n"
        "st1 {v19.16b}, [x0], #16\n"
        "st1 {v27.16b}, [x0], #16\n"
        "st1 {v12.16b}, [x0], #16\n"
        "st1 {v20.16b}, [x0], #16\n"
        "st1 {v28.16b}, [x0], #16\n"
        "st1 {v13.16b}, [x0], #16\n"
        "st1 {v21.16b}, [x0], #16\n"
        "st1 {v29.16b}, [x0], #16\n"
        "st1 {v14.16b}, [x0], #16\n"
        "st1 {v22.16b}, [x0], #16\n"
        "st1 {v30.16b}, [x0], #16\n"
        "st1 {v15.16b}, [x0], #16\n"
        "st1 {v23.16b}, [x0], #16\n"
        "st1 {v31.16b}, [x0], #16\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "x0", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
        "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17",
        "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27",
        "v28", "v29", "v30", "v31");
  }
};

// Faster kernel by ARM. Not expanding operands before multiplication.
// Tuned for A57. Compare to
// NEON_32bit_GEMM_Uint8Operands_Uint32Accumulators_noexpand
struct NEON_64bit_GEMM_Uint8Operands_Uint32Accumulators_noexpand_A57 {
  typedef std::uint8_t OperandType;
  typedef std::uint32_t AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<5, 16, CellOrder::WidthMajor>, 1>,
      KernelSideFormat<CellFormat<4, 16, CellOrder::WidthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    static const int kLhsWidth = Format::Lhs::kWidth;
    static const int kRhsWidth = Format::Rhs::kWidth;
    AccumulatorType rowmajor_accumulator_buffer[kLhsWidth * kRhsWidth];
    asm volatile(
        // Clear aggregators
        "dup v12.4s, wzr\n"
        "dup v13.4s, wzr\n"
        "dup v14.4s, wzr\n"
        "dup v15.4s, wzr\n"
        "dup v16.4s, wzr\n"
        "dup v17.4s, wzr\n"
        "dup v18.4s, wzr\n"
        "dup v19.4s, wzr\n"
        "dup v20.4s, wzr\n"
        "dup v21.4s, wzr\n"
        "dup v22.4s, wzr\n"
        "dup v23.4s, wzr\n"
        "dup v24.4s, wzr\n"
        "dup v25.4s, wzr\n"
        "dup v26.4s, wzr\n"
        "dup v27.4s, wzr\n"
        "dup v28.4s, wzr\n"
        "dup v29.4s, wzr\n"
        "dup v30.4s, wzr\n"
        "dup v31.4s, wzr\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Overview of register layout:
        //
        // A 4x16 block of Rhs is stored in 8 bit in v0--v3.
        // A 5x16 block of Lhs is cycled through v4 and v5 in 8 bit.
        //
        // A 4x5 block of aggregators is stored in v12-v31 (as 4x32 bit
        // components which would need to be added at the end)
        //
        // The Lhs vectors are multiplied by the Rhs vectors with a widening
        // multiply to produce an intermediate result which is stored in
        // v6-v11.  Each intermediate result is 8x16 bits so this happens
        // twice for each Lhs/Rhs combination (once with UMULL for elements
        // 0-7 and once with UMULL2 for elements 8-15).
        //
        // UADALP is used to accumulate these intermediate results into the
        // result aggregators.
        //
        //
        //
        //                               +--------+--------+--------+--------+
        //                               |v0.b[0] |v1.b[0] |v2.b[0] |v3.b[0] |
        //                          Rhs  +--------+--------+--------+--------+
        //                               |  ...   |  ...   |  ...   |  ...   |
        //                               +--------+--------+--------+--------|
        //                               |v0.b[15]|v1.b[15]|v2.b[15]|v3.b[15]|
        //                               +--------+--------+--------+--------+
        //
        //                               |        |        |        |        |
        //
        //    Lhs                        |        |        |        |        |
        //
        //  +-------+-----+--------+ - - +--------+--------+--------+--------+
        //  |v4.b[0]| ... |v4.b[15]|     | v12.4s | v13.4s | v14.4s | v15.4s |
        //  |v5.b[0]| ... |v5.b[15]|     | v16.4s | v17.4s | v18.4s | v19.4s |
        //  |v4.b[0]| ... |v4.b[15]|     | v20.4s | v21.4s | v22.4s | v23.4s |
        //  |v5.b[0]| ... |v5.b[15]|     | v24.4s | v25.4s | v26.4s | v27.4s |
        //  |v4.b[0]| ... |v4.b[15]|     | v28.4s | v29.4s | v30.4s | v31.4s |
        //  +-------+--------------+ - - +--------+--------+--------+--------+
        //
        //                                                Accumulator
        //
        //
        // Further possible optimisations (not tried):
        //   - Move early loads into previous iteration (see Float32_WithScalar
        //   for example). - Unroll loop 2x to alternate more smoothly between
        //   v4 and v5. - A different number of temporary registers might work
        //   better. - Pairing umull with corresponding umull2 might allow
        //   better
        //     register loading (e.g. at the start of the loop)
        //   - Interleaving umull{2} and uadalp even more aggressively might
        //     help, (not sure about latency vs. dispatch rate).
        //
        //
        // Start loading Rhs - further loads are interleaved amongst the
        // multiplies for better dispatch on A57.
        "ld1 {v0.16b}, [%[rhs_ptr]], #16\n"

        // Load first Lhs vector - further loads are interleaved amongst the
        // multiplies
        "ld1 {v4.16b}, [%[lhs_ptr]], #16\n"

        "umull    v6.8h,  v0.8b,  v4.8b\n"
        "ld1 {v1.16b}, [%[rhs_ptr]], #16\n"  // 2nd RHS element
        "umull    v7.8h,  v1.8b,  v4.8b\n"
        "ld1 {v2.16b}, [%[rhs_ptr]], #16\n"  // 3rd RHS element
        "umull    v8.8h,  v2.8b,  v4.8b\n"
        "ld1 {v3.16b}, [%[rhs_ptr]], #16\n"  // 4th RHS element
        "umull    v9.8h,  v3.8b,  v4.8b\n"
        "umull2  v10.8h, v0.16b, v4.16b\n"
        "umull2  v11.8h, v1.16b, v4.16b\n"
        "ld1 {v5.16b}, [%[lhs_ptr]], #16\n"  // 2nd LHS element

        "uadalp  v12.4s, v6.8h\n"
        "umull2   v6.8h, v2.16b, v4.16b\n"
        "uadalp  v13.4s, v7.8h\n"
        "umull2   v7.8h, v3.16b, v4.16b\n"
        "ld1 {v4.16b}, [%[lhs_ptr]], #16\n"  // 1st LHS element done - Reuse v4
        // for 3rd LHS element
        "uadalp  v14.4s, v8.8h\n"
        "umull    v8.8h,  v0.8b,  v5.8b\n"
        "uadalp  v15.4s, v9.8h\n"
        "umull    v9.8h,  v1.8b,  v5.8b\n"
        "uadalp  v12.4s, v10.8h\n"
        "umull   v10.8h,  v2.8b,  v5.8b\n"
        "uadalp  v13.4s, v11.8h\n"
        "umull   v11.8h,  v3.8b,  v5.8b\n"

        "uadalp  v14.4s, v6.8h\n"
        "umull2   v6.8h, v0.16b, v5.16b\n"
        "uadalp  v15.4s, v7.8h\n"
        "umull2   v7.8h, v1.16b, v5.16b\n"
        "uadalp  v16.4s, v8.8h\n"
        "umull2   v8.8h, v2.16b, v5.16b\n"
        "uadalp  v17.4s, v9.8h\n"
        "umull2   v9.8h, v3.16b, v5.16b\n"
        "ld1 {v5.16b}, [%[lhs_ptr]], #16\n"  // 2nd LHS element done - Reuse v5
        // for 4th LHS element
        "uadalp  v18.4s, v10.8h\n"
        "umull   v10.8h,  v0.8b,  v4.8b\n"
        "uadalp  v19.4s, v11.8h\n"
        "umull   v11.8h,  v1.8b,  v4.8b\n"

        "uadalp  v16.4s, v6.8h\n"
        "umull    v6.8h,  v2.8b,  v4.8b\n"
        "uadalp  v17.4s, v7.8h\n"
        "umull    v7.8h,  v3.8b,  v4.8b\n"
        "uadalp  v18.4s, v8.8h\n"
        "umull2   v8.8h, v0.16b, v4.16b\n"
        "uadalp  v19.4s, v9.8h\n"
        "umull2   v9.8h, v1.16b, v4.16b\n"
        "uadalp  v20.4s, v10.8h\n"
        "umull2  v10.8h, v2.16b, v4.16b\n"
        "uadalp  v21.4s, v11.8h\n"
        "umull2  v11.8h, v3.16b, v4.16b\n"
        "ld1 {v4.16b}, [%[lhs_ptr]], #16\n"  // 3rd LHS element done - Reuse v4
        // for 5th LHS element

        "uadalp v22.4s, v6.8h\n"
        "umull    v6.8h,  v0.8b,  v5.8b\n"
        "uadalp v23.4s, v7.8h\n"
        "umull    v7.8h,  v1.8b,  v5.8b\n"
        "uadalp v20.4s, v8.8h\n"
        "umull    v8.8h,  v2.8b,  v5.8b\n"
        "uadalp v21.4s, v9.8h\n"
        "umull    v9.8h,  v3.8b,  v5.8b\n"
        "uadalp v22.4s, v10.8h\n"
        "umull2  v10.8h, v0.16b, v5.16b\n"
        "uadalp v23.4s, v11.8h\n"
        "umull2  v11.8h, v1.16b, v5.16b\n"

        "uadalp v24.4s, v6.8h\n"
        "umull2   v6.8h,  v2.16b, v5.16b\n"
        "uadalp v25.4s, v7.8h\n"
        "umull2   v7.8h,  v3.16b, v5.16b\n"
        "uadalp v26.4s, v8.8h\n"
        "umull    v8.8h,  v0.8b,  v4.8b\n"
        "uadalp v27.4s, v9.8h\n"
        "umull    v9.8h,  v1.8b,  v4.8b\n"
        "uadalp v24.4s, v10.8h\n"
        "umull   v10.8h,  v2.8b,  v4.8b\n"
        "uadalp v25.4s, v11.8h\n"
        "umull   v11.8h,  v3.8b,  v4.8b\n"

        "uadalp v26.4s, v6.8h\n"
        "umull2   v6.8h, v0.16b, v4.16b\n"
        "uadalp v27.4s, v7.8h\n"
        "umull2   v7.8h, v1.16b, v4.16b\n"
        "uadalp v28.4s, v8.8h\n"
        "umull2   v8.8h, v2.16b, v4.16b\n"
        "uadalp v29.4s, v9.8h\n"
        "umull2   v9.8h, v3.16b, v4.16b\n"
        "uadalp v30.4s, v10.8h\n"
        "uadalp v31.4s, v11.8h\n"

        "uadalp v28.4s, v6.8h\n"
        "uadalp v29.4s, v7.8h\n"
        // Loop. Decrement loop index (depth) by 16, since we just handled
        // 16 levels of depth.  Do this subs a bit before the end of the loop
        // for better dispatch on A57.
        "subs %w[depth], %w[depth], #16\n"
        "uadalp v30.4s, v8.8h\n"
        "uadalp v31.4s, v9.8h\n"

        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Reduce aggregators horizontally
        "addp v0.4s, v12.4s, v13.4s\n"
        "addp v1.4s, v14.4s, v15.4s\n"
        "addp v2.4s, v16.4s, v17.4s\n"
        "addp v3.4s, v18.4s, v19.4s\n"
        "addp v4.4s, v20.4s, v21.4s\n"
        "addp v5.4s, v22.4s, v23.4s\n"
        "addp v6.4s, v24.4s, v25.4s\n"
        "addp v7.4s, v26.4s, v27.4s\n"
        "addp v8.4s, v28.4s, v29.4s\n"
        "addp v9.4s, v30.4s, v31.4s\n"

        "addp v10.4s, v0.4s, v1.4s\n"
        "addp v11.4s, v2.4s, v3.4s\n"
        "addp v12.4s, v4.4s, v5.4s\n"
        "addp v13.4s, v6.4s, v7.4s\n"
        "addp v14.4s, v8.4s, v9.4s\n"

        "mov x0, %[rowmajor_accumulator_buffer]\n"
        "st1 {v10.16b}, [x0], #16\n"
        "st1 {v11.16b}, [x0], #16\n"
        "st1 {v12.16b}, [x0], #16\n"
        "st1 {v13.16b}, [x0], #16\n"
        "st1 {v14.16b}, [x0], #16\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [rowmajor_accumulator_buffer] "r"(rowmajor_accumulator_buffer)
        :  // clobbers
        "cc", "memory", "x0", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
        "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17",
        "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27",
        "v28", "v29", "v30", "v31");

    // accumulate row-major accumulators into global (column-major) accumulators
    for (int l = 0; l < kLhsWidth; l++) {
      for (int r = 0; r < kRhsWidth; r++) {
        accum_ptr[l + kLhsWidth * r] +=
            rowmajor_accumulator_buffer[r + l * kRhsWidth];
      }
    }
  }
};

// Fast kernel operating on int8 operands.
// It is assumed that one of the two int8 operands only takes values
// in [-127, 127], while the other may freely range in [-128, 127].
// The issue with both operands taking the value -128 is that:
// -128*-128 + -128*-128 == -32768 overflows int16.
// Every other expression a*b + c*d, for any int8 a,b,c,d, fits in int16
// range. That is the basic idea of this kernel.
struct NEON_64bit_GEMM_Int8Operands_AccumTwoWithin16Bits {
  typedef std::int8_t OperandType;
  typedef std::int32_t AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 16, CellOrder::WidthMajor>, 1>,
      KernelSideFormat<CellFormat<4, 16, CellOrder::WidthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    std::size_t start_depth = 123;
    std::size_t run_depth = depth;
    std::size_t dst_col_stride = 4;
    AccumulatorType* dst_ptr = accum_ptr;
    asm volatile(
        // Overview of register layout:
        //
        // A 4x16 block of Rhs is stored in 8 bit in v0--v3.
        // A 4x16 block of Lhs is stored in 8 bit in v4--v7.
        //
        // A 4x4 block of accumulators is stored in v16-v31 (as 4x32 bit
        // components which need to be horizontally-added at the end)
        //
        // The Lhs vectors are multiplied by the Rhs vectors with a widening
        // multiply over the 8 first levels of depth, producing int16x8
        // vectors of products for each position in the accumulator matrix.
        // Here comes the special trick: since the operands are signed int8,
        // their range being [ -2^7 , 2^7 ), their products are in range
        // [ -2^14 , 2^14 - 1 ), meaning that we can add two such values
        // without any risk of overflowing int16.
        // We thus proceed with the 8 next levels of depth, multiplying
        // again Lhs by Rhs, accumulating into this existing int16x8 vector.
        //
        // Only then, having processed 16 levels of depth, do we need to
        // horizontally add these int16x8 accumulators into the final
        // int32x4 accumulators.
        //
        // As we do not have enough registers to store all 16 int16x8
        // temporary-16bit-accumulators, we have them cycle through v8--v15.
        //
        //
        // Register layout (ignoring the v8--v15 temporary 16bit accumulators):
        //
        //                               +--------+--------+--------+--------+
        //                               |v0.b[0] |v1.b[0] |v2.b[0] |v3.b[0] |
        //                          Rhs  +--------+--------+--------+--------+
        //                               |  ...   |  ...   |  ...   |  ...   |
        //                               +--------+--------+--------+--------|
        //                               |v0.b[15]|v1.b[15]|v2.b[15]|v3.b[15]|
        //                               +--------+--------+--------+--------+
        //
        //                               |        |        |        |        |
        //
        //    Lhs                        |        |        |        |        |
        //
        //  +-------+-----+--------+ - - +--------+--------+--------+--------+
        //  |v4.b[0]| ... |v4.b[15]|     | v16.4s | v17.4s | v18.4s | v19.4s |
        //  |v5.b[0]| ... |v5.b[15]|     | v20.4s | v21.4s | v22.4s | v23.4s |
        //  |v6.b[0]| ... |v6.b[15]|     | v24.4s | v25.4s | v26.4s | v27.4s |
        //  |v7.b[0]| ... |v7.b[15]|     | v28.4s | v29.4s | v30.4s | v31.4s |
        //  +-------+--------------+ - - +--------+--------+--------+--------+
        //
        //                                                Accumulator
        //

        // Clear accumulators
        "ld1 {v0.16b}, [%[rhs_ptr]], #16\n"
        "dup v16.4s, wzr\n"
        "ld1 {v1.16b}, [%[rhs_ptr]], #16\n"
        "dup v17.4s, wzr\n"
        "ld1 {v4.16b}, [%[lhs_ptr]], #16\n"
        "dup v18.4s, wzr\n"
        "ld1 {v5.16b}, [%[lhs_ptr]], #16\n"
        "dup v19.4s, wzr\n"
        "ld1 {v6.16b}, [%[lhs_ptr]], #16\n"
        "dup v20.4s, wzr\n"
        "ld1 {v7.16b}, [%[lhs_ptr]], #16\n"
        "dup v21.4s, wzr\n"
        "ld1 {v2.16b}, [%[rhs_ptr]], #16\n"
        "dup v22.4s, wzr\n"
        "ld1 {v3.16b}, [%[rhs_ptr]], #16\n"
        "dup v23.4s, wzr\n"
        "subs %[run_depth], %[run_depth], #16\n"
        "dup v24.4s, wzr\n"
        "mov x0, %[dst_ptr]\n"
        "dup v25.4s, wzr\n"
        "dup v26.4s, wzr\n"
        "dup v27.4s, wzr\n"
        "dup v28.4s, wzr\n"
        "dup v29.4s, wzr\n"
        "dup v30.4s, wzr\n"
        "dup v31.4s, wzr\n"

        "smull    v12.8h,  v0.8b,  v4.8b\n"
        "smull    v13.8h,  v1.8b,  v4.8b\n"
        "smull    v14.8h,  v0.8b,  v5.8b\n"
        "smull    v15.8h,  v1.8b,  v5.8b\n"
        "smlal2   v12.8h,  v0.16b,  v4.16b\n"
        "smlal2   v13.8h,  v1.16b,  v4.16b\n"
        "smlal2   v14.8h,  v0.16b,  v5.16b\n"
        "smlal2   v15.8h,  v1.16b,  v5.16b\n"

        "beq " GEMMLOWP_LABEL_AFTER_LOOP "f\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"

        "subs %[run_depth], %[run_depth], #16\n"

        "sadalp  v16.4s, v12.8h\n"
        "smull    v12.8h,  v0.8b,  v6.8b\n"
        "sadalp  v17.4s, v13.8h\n"
        "smull    v13.8h,  v0.8b,  v7.8b\n"
        "sadalp  v20.4s, v14.8h\n"
        "smull    v14.8h,  v1.8b,  v6.8b\n"
        "sadalp  v21.4s, v15.8h\n"
        "smull    v15.8h,  v1.8b,  v7.8b\n"
        "smlal2   v12.8h,  v0.16b,  v6.16b\n"
        "smlal2   v13.8h,  v0.16b,  v7.16b\n"
        "ld1 {v0.16b}, [%[rhs_ptr]], #16\n"
        "smlal2   v14.8h,  v1.16b,  v6.16b\n"
        "smlal2   v15.8h,  v1.16b,  v7.16b\n"
        "ld1 {v1.16b}, [%[rhs_ptr]], #16\n"
        "sadalp  v24.4s, v12.8h\n"
        "smull    v12.8h,  v2.8b,  v4.8b\n"
        "sadalp  v28.4s, v13.8h\n"
        "smull    v13.8h,  v3.8b,  v4.8b\n"
        "sadalp  v25.4s, v14.8h\n"
        "smull    v14.8h,  v2.8b,  v5.8b\n"
        "sadalp  v29.4s, v15.8h\n"
        "smull    v15.8h,  v3.8b,  v5.8b\n"
        "smlal2   v12.8h,  v2.16b,  v4.16b\n"
        "smlal2   v13.8h,  v3.16b,  v4.16b\n"
        "ld1 {v4.16b}, [%[lhs_ptr]], #16\n"
        "smlal2   v14.8h,  v2.16b,  v5.16b\n"
        "smlal2   v15.8h,  v3.16b,  v5.16b\n"
        "ld1 {v5.16b}, [%[lhs_ptr]], #16\n"
        "sadalp  v18.4s, v12.8h\n"
        "smull    v12.8h,  v2.8b,  v6.8b\n"
        "sadalp  v19.4s, v13.8h\n"
        "smull    v13.8h,  v2.8b,  v7.8b\n"
        "sadalp  v22.4s, v14.8h\n"
        "smull    v14.8h,  v3.8b,  v6.8b\n"
        "sadalp  v23.4s, v15.8h\n"
        "smull    v15.8h,  v3.8b,  v7.8b\n"
        "smlal2   v12.8h,  v2.16b,  v6.16b\n"
        "smlal2   v13.8h,  v2.16b,  v7.16b\n"
        "ld1 {v2.16b}, [%[rhs_ptr]], #16\n"
        "smlal2   v14.8h,  v3.16b,  v6.16b\n"
        "ld1 {v6.16b}, [%[lhs_ptr]], #16\n"
        "smlal2   v15.8h,  v3.16b,  v7.16b\n"
        "ld1 {v7.16b}, [%[lhs_ptr]], #16\n"
        "sadalp  v26.4s, v12.8h\n"
        "ld1 {v3.16b}, [%[rhs_ptr]], #16\n"
        "smull    v12.8h,  v0.8b,  v4.8b\n"
        "sadalp  v30.4s, v13.8h\n"
        "smull    v13.8h,  v1.8b,  v4.8b\n"
        "sadalp  v27.4s, v14.8h\n"
        "smull    v14.8h,  v0.8b,  v5.8b\n"
        "sadalp  v31.4s, v15.8h\n"
        "smull    v15.8h,  v1.8b,  v5.8b\n"
        "smlal2   v12.8h,  v0.16b,  v4.16b\n"
        "smlal2   v13.8h,  v1.16b,  v4.16b\n"
        "smlal2   v14.8h,  v0.16b,  v5.16b\n"
        "smlal2   v15.8h,  v1.16b,  v5.16b\n"

        "bne " GEMMLOWP_LABEL_LOOP "b\n"

        GEMMLOWP_LABEL_AFTER_LOOP
        ":\n"

        // Load accumulators from memory
        "ld1 {v8.16b}, [x0], #16\n"
        "ld1 {v9.16b}, [x0], #16\n"
        "ld1 {v10.16b}, [x0], #16\n"
        "ld1 {v11.16b}, [x0], #16\n"
        "mov x0, %[dst_ptr]\n"

        // Do the remaining arithmetic for the 16 last levels of depths.
        // All the operands are already loaded.
        "sadalp  v16.4s, v12.8h\n"
        "smull    v12.8h,  v0.8b,  v6.8b\n"
        "sadalp  v17.4s, v13.8h\n"
        "smull    v13.8h,  v0.8b,  v7.8b\n"
        "sadalp  v20.4s, v14.8h\n"
        "smull    v14.8h,  v1.8b,  v6.8b\n"
        "sadalp  v21.4s, v15.8h\n"
        "smull    v15.8h,  v1.8b,  v7.8b\n"
        "smlal2   v12.8h,  v0.16b,  v6.16b\n"
        "smlal2   v13.8h,  v0.16b,  v7.16b\n"
        "smlal2   v14.8h,  v1.16b,  v6.16b\n"
        "smlal2   v15.8h,  v1.16b,  v7.16b\n"
        "sadalp  v24.4s, v12.8h\n"
        "smull    v12.8h,  v2.8b,  v4.8b\n"
        "sadalp  v28.4s, v13.8h\n"
        "smull    v13.8h,  v3.8b,  v4.8b\n"
        "sadalp  v25.4s, v14.8h\n"
        "smull    v14.8h,  v2.8b,  v5.8b\n"
        "sadalp  v29.4s, v15.8h\n"
        "smull    v15.8h,  v3.8b,  v5.8b\n"
        "smlal2   v12.8h,  v2.16b,  v4.16b\n"
        "smlal2   v13.8h,  v3.16b,  v4.16b\n"
        "smlal2   v14.8h,  v2.16b,  v5.16b\n"
        "smlal2   v15.8h,  v3.16b,  v5.16b\n"
        "sadalp  v18.4s, v12.8h\n"
        "smull    v12.8h,  v2.8b,  v6.8b\n"
        "sadalp  v19.4s, v13.8h\n"
        "smull    v13.8h,  v2.8b,  v7.8b\n"
        "sadalp  v22.4s, v14.8h\n"
        "smull    v14.8h,  v3.8b,  v6.8b\n"
        "sadalp  v23.4s, v15.8h\n"
        "smull    v15.8h,  v3.8b,  v7.8b\n"
        "smlal2   v12.8h,  v2.16b,  v6.16b\n"
        "smlal2   v13.8h,  v2.16b,  v7.16b\n"
        "smlal2   v14.8h,  v3.16b,  v6.16b\n"
        "smlal2   v15.8h,  v3.16b,  v7.16b\n"
        "sadalp  v26.4s, v12.8h\n"
        "sadalp  v30.4s, v13.8h\n"
        "sadalp  v27.4s, v14.8h\n"
        "sadalp  v31.4s, v15.8h\n"

        // Reduce aggregators horizontally
        "addp v0.4s, v16.4s, v20.4s\n"
        "addp v1.4s, v17.4s, v21.4s\n"
        "addp v2.4s, v18.4s, v22.4s\n"
        "addp v3.4s, v19.4s, v23.4s\n"
        "addp v4.4s, v24.4s, v28.4s\n"
        "addp v5.4s, v25.4s, v29.4s\n"
        "addp v6.4s, v26.4s, v30.4s\n"
        "addp v7.4s, v27.4s, v31.4s\n"

        "addp v12.4s, v0.4s, v4.4s\n"
        "addp v13.4s, v1.4s, v5.4s\n"
        "addp v14.4s, v2.4s, v6.4s\n"
        "addp v15.4s, v3.4s, v7.4s\n"

        // Add to the accumulators loaded from memory
        "add v8.4s, v8.4s, v12.4s\n"
        "add v9.4s, v9.4s, v13.4s\n"
        "add v10.4s, v10.4s, v14.4s\n"
        "add v11.4s, v11.4s, v15.4s\n"

        // Store accumulators back to memory
        "st1 {v8.16b}, [x0], #16\n"
        "st1 {v9.16b}, [x0], #16\n"
        "st1 {v10.16b}, [x0], #16\n"
        "st1 {v11.16b}, [x0], #16\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [dst_ptr] "+r"(dst_ptr), [run_depth] "+r"(run_depth),
        [dst_col_stride] "+r"(dst_col_stride)
        :  // inputs
        [start_depth] "r"(start_depth)
        :  // clobbers
        "cc", "memory", "x0", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
        "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17",
        "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27",
        "v28", "v29", "v30", "v31");
  }
};

// We don't actually use int32*int32 in production. This is just an
// experiment to help dissociate the effect of integer-vs-float, from the
// effect of operands width.
struct NEON_64bit_GEMM_Int32_WithScalar {
  typedef std::int32_t OperandType;
  typedef std::int32_t AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 2> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov x0, %[accum_ptr]\n"
        "ld1 {v8.16b}, [x0], #16\n"
        "ld1 {v16.16b}, [x0], #16\n"
        "ld1 {v24.16b}, [x0], #16\n"
        "ld1 {v9.16b}, [x0], #16\n"
        "ld1 {v17.16b}, [x0], #16\n"
        "ld1 {v25.16b}, [x0], #16\n"
        "ld1 {v10.16b}, [x0], #16\n"
        "ld1 {v18.16b}, [x0], #16\n"
        "ld1 {v26.16b}, [x0], #16\n"
        "ld1 {v11.16b}, [x0], #16\n"
        "ld1 {v19.16b}, [x0], #16\n"
        "ld1 {v27.16b}, [x0], #16\n"
        "ld1 {v12.16b}, [x0], #16\n"
        "ld1 {v20.16b}, [x0], #16\n"
        "ld1 {v28.16b}, [x0], #16\n"
        "ld1 {v13.16b}, [x0], #16\n"
        "ld1 {v21.16b}, [x0], #16\n"
        "ld1 {v29.16b}, [x0], #16\n"
        "ld1 {v14.16b}, [x0], #16\n"
        "ld1 {v22.16b}, [x0], #16\n"
        "ld1 {v30.16b}, [x0], #16\n"
        "ld1 {v15.16b}, [x0], #16\n"
        "ld1 {v23.16b}, [x0], #16\n"
        "ld1 {v31.16b}, [x0], #16\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Load 2 Rhs cell of size 1x4 each
        "ld1 {v0.4s}, [%[rhs_ptr]], #16\n"
        "ld1 {v1.4s}, [%[rhs_ptr]], #16\n"

        // Load 3 Lhs cells of size 4x1 each
        "ld1 {v2.4s}, [%[lhs_ptr]], #16\n"
        "ld1 {v3.4s}, [%[lhs_ptr]], #16\n"
        "ld1 {v4.4s}, [%[lhs_ptr]], #16\n"

        // Multiply-accumulate
        "mla v8.4s, v2.4s, v0.s[0]\n"
        "mla v9.4s, v2.4s, v0.s[1]\n"
        "mla v10.4s, v2.4s, v0.s[2]\n"
        "mla v11.4s, v2.4s, v0.s[3]\n"
        "mla v12.4s, v2.4s, v1.s[0]\n"
        "mla v13.4s, v2.4s, v1.s[1]\n"
        "mla v14.4s, v2.4s, v1.s[2]\n"
        "mla v15.4s, v2.4s, v1.s[3]\n"
        "mla v16.4s, v3.4s, v0.s[0]\n"
        "mla v17.4s, v3.4s, v0.s[1]\n"
        "mla v18.4s, v3.4s, v0.s[2]\n"
        "mla v19.4s, v3.4s, v0.s[3]\n"
        "mla v20.4s, v3.4s, v1.s[0]\n"
        "mla v21.4s, v3.4s, v1.s[1]\n"
        "mla v22.4s, v3.4s, v1.s[2]\n"
        "mla v23.4s, v3.4s, v1.s[3]\n"
        "mla v24.4s, v4.4s, v0.s[0]\n"
        "mla v25.4s, v4.4s, v0.s[1]\n"
        "mla v26.4s, v4.4s, v0.s[2]\n"
        "mla v27.4s, v4.4s, v0.s[3]\n"
        "mla v28.4s, v4.4s, v1.s[0]\n"
        "mla v29.4s, v4.4s, v1.s[1]\n"
        "mla v30.4s, v4.4s, v1.s[2]\n"
        "mla v31.4s, v4.4s, v1.s[3]\n"

        // Loop. Decrement loop index (depth) by 1, since we just handled 1
        // level of depth.
        "subs %w[depth], %w[depth], #1\n"
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov x0, %[accum_ptr]\n"
        "st1 {v8.16b}, [x0], #16\n"
        "st1 {v16.16b}, [x0], #16\n"
        "st1 {v24.16b}, [x0], #16\n"
        "st1 {v9.16b}, [x0], #16\n"
        "st1 {v17.16b}, [x0], #16\n"
        "st1 {v25.16b}, [x0], #16\n"
        "st1 {v10.16b}, [x0], #16\n"
        "st1 {v18.16b}, [x0], #16\n"
        "st1 {v26.16b}, [x0], #16\n"
        "st1 {v11.16b}, [x0], #16\n"
        "st1 {v19.16b}, [x0], #16\n"
        "st1 {v27.16b}, [x0], #16\n"
        "st1 {v12.16b}, [x0], #16\n"
        "st1 {v20.16b}, [x0], #16\n"
        "st1 {v28.16b}, [x0], #16\n"
        "st1 {v13.16b}, [x0], #16\n"
        "st1 {v21.16b}, [x0], #16\n"
        "st1 {v29.16b}, [x0], #16\n"
        "st1 {v14.16b}, [x0], #16\n"
        "st1 {v22.16b}, [x0], #16\n"
        "st1 {v30.16b}, [x0], #16\n"
        "st1 {v15.16b}, [x0], #16\n"
        "st1 {v23.16b}, [x0], #16\n"
        "st1 {v31.16b}, [x0], #16\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "x0", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
        "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17",
        "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27",
        "v28", "v29", "v30", "v31");
  }
};

// Not very efficient kernel, just an experiment to see what we can do
// without using NEON multiply-with-scalar instructions.
struct NEON_64bit_GEMM_Float32_WithVectorDuplicatingScalar {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 2> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov x0, %[accum_ptr]\n"
        "ld1 {v8.16b}, [x0], #16\n"
        "ld1 {v16.16b}, [x0], #16\n"
        "ld1 {v24.16b}, [x0], #16\n"
        "ld1 {v9.16b}, [x0], #16\n"
        "ld1 {v17.16b}, [x0], #16\n"
        "ld1 {v25.16b}, [x0], #16\n"
        "ld1 {v10.16b}, [x0], #16\n"
        "ld1 {v18.16b}, [x0], #16\n"
        "ld1 {v26.16b}, [x0], #16\n"
        "ld1 {v11.16b}, [x0], #16\n"
        "ld1 {v19.16b}, [x0], #16\n"
        "ld1 {v27.16b}, [x0], #16\n"
        "ld1 {v12.16b}, [x0], #16\n"
        "ld1 {v20.16b}, [x0], #16\n"
        "ld1 {v28.16b}, [x0], #16\n"
        "ld1 {v13.16b}, [x0], #16\n"
        "ld1 {v21.16b}, [x0], #16\n"
        "ld1 {v29.16b}, [x0], #16\n"
        "ld1 {v14.16b}, [x0], #16\n"
        "ld1 {v22.16b}, [x0], #16\n"
        "ld1 {v30.16b}, [x0], #16\n"
        "ld1 {v15.16b}, [x0], #16\n"
        "ld1 {v23.16b}, [x0], #16\n"
        "ld1 {v31.16b}, [x0], #16\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Load 2 Rhs cell of size 1x4 each
        "ld1 {v5.4s}, [%[rhs_ptr]], #16\n"
        "ld1 {v6.4s}, [%[rhs_ptr]], #16\n"

        // Load 3 Lhs cells of size 4x1 each
        "ld1 {v2.4s}, [%[lhs_ptr]], #16\n"
        "ld1 {v3.4s}, [%[lhs_ptr]], #16\n"
        "ld1 {v4.4s}, [%[lhs_ptr]], #16\n"

        // Multiply-accumulate
        "dup v0.4s, v5.s[0]\n"
        "dup v1.4s, v5.s[1]\n"
        "fmla v8.4s, v2.4s, v0.4s\n"
        "fmla v16.4s, v3.4s, v0.4s\n"
        "fmla v24.4s, v4.4s, v0.4s\n"
        "fmla v9.4s, v2.4s, v1.4s\n"
        "fmla v17.4s, v3.4s, v1.4s\n"
        "fmla v25.4s, v4.4s, v1.4s\n"
        "dup v0.4s, v5.s[2]\n"
        "dup v1.4s, v5.s[3]\n"
        "fmla v10.4s, v2.4s, v0.4s\n"
        "fmla v18.4s, v3.4s, v0.4s\n"
        "fmla v26.4s, v4.4s, v0.4s\n"
        "fmla v11.4s, v2.4s, v1.4s\n"
        "fmla v19.4s, v3.4s, v1.4s\n"
        "fmla v27.4s, v4.4s, v1.4s\n"
        "dup v0.4s, v6.s[0]\n"
        "dup v1.4s, v6.s[1]\n"
        "fmla v12.4s, v2.4s, v0.4s\n"
        "fmla v20.4s, v3.4s, v0.4s\n"
        "fmla v28.4s, v4.4s, v0.4s\n"
        "fmla v13.4s, v2.4s, v1.4s\n"
        "fmla v21.4s, v3.4s, v1.4s\n"
        "fmla v29.4s, v4.4s, v1.4s\n"
        "dup v0.4s, v6.s[2]\n"
        "dup v1.4s, v6.s[3]\n"
        "fmla v14.4s, v2.4s, v0.4s\n"
        "fmla v22.4s, v3.4s, v0.4s\n"
        "fmla v30.4s, v4.4s, v0.4s\n"
        "fmla v15.4s, v2.4s, v1.4s\n"
        "fmla v23.4s, v3.4s, v1.4s\n"
        "fmla v31.4s, v4.4s, v1.4s\n"

        // Loop. Decrement loop index (depth) by 1, since we just handled 1
        // level of depth.
        "subs %w[depth], %w[depth], #1\n"
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov x0, %[accum_ptr]\n"
        "st1 {v8.16b}, [x0], #16\n"
        "st1 {v16.16b}, [x0], #16\n"
        "st1 {v24.16b}, [x0], #16\n"
        "st1 {v9.16b}, [x0], #16\n"
        "st1 {v17.16b}, [x0], #16\n"
        "st1 {v25.16b}, [x0], #16\n"
        "st1 {v10.16b}, [x0], #16\n"
        "st1 {v18.16b}, [x0], #16\n"
        "st1 {v26.16b}, [x0], #16\n"
        "st1 {v11.16b}, [x0], #16\n"
        "st1 {v19.16b}, [x0], #16\n"
        "st1 {v27.16b}, [x0], #16\n"
        "st1 {v12.16b}, [x0], #16\n"
        "st1 {v20.16b}, [x0], #16\n"
        "st1 {v28.16b}, [x0], #16\n"
        "st1 {v13.16b}, [x0], #16\n"
        "st1 {v21.16b}, [x0], #16\n"
        "st1 {v29.16b}, [x0], #16\n"
        "st1 {v14.16b}, [x0], #16\n"
        "st1 {v22.16b}, [x0], #16\n"
        "st1 {v30.16b}, [x0], #16\n"
        "st1 {v15.16b}, [x0], #16\n"
        "st1 {v23.16b}, [x0], #16\n"
        "st1 {v31.16b}, [x0], #16\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "x0", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
        "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17",
        "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27",
        "v28", "v29", "v30", "v31");
  }
};

// This is the "most natural" kernel, using NEON multiply-with-scalar
// instructions.
struct NEON_64bit_GEMM_Float32_WithScalar {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 2> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov x0, %[accum_ptr]\n"
        "ld1 {v8.16b}, [x0], #16\n"
        "ld1 {v16.16b}, [x0], #16\n"
        "ld1 {v24.16b}, [x0], #16\n"
        "ld1 {v9.16b}, [x0], #16\n"
        "ld1 {v17.16b}, [x0], #16\n"
        "ld1 {v25.16b}, [x0], #16\n"
        "ld1 {v10.16b}, [x0], #16\n"
        "ld1 {v18.16b}, [x0], #16\n"
        "ld1 {v26.16b}, [x0], #16\n"
        "ld1 {v11.16b}, [x0], #16\n"
        "ld1 {v19.16b}, [x0], #16\n"
        "ld1 {v27.16b}, [x0], #16\n"
        "ld1 {v12.16b}, [x0], #16\n"
        "ld1 {v20.16b}, [x0], #16\n"
        "ld1 {v28.16b}, [x0], #16\n"
        "ld1 {v13.16b}, [x0], #16\n"
        "ld1 {v21.16b}, [x0], #16\n"
        "ld1 {v29.16b}, [x0], #16\n"
        "ld1 {v14.16b}, [x0], #16\n"
        "ld1 {v22.16b}, [x0], #16\n"
        "ld1 {v30.16b}, [x0], #16\n"
        "ld1 {v15.16b}, [x0], #16\n"
        "ld1 {v23.16b}, [x0], #16\n"
        "ld1 {v31.16b}, [x0], #16\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Load 2 Rhs cell of size 1x4 each
        "ld1 {v0.4s}, [%[rhs_ptr]], #16\n"
        "ld1 {v1.4s}, [%[rhs_ptr]], #16\n"

        // Load 3 Lhs cells of size 4x1 each
        "ld1 {v2.4s}, [%[lhs_ptr]], #16\n"
        "ld1 {v3.4s}, [%[lhs_ptr]], #16\n"
        "ld1 {v4.4s}, [%[lhs_ptr]], #16\n"

        // Multiply-accumulate
        "fmla v8.4s, v2.4s, v0.s[0]\n"
        "fmla v9.4s, v2.4s, v0.s[1]\n"
        "fmla v10.4s, v2.4s, v0.s[2]\n"
        "fmla v11.4s, v2.4s, v0.s[3]\n"
        "fmla v12.4s, v2.4s, v1.s[0]\n"
        "fmla v13.4s, v2.4s, v1.s[1]\n"
        "fmla v14.4s, v2.4s, v1.s[2]\n"
        "fmla v15.4s, v2.4s, v1.s[3]\n"
        "fmla v16.4s, v3.4s, v0.s[0]\n"
        "fmla v17.4s, v3.4s, v0.s[1]\n"
        "fmla v18.4s, v3.4s, v0.s[2]\n"
        "fmla v19.4s, v3.4s, v0.s[3]\n"
        "fmla v20.4s, v3.4s, v1.s[0]\n"
        "fmla v21.4s, v3.4s, v1.s[1]\n"
        "fmla v22.4s, v3.4s, v1.s[2]\n"
        "fmla v23.4s, v3.4s, v1.s[3]\n"
        "fmla v24.4s, v4.4s, v0.s[0]\n"
        "fmla v25.4s, v4.4s, v0.s[1]\n"
        "fmla v26.4s, v4.4s, v0.s[2]\n"
        "fmla v27.4s, v4.4s, v0.s[3]\n"
        "fmla v28.4s, v4.4s, v1.s[0]\n"
        "fmla v29.4s, v4.4s, v1.s[1]\n"
        "fmla v30.4s, v4.4s, v1.s[2]\n"
        "fmla v31.4s, v4.4s, v1.s[3]\n"

        // Loop. Decrement loop index (depth) by 1, since we just handled 1
        // level of depth.
        "subs %w[depth], %w[depth], #1\n"
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov x0, %[accum_ptr]\n"
        "st1 {v8.16b}, [x0], #16\n"
        "st1 {v16.16b}, [x0], #16\n"
        "st1 {v24.16b}, [x0], #16\n"
        "st1 {v9.16b}, [x0], #16\n"
        "st1 {v17.16b}, [x0], #16\n"
        "st1 {v25.16b}, [x0], #16\n"
        "st1 {v10.16b}, [x0], #16\n"
        "st1 {v18.16b}, [x0], #16\n"
        "st1 {v26.16b}, [x0], #16\n"
        "st1 {v11.16b}, [x0], #16\n"
        "st1 {v19.16b}, [x0], #16\n"
        "st1 {v27.16b}, [x0], #16\n"
        "st1 {v12.16b}, [x0], #16\n"
        "st1 {v20.16b}, [x0], #16\n"
        "st1 {v28.16b}, [x0], #16\n"
        "st1 {v13.16b}, [x0], #16\n"
        "st1 {v21.16b}, [x0], #16\n"
        "st1 {v29.16b}, [x0], #16\n"
        "st1 {v14.16b}, [x0], #16\n"
        "st1 {v22.16b}, [x0], #16\n"
        "st1 {v30.16b}, [x0], #16\n"
        "st1 {v15.16b}, [x0], #16\n"
        "st1 {v23.16b}, [x0], #16\n"
        "st1 {v31.16b}, [x0], #16\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "x0", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
        "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17",
        "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27",
        "v28", "v29", "v30", "v31");
  }
};

// Faster kernel contributed by ARM. Tuned for A57.
struct NEON_64bit_GEMM_Float32_WithScalar_A57 {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 2> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov x0, %[accum_ptr]\n"
        "ld1 {v8.16b}, [x0], #16\n"
        "ld1 {v16.16b}, [x0], #16\n"
        "ld1 {v24.16b}, [x0], #16\n"
        "ld1 {v9.16b}, [x0], #16\n"
        "ld1 {v17.16b}, [x0], #16\n"
        "ld1 {v25.16b}, [x0], #16\n"
        "ld1 {v10.16b}, [x0], #16\n"
        "ld1 {v18.16b}, [x0], #16\n"
        "ld1 {v26.16b}, [x0], #16\n"
        "ld1 {v11.16b}, [x0], #16\n"
        "ld1 {v19.16b}, [x0], #16\n"
        "ld1 {v27.16b}, [x0], #16\n"
        "ld1 {v12.16b}, [x0], #16\n"
        "ld1 {v20.16b}, [x0], #16\n"
        "ld1 {v28.16b}, [x0], #16\n"
        "ld1 {v13.16b}, [x0], #16\n"
        "ld1 {v21.16b}, [x0], #16\n"
        "ld1 {v29.16b}, [x0], #16\n"
        "ld1 {v14.16b}, [x0], #16\n"
        "ld1 {v22.16b}, [x0], #16\n"
        "ld1 {v30.16b}, [x0], #16\n"
        "ld1 {v15.16b}, [x0], #16\n"
        "ld1 {v23.16b}, [x0], #16\n"
        "ld1 {v31.16b}, [x0], #16\n"

        // The start of the loop assumes first Rhs cell is already loaded, so
        // do it here for first iteration.
        "ld1 {v0.4s}, [%[rhs_ptr]], #16\n"

        // And the same for the first Lhs cell.
        "ld1 {v2.4s}, [%[lhs_ptr]], #16\n"

        GEMMLOWP_LABEL_LOOP
        ":\n"

        // Start the MACs at the head of the loop - 1st cell from each side
        // already loaded.
        "fmla v8.4s, v2.4s, v0.s[0]\n"
        "fmla v9.4s, v2.4s, v0.s[1]\n"
        "ld1 {v1.4s}, [%[rhs_ptr]], #16\n"  // Load second Rhs cell.
        "fmla v10.4s, v2.4s, v0.s[2]\n"
        "fmla v11.4s, v2.4s, v0.s[3]\n"
        "ld1 {v3.4s}, [%[lhs_ptr]], #16\n"  // Load second Lhs cell.
        "fmla v12.4s, v2.4s, v1.s[0]\n"
        "fmla v13.4s, v2.4s, v1.s[1]\n"
        "ld1 {v4.4s}, [%[lhs_ptr]], #16\n"  // Load third Lhs cell.
        "fmla v14.4s, v2.4s, v1.s[2]\n"
        "fmla v15.4s, v2.4s, v1.s[3]\n"
        "ld1 {v2.4s}, [%[lhs_ptr]], #16\n"  // Done with first Lhs cell - load
        // for the next iteration early.
        "fmla v16.4s, v3.4s, v0.s[0]\n"
        "fmla v17.4s, v3.4s, v0.s[1]\n"
        "fmla v18.4s, v3.4s, v0.s[2]\n"
        "fmla v19.4s, v3.4s, v0.s[3]\n"
        "fmla v20.4s, v3.4s, v1.s[0]\n"
        "fmla v21.4s, v3.4s, v1.s[1]\n"
        "fmla v22.4s, v3.4s, v1.s[2]\n"
        "fmla v23.4s, v3.4s, v1.s[3]\n"
        "fmla v24.4s, v4.4s, v0.s[0]\n"
        "fmla v25.4s, v4.4s, v0.s[1]\n"
        "fmla v26.4s, v4.4s, v0.s[2]\n"
        "fmla v27.4s, v4.4s, v0.s[3]\n"
        "ld1 {v0.4s}, [%[rhs_ptr]], #16\n"  // Done with the first Rhs cell -
        // load for the next iteration
        // early.
        "fmla v28.4s, v4.4s, v1.s[0]\n"
        "fmla v29.4s, v4.4s, v1.s[1]\n"
        // Loop. Decrement loop index (depth) by 1, since we just handled
        // 1 level of depth.  Do this a bit before the end of the loop for
        // better dispatch on A57.
        "subs %w[depth], %w[depth], #1\n"
        "fmla v30.4s, v4.4s, v1.s[2]\n"
        "fmla v31.4s, v4.4s, v1.s[3]\n"

        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov x0, %[accum_ptr]\n"
        "st1 {v8.16b}, [x0], #16\n"
        "st1 {v16.16b}, [x0], #16\n"
        "st1 {v24.16b}, [x0], #16\n"
        "st1 {v9.16b}, [x0], #16\n"
        "st1 {v17.16b}, [x0], #16\n"
        "st1 {v25.16b}, [x0], #16\n"
        "st1 {v10.16b}, [x0], #16\n"
        "st1 {v18.16b}, [x0], #16\n"
        "st1 {v26.16b}, [x0], #16\n"
        "st1 {v11.16b}, [x0], #16\n"
        "st1 {v19.16b}, [x0], #16\n"
        "st1 {v27.16b}, [x0], #16\n"
        "st1 {v12.16b}, [x0], #16\n"
        "st1 {v20.16b}, [x0], #16\n"
        "st1 {v28.16b}, [x0], #16\n"
        "st1 {v13.16b}, [x0], #16\n"
        "st1 {v21.16b}, [x0], #16\n"
        "st1 {v29.16b}, [x0], #16\n"
        "st1 {v14.16b}, [x0], #16\n"
        "st1 {v22.16b}, [x0], #16\n"
        "st1 {v30.16b}, [x0], #16\n"
        "st1 {v15.16b}, [x0], #16\n"
        "st1 {v23.16b}, [x0], #16\n"
        "st1 {v31.16b}, [x0], #16\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "x0", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
        "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17",
        "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27",
        "v28", "v29", "v30", "v31");
  }
};

#ifndef __APPLE__
// Faster kernel contributed by ARM. Tuned for A53.
struct NEON_64bit_GEMM_Float32_WithScalar_A53 {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 2> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    asm volatile(
        // Load accumulators
        "mov x0, %[accum_ptr]\n"
        "ld1 {v8.16b}, [x0], #16\n"
        "ld1 {v16.16b}, [x0], #16\n"
        "ld1 {v24.16b}, [x0], #16\n"
        "ld1 {v9.16b}, [x0], #16\n"
        "ld1 {v17.16b}, [x0], #16\n"
        "ld1 {v25.16b}, [x0], #16\n"
        "ld1 {v10.16b}, [x0], #16\n"
        "ld1 {v18.16b}, [x0], #16\n"
        "ld1 {v26.16b}, [x0], #16\n"
        "ld1 {v11.16b}, [x0], #16\n"
        "ld1 {v19.16b}, [x0], #16\n"
        "ld1 {v27.16b}, [x0], #16\n"
        "ld1 {v12.16b}, [x0], #16\n"
        "ld1 {v20.16b}, [x0], #16\n"
        "ld1 {v28.16b}, [x0], #16\n"
        "ld1 {v13.16b}, [x0], #16\n"
        "ld1 {v21.16b}, [x0], #16\n"
        "ld1 {v29.16b}, [x0], #16\n"
        "ld1 {v14.16b}, [x0], #16\n"
        "ld1 {v22.16b}, [x0], #16\n"
        "ld1 {v30.16b}, [x0], #16\n"
        "ld1 {v15.16b}, [x0], #16\n"
        "ld1 {v23.16b}, [x0], #16\n"
        "ld1 {v31.16b}, [x0], #16\n"

        // For A53, a very different-looking loop is needed.
        //
        // The main reason for this is that on A53 128-bit loads take two
        // cycles during which no dual issue can occur.  Doing two separate
        // 64-bit loads avoids this issue - they each take one cycle and are
        // able to dual issue.  Since vector register loads don't dual issue
        // with FMLA, we load half the register as normal and the other half
        // into an integer register.  This second half can then be moved into
        // place later with an INS instruction - which will dual issue with a
        // later FP load.
        //
        // For this kernel there are approximately 3 times as many multiplies
        // as loads, so it makes sense to structure the loop into blocks of 4
        // cycles, with 1 dedicated "load cycle" and 3 "multiply cycles" per
        // block.  Strictly preserving this structure with NOPs where no load
        // is needed seems to result in higher performance.
        //
        // Choice of x18 to store the upper halves on their way into the
        // vector registers is arbitrary.  Added to the clobber list so that
        // the compiler will make it available.
        //
        //
        // At the start of the loop, it is assumed that v0 is "half loaded" -
        // bottom half in place in d0 and the upper half in x18 ready to
        // insert.  So set that up here for the first iteration:
        "ldr d0, [%[rhs_ptr]]\n"             // Bottom half of first Rhs cell
        "ldr x18, [%[rhs_ptr], #8]\n"        // Upper half
        "add %[rhs_ptr], %[rhs_ptr], #16\n"  // Separate increment (needed as
        // there is no operation to load at
        // reg + 8 but then increment reg
        // by 16).

        // v2 should be fully loaded - as it's outside the loop proper it's fine
        // to use a 128-bit load here.
        "ld1 {v2.4s}, [%[lhs_ptr]], #16\n"  // first Lhs cell

        GEMMLOWP_LABEL_LOOP
        ":\n"

        // First block of four cycles.  Multplies all require v2 and v0; v2 is
        // loaded earlier and v0 is half loaded and completed in the load
        // cycle at the start.
        "ldr d1, [%[rhs_ptr]]\n"  // "load" cycle - loading bottom half of v1
        // (second Rhs cell).
        "ins v0.d[1], x18\n"  // "load" cycle - moving the upper half of v0 into
        // place.
        "fmla v8.4s, v2.4s, v0.s[0]\n"  // "fmla" cycle 1 - first multiply.
        "ldr x18, [%[rhs_ptr], #8]\n"  // "fmla" cycle 1 - load upper half of v1
        // into x18.
        "fmla v9.4s, v2.4s, v0.s[1]\n"       // "fmla" cycle 2 - second multiply
        "add %[rhs_ptr], %[rhs_ptr], #16\n"  // "fmla" cycle 2 - increment Rhs
        // pointer (if needed)
        "fmla v10.4s, v2.4s, v0.s[2]\n"  // "fmla" cycle 3 - third multiply.  No
        // more work to dual issue.

        // Second block.  Start loading v3 (second Lhs cell), finish loading v1.
        "ldr d3, [%[lhs_ptr]]\n"
        "ins v1.d[1], x18\n"  // v1 ready here.
        "fmla v11.4s, v2.4s, v0.s[3]\n"
        "ldr x18, [%[lhs_ptr], #8]\n"
        "fmla v12.4s, v2.4s, v1.s[0]\n"  // First use of v1.
        "add %[lhs_ptr], %[lhs_ptr], #16\n"
        "fmla v13.4s, v2.4s, v1.s[1]\n"

        // Third block.  Start loading v4 (third Lhs cell), finish loading v3.
        "ldr d4, [%[lhs_ptr]]\n"
        "ins v3.d[1], x18\n"  // v3 ready here.
        "fmla v14.4s, v2.4s, v1.s[2]\n"
        "ldr x18, [%[lhs_ptr], #8]\n"
        "fmla v15.4s, v2.4s, v1.s[3]\n"
        "add %[lhs_ptr], %[lhs_ptr], #16\n"
        "fmla v16.4s, v3.4s, v0.s[0]\n"  // First use of v3.

        // Fourth block.  v2 (first Lhs cell) is now finished with, so start
        // loading value for next iteration.  Finish loading v4.
        "ldr d2, [%[lhs_ptr]]\n"
        "ins v4.d[1], x18\n"  // v4 ready here.
        "fmla v17.4s, v3.4s, v0.s[1]\n"
        "ldr x18, [%[lhs_ptr], #8]\n"
        "fmla v18.4s, v3.4s, v0.s[2]\n"
        "add %[lhs_ptr], %[lhs_ptr], #16\n"
        "fmla v19.4s, v3.4s, v0.s[3]\n"

        // Fifth block, finish loading v2.  No new load to start as the other
        // registers are all still live.
        "ins v2.d[1], x18\n"
        "fmla v20.4s, v3.4s, v1.s[0]\n"
        "fmla v21.4s, v3.4s, v1.s[1]\n"
        "fmla v22.4s, v3.4s, v1.s[2]\n"

        // Sixth block, nothing to load.  2 nops needed as a single nop would
        // dual issue with the FMLA and break the timing.
        "nop\n"
        "nop\n"
        "fmla v23.4s, v3.4s, v1.s[3]\n"
        "fmla v24.4s, v4.4s, v0.s[0]\n"  // First use of v4.
        "fmla v25.4s, v4.4s, v0.s[1]\n"

        // Seventh block, nothing to load.  Decrement the loop counter in this
        // block as the last block is very full.
        "nop\n"
        "nop\n"
        "fmla v26.4s, v4.4s, v0.s[2]\n"
        "subs %w[depth], %w[depth], #1\n"
        "fmla v27.4s, v4.4s, v0.s[3]\n"
        "fmla v28.4s, v4.4s, v1.s[0]\n"

        // Eighth block - start loading v0 for next iteration.
        "ldr d0, [%[rhs_ptr]]\n"
        "fmla v29.4s, v4.4s, v1.s[1]\n"
        "ldr x18, [%[rhs_ptr], #8]\n"
        "fmla v30.4s, v4.4s, v1.s[2]\n"
        "add %[rhs_ptr], %[rhs_ptr], #16\n"
        "fmla v31.4s, v4.4s, v1.s[3]\n"

        // Loop branch.  This will dual issue in fmla cycle 3 of the 8th block.
        "bne " GEMMLOWP_LABEL_LOOP
        "b\n"

        // Store accumulators
        "mov x0, %[accum_ptr]\n"
        "st1 {v8.16b}, [x0], #16\n"
        "st1 {v16.16b}, [x0], #16\n"
        "st1 {v24.16b}, [x0], #16\n"
        "st1 {v9.16b}, [x0], #16\n"
        "st1 {v17.16b}, [x0], #16\n"
        "st1 {v25.16b}, [x0], #16\n"
        "st1 {v10.16b}, [x0], #16\n"
        "st1 {v18.16b}, [x0], #16\n"
        "st1 {v26.16b}, [x0], #16\n"
        "st1 {v11.16b}, [x0], #16\n"
        "st1 {v19.16b}, [x0], #16\n"
        "st1 {v27.16b}, [x0], #16\n"
        "st1 {v12.16b}, [x0], #16\n"
        "st1 {v20.16b}, [x0], #16\n"
        "st1 {v28.16b}, [x0], #16\n"
        "st1 {v13.16b}, [x0], #16\n"
        "st1 {v21.16b}, [x0], #16\n"
        "st1 {v29.16b}, [x0], #16\n"
        "st1 {v14.16b}, [x0], #16\n"
        "st1 {v22.16b}, [x0], #16\n"
        "st1 {v30.16b}, [x0], #16\n"
        "st1 {v15.16b}, [x0], #16\n"
        "st1 {v23.16b}, [x0], #16\n"
        "st1 {v31.16b}, [x0], #16\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [depth] "+r"(depth)
        :  // inputs
        [accum_ptr] "r"(accum_ptr)
        :  // clobbers
        "cc", "memory", "x0", "x18", "v0", "v1", "v2", "v3", "v4", "v5", "v6",
        "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16",
        "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26",
        "v27", "v28", "v29", "v30", "v31");
  }
};
#endif

#endif  // __aarch64__

#ifndef __aarch64__
inline int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
  const int32x2_t c = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
  const int32x2_t d = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
  return vcombine_s32(c, d);
}
#endif

// C++ intrinsics-based variant of the deep, int8, fast kernel
template <int Cols>
struct NEON_GEMM_Int8Operands_AccumTwoWithin16Bits_intrinsics {
  typedef std::int8_t OperandType;
  typedef std::int32_t AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 16, CellOrder::WidthMajor>, 1>,
      KernelSideFormat<CellFormat<Cols, 16, CellOrder::WidthMajor>, 1> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    int32x4_t acc[4][Cols];
    for (int i = 0; i < 4; i++) {
      for (int j = 0; j < Cols; j++) {
        acc[i][j] = vdupq_n_s32(0);
      }
    }
    for (int d = 0; d < depth; d += 16) {
      int8x16_t lhs[4];
      for (int i = 0; i < 4; i++) {
        lhs[i] = vld1q_s8(lhs_ptr + 16 * i);
      }
      int8x16_t rhs[Cols];
      for (int i = 0; i < Cols; i++) {
        rhs[i] = vld1q_s8(rhs_ptr + 16 * i);
      }
      for (int i = 0; i < 4; i++) {
        for (int j = 0; j < Cols; j++) {
          int16x8_t local_acc =
              vmull_s8(vget_low_s8(lhs[i]), vget_low_s8(rhs[j]));
          local_acc =
              vmlal_s8(local_acc, vget_high_s8(lhs[i]), vget_high_s8(rhs[j]));
          acc[i][j] = vpadalq_s16(acc[i][j], local_acc);
        }
      }
      lhs_ptr += 64;
      rhs_ptr += 16 * Cols;
    }
    for (int i = 0; i < Cols; i++) {
      int32x4_t acc_2x_0 = vpaddq_s32(acc[0][i], acc[1][i]);
      int32x4_t acc_2x_1 = vpaddq_s32(acc[2][i], acc[3][i]);
      int32x4_t acc_4x = vpaddq_s32(acc_2x_0, acc_2x_1);
      int32x4_t dst_val = vld1q_s32(accum_ptr + 4 * i);
      dst_val = vaddq_s32(dst_val, acc_4x);
      vst1q_s32(accum_ptr + 4 * i, dst_val);
    }
  }
};

using NEON_64bit_GEMM_Int8Operands_AccumTwoWithin16Bits_intrinsics =
    NEON_GEMM_Int8Operands_AccumTwoWithin16Bits_intrinsics<4>;

using NEON_32bit_GEMM_Int8Operands_AccumTwoWithin16Bits_intrinsics =
    NEON_GEMM_Int8Operands_AccumTwoWithin16Bits_intrinsics<2>;

// C++ intrinsics-based variant of the wide, uint8, general kernel
template <int RhsCells>
struct NEON_GEMM_Uint8Operands_Uint32Accumulators_intrinsics {
  typedef std::uint8_t OperandType;
  typedef std::int32_t AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 2, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 2, CellOrder::DepthMajor>, RhsCells> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    int32x4_t acc[3][4 * RhsCells];
    for (int i = 0; i < 3; i++) {
      for (int j = 0; j < 4 * RhsCells; j++) {
        acc[i][j] = vld1q_s32(accum_ptr + 4 * (i + 3 * j));
      }
    }
    for (int d = 0; d < depth; d += 2) {
      int16x8_t lhs[3];
      for (int i = 0; i < 3; i++) {
        lhs[i] = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(lhs_ptr + 8 * i)));
      }
      int16x8_t rhs[RhsCells];
      for (int i = 0; i < RhsCells; i++) {
        rhs[i] = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(rhs_ptr + 8 * i)));
      }
      for (int i = 0; i < 3; i++) {
        for (int j = 0; j < RhsCells; j++) {
          acc[i][4 * j + 0] = vmlal_lane_s16(
              acc[i][4 * j + 0], vget_low_s16(lhs[i]), vget_low_s16(rhs[j]), 0);
          acc[i][4 * j + 1] = vmlal_lane_s16(
              acc[i][4 * j + 1], vget_low_s16(lhs[i]), vget_low_s16(rhs[j]), 1);
          acc[i][4 * j + 2] = vmlal_lane_s16(
              acc[i][4 * j + 2], vget_low_s16(lhs[i]), vget_low_s16(rhs[j]), 2);
          acc[i][4 * j + 3] = vmlal_lane_s16(
              acc[i][4 * j + 3], vget_low_s16(lhs[i]), vget_low_s16(rhs[j]), 3);
          acc[i][4 * j + 0] =
              vmlal_lane_s16(acc[i][4 * j + 0], vget_high_s16(lhs[i]),
                             vget_high_s16(rhs[j]), 0);
          acc[i][4 * j + 1] =
              vmlal_lane_s16(acc[i][4 * j + 1], vget_high_s16(lhs[i]),
                             vget_high_s16(rhs[j]), 1);
          acc[i][4 * j + 2] =
              vmlal_lane_s16(acc[i][4 * j + 2], vget_high_s16(lhs[i]),
                             vget_high_s16(rhs[j]), 2);
          acc[i][4 * j + 3] =
              vmlal_lane_s16(acc[i][4 * j + 3], vget_high_s16(lhs[i]),
                             vget_high_s16(rhs[j]), 3);
        }
      }
      lhs_ptr += 24;
      rhs_ptr += 8 * RhsCells;
    }
    for (int i = 0; i < 3; i++) {
      for (int j = 0; j < 4 * RhsCells; j++) {
        vst1q_s32(accum_ptr + 4 * (i + 3 * j), acc[i][j]);
      }
    }
  }
};

using NEON_32bit_GEMM_Uint8Operands_Uint32Accumulators_intrinsics =
    NEON_GEMM_Uint8Operands_Uint32Accumulators_intrinsics<1>;

using NEON_64bit_GEMM_Uint8Operands_Uint32Accumulators_intrinsics =
    NEON_GEMM_Uint8Operands_Uint32Accumulators_intrinsics<2>;

template <int RhsCells>
struct NEON_GEMM_Float32_WithScalar_intrinsics {
  typedef float OperandType;
  typedef float AccumulatorType;
  typedef KernelFormat<
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, 3>,
      KernelSideFormat<CellFormat<4, 1, CellOrder::DepthMajor>, RhsCells> >
      Format;
  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    float32x4_t acc[3][4 * RhsCells];
    for (int i = 0; i < 3; i++) {
      for (int j = 0; j < 4 * RhsCells; j++) {
        acc[i][j] = vld1q_f32(accum_ptr + 4 * (i + 3 * j));
      }
    }
    for (int d = 0; d < depth; d++) {
      float32x4_t lhs[3];
      for (int i = 0; i < 3; i++) {
        lhs[i] = vld1q_f32(lhs_ptr + 4 * i);
      }
      float32x4_t rhs[RhsCells];
      for (int i = 0; i < RhsCells; i++) {
        rhs[i] = vld1q_f32(rhs_ptr + 4 * i);
      }
      for (int i = 0; i < 3; i++) {
        for (int j = 0; j < RhsCells; j++) {
          acc[i][4 * j + 0] = vmlaq_lane_f32(acc[i][4 * j + 0], lhs[i],
                                             vget_low_f32(rhs[j]), 0);
          acc[i][4 * j + 1] = vmlaq_lane_f32(acc[i][4 * j + 1], lhs[i],
                                             vget_low_f32(rhs[j]), 1);
          acc[i][4 * j + 2] = vmlaq_lane_f32(acc[i][4 * j + 2], lhs[i],
                                             vget_high_f32(rhs[j]), 0);
          acc[i][4 * j + 3] = vmlaq_lane_f32(acc[i][4 * j + 3], lhs[i],
                                             vget_high_f32(rhs[j]), 1);
        }
      }
      lhs_ptr += 12;
      rhs_ptr += 4 * RhsCells;
    }
    for (int i = 0; i < 3; i++) {
      for (int j = 0; j < 4 * RhsCells; j++) {
        vst1q_f32(accum_ptr + 4 * (i + 3 * j), acc[i][j]);
      }
    }
  }
};

using NEON_32bit_GEMM_Float32_WithScalar_intrinsics =
    NEON_GEMM_Float32_WithScalar_intrinsics<1>;

using NEON_64bit_GEMM_Float32_WithScalar_intrinsics =
    NEON_GEMM_Float32_WithScalar_intrinsics<2>;

// BEGIN code copied from gemmlowp/internal/kernel_reference.h

// This kernel is templatized in an arbitrary Format template parameter,
// allowing it to have any arbitrary format.
template <typename tOperandType, typename tAccumulatorType, typename tFormat>
struct ReferenceKernel {
  typedef tOperandType OperandType;
  typedef tAccumulatorType AccumulatorType;
  typedef tFormat Format;

  static void Run(const OperandType* lhs_ptr, const OperandType* rhs_ptr,
                  AccumulatorType* accum_ptr, int depth) {
    const int depth_cells = static_cast<int>(depth / Format::kDepth);

    // The outer loop is over the depth dimension.
    for (int dc = 0; dc < depth_cells; dc++) {
      // The next two loops are over cells of the Lhs (stacked vertically),
      // and over cells of the Rhs (stacked horizontally).
      for (int rc = 0; rc < Format::Lhs::kCells; rc++) {
        const OperandType* lhs_cell_ptr =
            lhs_ptr + (dc * Format::Lhs::kCells + rc) *
                          Format::Lhs::Cell::kWidth * Format::kDepth;
        for (int cc = 0; cc < Format::Rhs::kCells; cc++) {
          const OperandType* rhs_cell_ptr =
              rhs_ptr + (dc * Format::Rhs::kCells + cc) *
                            Format::Rhs::Cell::kWidth * Format::kDepth;

          // Now we are inside one cell of the Lhs and inside one cell
          // of the Rhs, so the remaining inner loops are just
          // traditional three loops of matrix multiplication.
          for (int di = 0; di < Format::kDepth; di++) {
            for (int ri = 0; ri < Format::Lhs::Cell::kWidth; ri++) {
              for (int ci = 0; ci < Format::Rhs::Cell::kWidth; ci++) {
                const OperandType* lhs_coeff_ptr =
                    lhs_cell_ptr +
                    OffsetIntoCell<typename Format::Lhs::Cell>(ri, di);
                const OperandType* rhs_coeff_ptr =
                    rhs_cell_ptr +
                    OffsetIntoCell<typename Format::Rhs::Cell>(ci, di);
                AccumulatorType* accumulator_coeff_ptr =
                    accum_ptr + (ri + rc * Format::Lhs::Cell::kWidth) +
                    (ci + cc * Format::Rhs::Cell::kWidth) * Format::kRows;
                *accumulator_coeff_ptr += AccumulatorType(*lhs_coeff_ptr) *
                                          AccumulatorType(*rhs_coeff_ptr);
              }
            }
          }
        }
      }
    }
  }
};

// END code copied from gemmlowp/internal/kernel_reference.h

template <typename DataType>
class CacheLineAlignedBuffer {
 public:
  CacheLineAlignedBuffer(std::size_t size) : size_(size) {
    data_ = nullptr;
    // Adds a few bytes of padding here, because the 64-bit 'A57' kernel
    // reads one iteration past the end the buffer, causing a crash on iOS.
    posix_memalign(reinterpret_cast<void**>(&data_), kCacheLineSize,
                   size_ * sizeof(DataType) + 16);
  }

  ~CacheLineAlignedBuffer() { free(data_); }

  const DataType* data() const { return data_; }
  DataType* data() { return data_; }

  const std::size_t size() const { return size_; }

 private:
  const std::size_t size_;
  DataType* data_;
};

template <typename DataType>
void FillRandom(CacheLineAlignedBuffer<DataType>* buffer) {
  static std::mt19937 generator(0);
  // 100 is smaller than any nonzero bound of the range of any data type.
  const DataType kMaxVal = DataType(100);
  const DataType kMinVal =
      std::is_signed<DataType>::value ? -kMaxVal : DataType(0);
  std::uniform_real_distribution<float> dist(kMinVal, kMaxVal);
  for (std::size_t i = 0; i < buffer->size(); i++) {
    buffer->data()[i] = DataType(dist(generator));
  }
}

template <typename DataType>
void FillZero(CacheLineAlignedBuffer<DataType>* buffer) {
  for (std::size_t i = 0; i < buffer->size(); i++) {
    buffer->data()[i] = DataType(0);
  }
}

template <typename DataType>
void Copy(CacheLineAlignedBuffer<DataType>* dst,
          const CacheLineAlignedBuffer<DataType>& src) {
  assert(dst->size() == src.size());
  memcpy(dst->data(), src.data(), src.size() * sizeof(DataType));
}

template <typename DataType>
void PrintMatrix(int rows, int cols, int rowstride, int colstride,
                 const DataType* data) {
  for (int r = 0; r < rows; r++) {
    for (int c = 0; c < cols; c++) {
      std::cerr << double(data[r * rowstride + c * colstride]) << " ";
    }
    std::cerr << std::endl;
  }
  std::cerr << std::endl;
}

template <typename DataType>
bool approx_equals(DataType a, DataType b) {
  return a == b;
}

template <>
bool approx_equals(float a, float b) {
  if (!a && !b) {
    return true;
  }
  // 1e-1 is very coarse accuracy, we should switch to an overall L2 metric
  // and tighten the tolerance on that metric.
  return std::abs(a - b) < 1e-1f * std::min(std::abs(a), std::abs(b));
}

template <typename Kernel>
void test_kernel(int depth, const char* kernel_name) {
  typedef typename Kernel::OperandType OperandType;
  typedef typename Kernel::AccumulatorType AccumulatorType;
  typedef typename Kernel::Format Format;
  static const int kLhsWidth = Format::Lhs::kWidth;
  static const int kRhsWidth = Format::Rhs::kWidth;

  typedef ReferenceKernel<OperandType, AccumulatorType, Format> ReferenceKernel;

  CacheLineAlignedBuffer<OperandType> lhs(kLhsWidth * depth);
  CacheLineAlignedBuffer<OperandType> rhs(kRhsWidth * depth);
  CacheLineAlignedBuffer<AccumulatorType> accum_initial(kLhsWidth * kRhsWidth);
  CacheLineAlignedBuffer<AccumulatorType> accum(kLhsWidth * kRhsWidth);
  CacheLineAlignedBuffer<AccumulatorType> accum_reference(kLhsWidth *
                                                          kRhsWidth);

  FillRandom(&lhs);
  FillRandom(&rhs);
  FillRandom(&accum_initial);
  Copy(&accum, accum_initial);
  Copy(&accum_reference, accum_initial);

  ReferenceKernel::Run(lhs.data(), rhs.data(), accum_reference.data(), depth);
  Kernel::Run(lhs.data(), rhs.data(), accum.data(), depth);

  for (int l = 0; l < kLhsWidth; l++) {
    for (int r = 0; r < kRhsWidth; r++) {
      const int index = l + kLhsWidth * r;
      if (!approx_equals(accum.data()[index], accum_reference.data()[index])) {
        std::cerr << "Arithmetic error in kernel:" << std::endl
                  << "    " << kernel_name << std::endl
                  << "Wrong accumulator for depth=" << depth << ", "
                  << "at l = " << l << ", r = " << r << std::endl;
        std::cerr << "reference value: " << accum_reference.data()[index]
                  << std::endl;
        std::cerr << "actual value:    " << accum.data()[index] << std::endl;
        if (depth <= 16) {
          std::cerr << "LHS matrix:" << std::endl;
          PrintMatrix(kLhsWidth, depth, 1, kLhsWidth, lhs.data());
          std::cerr << "RHS matrix:" << std::endl;
          PrintMatrix(depth, kRhsWidth, kRhsWidth, 1, rhs.data());
          std::cerr << "Initial Accumulator matrix:" << std::endl;
          PrintMatrix(kLhsWidth, kRhsWidth, 1, kLhsWidth, accum_initial.data());
          std::cerr << "Reference Accumulator matrix:" << std::endl;
          PrintMatrix(kLhsWidth, kRhsWidth, 1, kLhsWidth,
                      accum_reference.data());
          std::cerr << "Actual Accumulator matrix:" << std::endl;
          PrintMatrix(kLhsWidth, kRhsWidth, 1, kLhsWidth, accum.data());
        }
        abort();
      }
    }
  }
}

template <typename Kernel>
int ops(int depth) {
  // 2x the number of multiply-accumulate scalar ops.
  return 2 * Kernel::Format::Lhs::kWidth * Kernel::Format::Rhs::kWidth * depth;
}

template <unsigned Modulus, typename Integer>
Integer RoundDown(Integer i) {
  return i - (i % Modulus);
}

int CacheSizeInKB() {
  static const char* cache_size_k_env = getenv("CACHE_SIZE_KB");
  static const int cache_size_k =
      cache_size_k_env ? atoi(cache_size_k_env) : kDefaultCacheSizeK;
  return cache_size_k;
}

template <typename Kernel>
int BenchmarkDepthToFitInCache() {
  const int cache_size_bytes = 1024 * CacheSizeInKB();

  // Subtract the typical size of a few cache lines, so
  // we don't need to worry too hard about e.g. some stack data.
  const int conservative_cache_size_bytes =
      cache_size_bytes - 2 * kCacheLineSize;

  // We will subtract the memory occupied by accumulators.
  typedef typename Kernel::AccumulatorType AccumulatorType;
  const int kAccumulatorBytes = sizeof(AccumulatorType) *
                                Kernel::Format::Lhs::kWidth *
                                Kernel::Format::Rhs::kWidth;

  // Compute the depth.
  typedef typename Kernel::OperandType OperandType;
  const int kBytesPerUnitOfDepth =
      sizeof(OperandType) *
      (Kernel::Format::Lhs::kWidth + Kernel::Format::Rhs::kWidth);
  const int unrounded_depth =
      (conservative_cache_size_bytes - kAccumulatorBytes) /
      kBytesPerUnitOfDepth;

  // Cap depth, to avoid unfairly favoring narrower kernels
  const int kMaxDepth = 1024;
  const int clamped_unrounded_depth = std::min(kMaxDepth, unrounded_depth);

  // Round depth down to a multiple of cache line size, which helps because
  // our kernels may crash if depth is not a multiple of the number of
  // depth level that they want to
  // handle at each loop iteration, and we don't want to require kernels
  // to be more complex. Currently all kernels process 1, 2 or 8 levels of
  // depth at a time. The main reason why that might increase in the future
  // is if registers get wider, but I don't suppose that register could
  // ever get wider than cache lines.
  return RoundDown<kCacheLineSize>(clamped_unrounded_depth);
}

double current_time_in_seconds() {
  timespec t;
  clock_gettime(CLOCK_REALTIME, &t);
  return t.tv_sec + 1e-9 * t.tv_nsec;
}

template <typename Kernel>
double benchmark(int depth) {
  // Minimum duration for this benchmark to run. If the workload finishes
  // sooner, we retry with double the number of iterations.
  static const double min_benchmark_time_in_seconds = 1.0;

  typedef typename Kernel::OperandType OperandType;
  typedef typename Kernel::AccumulatorType AccumulatorType;

  CacheLineAlignedBuffer<OperandType> lhs(Kernel::Format::Lhs::kWidth * depth);
  CacheLineAlignedBuffer<OperandType> rhs(Kernel::Format::Rhs::kWidth * depth);
  CacheLineAlignedBuffer<AccumulatorType> accum(Kernel::Format::Lhs::kWidth *
                                                Kernel::Format::Rhs::kWidth);

  for (std::uint64_t iters_at_a_time = 1;; iters_at_a_time *= 2) {
    const double t_start = current_time_in_seconds();
    for (std::uint64_t i = 0; i < iters_at_a_time; i++) {
      Kernel::Run(lhs.data(), rhs.data(), accum.data(), depth);
    }
    const double t_end = current_time_in_seconds();
    const double elapsed = t_end - t_start;
    if (elapsed > min_benchmark_time_in_seconds) {
      return iters_at_a_time * ops<Kernel>(depth) / elapsed;
    }
  }
}

template <typename Kernel>
void benchmark_and_print_results(const char* kernel_name) {
  if (getenv("BENCHMARK_KERNEL")) {
    if (strcmp(getenv("BENCHMARK_KERNEL"), kernel_name)) {
      return;
    }
  }
  const int kKernelDepth = Kernel::Format::kDepth;
  for (int depth = kKernelDepth; depth <= 1024; depth += kKernelDepth) {
    test_kernel<Kernel>(depth, kernel_name);
  }

  if (getenv("BENCHMARK_ALL_DEPTHS")) {
    for (int depth = kKernelDepth;
         depth <= BenchmarkDepthToFitInCache<Kernel>(); depth *= 2) {
      std::cout << kernel_name << "," << depth << ","
                << benchmark<Kernel>(depth) * 1e-9f << std::endl;
    }
  } else {
    const int depth = BenchmarkDepthToFitInCache<Kernel>();
    std::cout << kernel_name << "," << benchmark<Kernel>(depth) * 1e-9f
              << std::endl;
  }
}

#define BENCHMARK(Kernel)                         \
  do {                                            \
    benchmark_and_print_results<Kernel>(#Kernel); \
  } while (false)

int main() {
  if (getenv("BENCHMARK_ALL_DEPTHS")) {
    std::cout << "kernel,depth,Gop/s" << std::endl;
  } else {
    std::cout << "kernel,Gop/s" << std::endl;
  }

#ifdef __arm__
  BENCHMARK(NEON_32bit_GEMM_Int8Operands_AccumTwoWithin16Bits);
  BENCHMARK(NEON_32bit_GEMM_Int8Operands_AccumTwoWithin16Bits_intrinsics);
  BENCHMARK(NEON_32bit_GEMM_Uint8Operands_Uint32Accumulators);
  BENCHMARK(NEON_32bit_GEMM_Uint8Operands_Uint32Accumulators_intrinsics);
  BENCHMARK(NEON_32bit_GEMM_Uint8Operands_Uint32Accumulators_noexpand);
  BENCHMARK(NEON_32bit_GEMM_Int32_WithScalar);
  BENCHMARK(NEON_32bit_GEMM_Float32_MLA_WithVectorDuplicatingScalar);
#ifdef __ARM_FEATURE_FMA
  BENCHMARK(NEON_32bit_GEMM_Float32_FMA_WithVectorDuplicatingScalar);
#endif
  BENCHMARK(NEON_32bit_GEMM_Float32_MLA_WithScalar);
  BENCHMARK(NEON_32bit_GEMM_Float32_WithScalar_intrinsics);
  BENCHMARK(NEON_32bit_GEMM_Float32_WithScalar_A53);
  BENCHMARK(NEON_32bit_GEMM_Float32_WithScalar_A53_depth2);
  BENCHMARK(NEON_32bit_GEMM_Float32_MLA_Rotating);
#ifdef __ARM_FEATURE_FMA
  BENCHMARK(NEON_32bit_GEMM_Float32_FMA_Rotating);
#endif
#endif

#ifdef __aarch64__

  BENCHMARK(NEON_64bit_GEMM_Int8Operands_AccumTwoWithin16Bits);
  BENCHMARK(NEON_64bit_GEMM_Int8Operands_AccumTwoWithin16Bits_intrinsics);
  BENCHMARK(NEON_64bit_GEMM_Uint8Operands_Uint32Accumulators);
  BENCHMARK(NEON_64bit_GEMM_Uint8Operands_Uint32Accumulators_intrinsics);
  BENCHMARK(NEON_64bit_GEMM_Uint8Operands_Uint32Accumulators_noexpand_A57);
  BENCHMARK(NEON_64bit_GEMM_Int32_WithScalar);
  BENCHMARK(NEON_64bit_GEMM_Float32_WithVectorDuplicatingScalar);
  BENCHMARK(NEON_64bit_GEMM_Float32_WithScalar);
  BENCHMARK(NEON_64bit_GEMM_Float32_WithScalar_intrinsics);
  BENCHMARK(NEON_64bit_GEMM_Float32_WithScalar_A57);
#ifndef __APPLE__
  BENCHMARK(NEON_64bit_GEMM_Float32_WithScalar_A53);
#endif
#endif

  return 0;
}