aboutsummaryrefslogtreecommitdiff
path: root/testing/protocmp/util.go
blob: 79f3072b8e8640b4ce77e94d7810b3d18d566b10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package protocmp

import (
	"bytes"
	"fmt"
	"math"
	"reflect"
	"strings"

	"github.com/google/go-cmp/cmp"
	"github.com/google/go-cmp/cmp/cmpopts"

	"google.golang.org/protobuf/proto"
	"google.golang.org/protobuf/reflect/protoreflect"
)

var (
	enumReflectType    = reflect.TypeOf(Enum{})
	messageReflectType = reflect.TypeOf(Message{})
)

// FilterEnum filters opt to only be applicable on standalone Enums,
// singular fields of enums, list fields of enums, or map fields of enum values,
// where the enum is the same type as the specified enum.
//
// The Go type of the last path step may be an:
//	• Enum for singular fields, elements of a repeated field,
//	values of a map field, or standalone Enums
//	• []Enum for list fields
//	• map[K]Enum for map fields
//	• interface{} for a Message map entry value
//
// This must be used in conjunction with Transform.
func FilterEnum(enum protoreflect.Enum, opt cmp.Option) cmp.Option {
	return FilterDescriptor(enum.Descriptor(), opt)
}

// FilterMessage filters opt to only be applicable on standalone Messages,
// singular fields of messages, list fields of messages, or map fields of
// message values, where the message is the same type as the specified message.
//
// The Go type of the last path step may be an:
//	• Message for singular fields, elements of a repeated field,
//	values of a map field, or standalone Messages
//	• []Message for list fields
//	• map[K]Message for map fields
//	• interface{} for a Message map entry value
//
// This must be used in conjunction with Transform.
func FilterMessage(message proto.Message, opt cmp.Option) cmp.Option {
	return FilterDescriptor(message.ProtoReflect().Descriptor(), opt)
}

// FilterField filters opt to only be applicable on the specified field
// in the message. It panics if a field of the given name does not exist.
//
// The Go type of the last path step may be an:
//	• T for singular fields
//	• []T for list fields
//	• map[K]T for map fields
//	• interface{} for a Message map entry value
//
// This must be used in conjunction with Transform.
func FilterField(message proto.Message, name protoreflect.Name, opt cmp.Option) cmp.Option {
	md := message.ProtoReflect().Descriptor()
	return FilterDescriptor(mustFindFieldDescriptor(md, name), opt)
}

// FilterOneof filters opt to only be applicable on all fields within the
// specified oneof in the message. It panics if a oneof of the given name
// does not exist.
//
// The Go type of the last path step may be an:
//	• T for singular fields
//	• []T for list fields
//	• map[K]T for map fields
//	• interface{} for a Message map entry value
//
// This must be used in conjunction with Transform.
func FilterOneof(message proto.Message, name protoreflect.Name, opt cmp.Option) cmp.Option {
	md := message.ProtoReflect().Descriptor()
	return FilterDescriptor(mustFindOneofDescriptor(md, name), opt)
}

// FilterDescriptor ignores the specified descriptor.
//
// The following descriptor types may be specified:
//	• protoreflect.EnumDescriptor
//	• protoreflect.MessageDescriptor
//	• protoreflect.FieldDescriptor
//	• protoreflect.OneofDescriptor
//
// For the behavior of each, see the corresponding filter function.
// Since this filter accepts a protoreflect.FieldDescriptor, it can be used
// to also filter for extension fields as a protoreflect.ExtensionDescriptor
// is just an alias to protoreflect.FieldDescriptor.
//
// This must be used in conjunction with Transform.
func FilterDescriptor(desc protoreflect.Descriptor, opt cmp.Option) cmp.Option {
	f := newNameFilters(desc)
	return cmp.FilterPath(f.Filter, opt)
}

// IgnoreEnums ignores all enums of the specified types.
// It is equivalent to FilterEnum(enum, cmp.Ignore()) for each enum.
//
// This must be used in conjunction with Transform.
func IgnoreEnums(enums ...protoreflect.Enum) cmp.Option {
	var ds []protoreflect.Descriptor
	for _, e := range enums {
		ds = append(ds, e.Descriptor())
	}
	return IgnoreDescriptors(ds...)
}

// IgnoreMessages ignores all messages of the specified types.
// It is equivalent to FilterMessage(message, cmp.Ignore()) for each message.
//
// This must be used in conjunction with Transform.
func IgnoreMessages(messages ...proto.Message) cmp.Option {
	var ds []protoreflect.Descriptor
	for _, m := range messages {
		ds = append(ds, m.ProtoReflect().Descriptor())
	}
	return IgnoreDescriptors(ds...)
}

// IgnoreFields ignores the specified fields in the specified message.
// It is equivalent to FilterField(message, name, cmp.Ignore()) for each field
// in the message.
//
// This must be used in conjunction with Transform.
func IgnoreFields(message proto.Message, names ...protoreflect.Name) cmp.Option {
	var ds []protoreflect.Descriptor
	md := message.ProtoReflect().Descriptor()
	for _, s := range names {
		ds = append(ds, mustFindFieldDescriptor(md, s))
	}
	return IgnoreDescriptors(ds...)
}

// IgnoreOneofs ignores fields of the specified oneofs in the specified message.
// It is equivalent to FilterOneof(message, name, cmp.Ignore()) for each oneof
// in the message.
//
// This must be used in conjunction with Transform.
func IgnoreOneofs(message proto.Message, names ...protoreflect.Name) cmp.Option {
	var ds []protoreflect.Descriptor
	md := message.ProtoReflect().Descriptor()
	for _, s := range names {
		ds = append(ds, mustFindOneofDescriptor(md, s))
	}
	return IgnoreDescriptors(ds...)
}

// IgnoreDescriptors ignores the specified set of descriptors.
// It is equivalent to FilterDescriptor(desc, cmp.Ignore()) for each descriptor.
//
// This must be used in conjunction with Transform.
func IgnoreDescriptors(descs ...protoreflect.Descriptor) cmp.Option {
	return cmp.FilterPath(newNameFilters(descs...).Filter, cmp.Ignore())
}

func mustFindFieldDescriptor(md protoreflect.MessageDescriptor, s protoreflect.Name) protoreflect.FieldDescriptor {
	d := findDescriptor(md, s)
	if fd, ok := d.(protoreflect.FieldDescriptor); ok && fd.TextName() == string(s) {
		return fd
	}

	var suggestion string
	switch d := d.(type) {
	case protoreflect.FieldDescriptor:
		suggestion = fmt.Sprintf("; consider specifying field %q instead", d.TextName())
	case protoreflect.OneofDescriptor:
		suggestion = fmt.Sprintf("; consider specifying oneof %q with IgnoreOneofs instead", d.Name())
	}
	panic(fmt.Sprintf("message %q has no field %q%s", md.FullName(), s, suggestion))
}

func mustFindOneofDescriptor(md protoreflect.MessageDescriptor, s protoreflect.Name) protoreflect.OneofDescriptor {
	d := findDescriptor(md, s)
	if od, ok := d.(protoreflect.OneofDescriptor); ok && d.Name() == s {
		return od
	}

	var suggestion string
	switch d := d.(type) {
	case protoreflect.OneofDescriptor:
		suggestion = fmt.Sprintf("; consider specifying oneof %q instead", d.Name())
	case protoreflect.FieldDescriptor:
		suggestion = fmt.Sprintf("; consider specifying field %q with IgnoreFields instead", d.TextName())
	}
	panic(fmt.Sprintf("message %q has no oneof %q%s", md.FullName(), s, suggestion))
}

func findDescriptor(md protoreflect.MessageDescriptor, s protoreflect.Name) protoreflect.Descriptor {
	// Exact match.
	if fd := md.Fields().ByTextName(string(s)); fd != nil {
		return fd
	}
	if od := md.Oneofs().ByName(s); od != nil && !od.IsSynthetic() {
		return od
	}

	// Best-effort match.
	//
	// It's a common user mistake to use the CamelCased field name as it appears
	// in the generated Go struct. Instead of complaining that it doesn't exist,
	// suggest the real protobuf name that the user may have desired.
	normalize := func(s protoreflect.Name) string {
		return strings.Replace(strings.ToLower(string(s)), "_", "", -1)
	}
	for i := 0; i < md.Fields().Len(); i++ {
		if fd := md.Fields().Get(i); normalize(fd.Name()) == normalize(s) {
			return fd
		}
	}
	for i := 0; i < md.Oneofs().Len(); i++ {
		if od := md.Oneofs().Get(i); normalize(od.Name()) == normalize(s) {
			return od
		}
	}
	return nil
}

type nameFilters struct {
	names map[protoreflect.FullName]bool
}

func newNameFilters(descs ...protoreflect.Descriptor) *nameFilters {
	f := &nameFilters{names: make(map[protoreflect.FullName]bool)}
	for _, d := range descs {
		switch d := d.(type) {
		case protoreflect.EnumDescriptor:
			f.names[d.FullName()] = true
		case protoreflect.MessageDescriptor:
			f.names[d.FullName()] = true
		case protoreflect.FieldDescriptor:
			f.names[d.FullName()] = true
		case protoreflect.OneofDescriptor:
			for i := 0; i < d.Fields().Len(); i++ {
				f.names[d.Fields().Get(i).FullName()] = true
			}
		default:
			panic("invalid descriptor type")
		}
	}
	return f
}

func (f *nameFilters) Filter(p cmp.Path) bool {
	vx, vy := p.Last().Values()
	return (f.filterValue(vx) && f.filterValue(vy)) || f.filterFields(p)
}

func (f *nameFilters) filterFields(p cmp.Path) bool {
	// Trim off trailing type-assertions so that the filter can match on the
	// concrete value held within an interface value.
	if _, ok := p.Last().(cmp.TypeAssertion); ok {
		p = p[:len(p)-1]
	}

	// Filter for Message maps.
	mi, ok := p.Index(-1).(cmp.MapIndex)
	if !ok {
		return false
	}
	ps := p.Index(-2)
	if ps.Type() != messageReflectType {
		return false
	}

	// Check field name.
	vx, vy := ps.Values()
	mx := vx.Interface().(Message)
	my := vy.Interface().(Message)
	k := mi.Key().String()
	if f.filterFieldName(mx, k) && f.filterFieldName(my, k) {
		return true
	}

	// Check field value.
	vx, vy = mi.Values()
	if f.filterFieldValue(vx) && f.filterFieldValue(vy) {
		return true
	}

	return false
}

func (f *nameFilters) filterFieldName(m Message, k string) bool {
	if _, ok := m[k]; !ok {
		return true // treat missing fields as already filtered
	}
	var fd protoreflect.FieldDescriptor
	switch mm := m[messageTypeKey].(messageMeta); {
	case protoreflect.Name(k).IsValid():
		fd = mm.md.Fields().ByTextName(k)
	default:
		fd = mm.xds[k]
	}
	if fd != nil {
		return f.names[fd.FullName()]
	}
	return false
}

func (f *nameFilters) filterFieldValue(v reflect.Value) bool {
	if !v.IsValid() {
		return true // implies missing slice element or map entry
	}
	v = v.Elem() // map entries are always populated values
	switch t := v.Type(); {
	case t == enumReflectType || t == messageReflectType:
		// Check for singular message or enum field.
		return f.filterValue(v)
	case t.Kind() == reflect.Slice && (t.Elem() == enumReflectType || t.Elem() == messageReflectType):
		// Check for list field of enum or message type.
		return f.filterValue(v.Index(0))
	case t.Kind() == reflect.Map && (t.Elem() == enumReflectType || t.Elem() == messageReflectType):
		// Check for map field of enum or message type.
		return f.filterValue(v.MapIndex(v.MapKeys()[0]))
	}
	return false
}

func (f *nameFilters) filterValue(v reflect.Value) bool {
	if !v.IsValid() {
		return true // implies missing slice element or map entry
	}
	if !v.CanInterface() {
		return false // implies unexported struct field
	}
	switch v := v.Interface().(type) {
	case Enum:
		return v.Descriptor() != nil && f.names[v.Descriptor().FullName()]
	case Message:
		return v.Descriptor() != nil && f.names[v.Descriptor().FullName()]
	}
	return false
}

// IgnoreDefaultScalars ignores singular scalars that are unpopulated or
// explicitly set to the default value.
// This option does not effect elements in a list or entries in a map.
//
// This must be used in conjunction with Transform.
func IgnoreDefaultScalars() cmp.Option {
	return cmp.FilterPath(func(p cmp.Path) bool {
		// Filter for Message maps.
		mi, ok := p.Index(-1).(cmp.MapIndex)
		if !ok {
			return false
		}
		ps := p.Index(-2)
		if ps.Type() != messageReflectType {
			return false
		}

		// Check whether both fields are default or unpopulated scalars.
		vx, vy := ps.Values()
		mx := vx.Interface().(Message)
		my := vy.Interface().(Message)
		k := mi.Key().String()
		return isDefaultScalar(mx, k) && isDefaultScalar(my, k)
	}, cmp.Ignore())
}

func isDefaultScalar(m Message, k string) bool {
	if _, ok := m[k]; !ok {
		return true
	}

	var fd protoreflect.FieldDescriptor
	switch mm := m[messageTypeKey].(messageMeta); {
	case protoreflect.Name(k).IsValid():
		fd = mm.md.Fields().ByTextName(k)
	default:
		fd = mm.xds[k]
	}
	if fd == nil || !fd.Default().IsValid() {
		return false
	}
	switch fd.Kind() {
	case protoreflect.BytesKind:
		v, ok := m[k].([]byte)
		return ok && bytes.Equal(fd.Default().Bytes(), v)
	case protoreflect.FloatKind:
		v, ok := m[k].(float32)
		return ok && equalFloat64(fd.Default().Float(), float64(v))
	case protoreflect.DoubleKind:
		v, ok := m[k].(float64)
		return ok && equalFloat64(fd.Default().Float(), float64(v))
	case protoreflect.EnumKind:
		v, ok := m[k].(Enum)
		return ok && fd.Default().Enum() == v.Number()
	default:
		return reflect.DeepEqual(fd.Default().Interface(), m[k])
	}
}

func equalFloat64(x, y float64) bool {
	return x == y || (math.IsNaN(x) && math.IsNaN(y))
}

// IgnoreEmptyMessages ignores messages that are empty or unpopulated.
// It applies to standalone Messages, singular message fields,
// list fields of messages, and map fields of message values.
//
// This must be used in conjunction with Transform.
func IgnoreEmptyMessages() cmp.Option {
	return cmp.FilterPath(func(p cmp.Path) bool {
		vx, vy := p.Last().Values()
		return (isEmptyMessage(vx) && isEmptyMessage(vy)) || isEmptyMessageFields(p)
	}, cmp.Ignore())
}

func isEmptyMessageFields(p cmp.Path) bool {
	// Filter for Message maps.
	mi, ok := p.Index(-1).(cmp.MapIndex)
	if !ok {
		return false
	}
	ps := p.Index(-2)
	if ps.Type() != messageReflectType {
		return false
	}

	// Check field value.
	vx, vy := mi.Values()
	if isEmptyMessageFieldValue(vx) && isEmptyMessageFieldValue(vy) {
		return true
	}

	return false
}

func isEmptyMessageFieldValue(v reflect.Value) bool {
	if !v.IsValid() {
		return true // implies missing slice element or map entry
	}
	v = v.Elem() // map entries are always populated values
	switch t := v.Type(); {
	case t == messageReflectType:
		// Check singular field for empty message.
		if !isEmptyMessage(v) {
			return false
		}
	case t.Kind() == reflect.Slice && t.Elem() == messageReflectType:
		// Check list field for all empty message elements.
		for i := 0; i < v.Len(); i++ {
			if !isEmptyMessage(v.Index(i)) {
				return false
			}
		}
	case t.Kind() == reflect.Map && t.Elem() == messageReflectType:
		// Check map field for all empty message values.
		for _, k := range v.MapKeys() {
			if !isEmptyMessage(v.MapIndex(k)) {
				return false
			}
		}
	default:
		return false
	}
	return true
}

func isEmptyMessage(v reflect.Value) bool {
	if !v.IsValid() {
		return true // implies missing slice element or map entry
	}
	if !v.CanInterface() {
		return false // implies unexported struct field
	}
	if m, ok := v.Interface().(Message); ok {
		for k := range m {
			if k != messageTypeKey && k != messageInvalidKey {
				return false
			}
		}
		return true
	}
	return false
}

// IgnoreUnknown ignores unknown fields in all messages.
//
// This must be used in conjunction with Transform.
func IgnoreUnknown() cmp.Option {
	return cmp.FilterPath(func(p cmp.Path) bool {
		// Filter for Message maps.
		mi, ok := p.Index(-1).(cmp.MapIndex)
		if !ok {
			return false
		}
		ps := p.Index(-2)
		if ps.Type() != messageReflectType {
			return false
		}

		// Filter for unknown fields (which always have a numeric map key).
		return strings.Trim(mi.Key().String(), "0123456789") == ""
	}, cmp.Ignore())
}

// SortRepeated sorts repeated fields of the specified element type.
// The less function must be of the form "func(T, T) bool" where T is the
// Go element type for the repeated field kind.
//
// The element type T can be one of the following:
//	• Go type for a protobuf scalar kind except for an enum
//	  (i.e., bool, int32, int64, uint32, uint64, float32, float64, string, and []byte)
//	• E where E is a concrete enum type that implements protoreflect.Enum
//	• M where M is a concrete message type that implement proto.Message
//
// This option only applies to repeated fields within a protobuf message.
// It does not operate on higher-order Go types that seem like a repeated field.
// For example, a []T outside the context of a protobuf message will not be
// handled by this option. To sort Go slices that are not repeated fields,
// consider using "github.com/google/go-cmp/cmp/cmpopts".SortSlices instead.
//
// This must be used in conjunction with Transform.
func SortRepeated(lessFunc interface{}) cmp.Option {
	t, ok := checkTTBFunc(lessFunc)
	if !ok {
		panic(fmt.Sprintf("invalid less function: %T", lessFunc))
	}

	var opt cmp.Option
	var sliceType reflect.Type
	switch vf := reflect.ValueOf(lessFunc); {
	case t.Implements(enumV2Type):
		et := reflect.Zero(t).Interface().(protoreflect.Enum).Type()
		lessFunc = func(x, y Enum) bool {
			vx := reflect.ValueOf(et.New(x.Number()))
			vy := reflect.ValueOf(et.New(y.Number()))
			return vf.Call([]reflect.Value{vx, vy})[0].Bool()
		}
		opt = FilterDescriptor(et.Descriptor(), cmpopts.SortSlices(lessFunc))
		sliceType = reflect.SliceOf(enumReflectType)
	case t.Implements(messageV2Type):
		mt := reflect.Zero(t).Interface().(protoreflect.ProtoMessage).ProtoReflect().Type()
		lessFunc = func(x, y Message) bool {
			mx := mt.New().Interface()
			my := mt.New().Interface()
			proto.Merge(mx, x)
			proto.Merge(my, y)
			vx := reflect.ValueOf(mx)
			vy := reflect.ValueOf(my)
			return vf.Call([]reflect.Value{vx, vy})[0].Bool()
		}
		opt = FilterDescriptor(mt.Descriptor(), cmpopts.SortSlices(lessFunc))
		sliceType = reflect.SliceOf(messageReflectType)
	default:
		switch t {
		case reflect.TypeOf(bool(false)):
		case reflect.TypeOf(int32(0)):
		case reflect.TypeOf(int64(0)):
		case reflect.TypeOf(uint32(0)):
		case reflect.TypeOf(uint64(0)):
		case reflect.TypeOf(float32(0)):
		case reflect.TypeOf(float64(0)):
		case reflect.TypeOf(string("")):
		case reflect.TypeOf([]byte(nil)):
		default:
			panic(fmt.Sprintf("invalid element type: %v", t))
		}
		opt = cmpopts.SortSlices(lessFunc)
		sliceType = reflect.SliceOf(t)
	}

	return cmp.FilterPath(func(p cmp.Path) bool {
		// Filter to only apply to repeated fields within a message.
		if t := p.Index(-1).Type(); t == nil || t != sliceType {
			return false
		}
		if t := p.Index(-2).Type(); t == nil || t.Kind() != reflect.Interface {
			return false
		}
		if t := p.Index(-3).Type(); t == nil || t != messageReflectType {
			return false
		}
		return true
	}, opt)
}

func checkTTBFunc(lessFunc interface{}) (reflect.Type, bool) {
	switch t := reflect.TypeOf(lessFunc); {
	case t == nil:
		return nil, false
	case t.NumIn() != 2 || t.In(0) != t.In(1) || t.IsVariadic():
		return nil, false
	case t.NumOut() != 1 || t.Out(0) != reflect.TypeOf(false):
		return nil, false
	default:
		return t.In(0), true
	}
}

// SortRepeatedFields sorts the specified repeated fields.
// Sorting a repeated field is useful for treating the list as a multiset
// (i.e., a set where each value can appear multiple times).
// It panics if the field does not exist or is not a repeated field.
//
// The sort ordering is as follows:
//	• Booleans are sorted where false is sorted before true.
//	• Integers are sorted in ascending order.
//	• Floating-point numbers are sorted in ascending order according to
//	  the total ordering defined by IEEE-754 (section 5.10).
//	• Strings and bytes are sorted lexicographically in ascending order.
//	• Enums are sorted in ascending order based on its numeric value.
//	• Messages are sorted according to some arbitrary ordering
//	  which is undefined and may change in future implementations.
//
// The ordering chosen for repeated messages is unlikely to be aesthetically
// preferred by humans. Consider using a custom sort function:
//
//	FilterField(m, "foo_field", SortRepeated(func(x, y *foopb.MyMessage) bool {
//	    ... // user-provided definition for less
//	}))
//
// This must be used in conjunction with Transform.
func SortRepeatedFields(message proto.Message, names ...protoreflect.Name) cmp.Option {
	var opts cmp.Options
	md := message.ProtoReflect().Descriptor()
	for _, name := range names {
		fd := mustFindFieldDescriptor(md, name)
		if !fd.IsList() {
			panic(fmt.Sprintf("message field %q is not repeated", fd.FullName()))
		}

		var lessFunc interface{}
		switch fd.Kind() {
		case protoreflect.BoolKind:
			lessFunc = func(x, y bool) bool { return !x && y }
		case protoreflect.Int32Kind, protoreflect.Sint32Kind, protoreflect.Sfixed32Kind:
			lessFunc = func(x, y int32) bool { return x < y }
		case protoreflect.Int64Kind, protoreflect.Sint64Kind, protoreflect.Sfixed64Kind:
			lessFunc = func(x, y int64) bool { return x < y }
		case protoreflect.Uint32Kind, protoreflect.Fixed32Kind:
			lessFunc = func(x, y uint32) bool { return x < y }
		case protoreflect.Uint64Kind, protoreflect.Fixed64Kind:
			lessFunc = func(x, y uint64) bool { return x < y }
		case protoreflect.FloatKind:
			lessFunc = lessF32
		case protoreflect.DoubleKind:
			lessFunc = lessF64
		case protoreflect.StringKind:
			lessFunc = func(x, y string) bool { return x < y }
		case protoreflect.BytesKind:
			lessFunc = func(x, y []byte) bool { return bytes.Compare(x, y) < 0 }
		case protoreflect.EnumKind:
			lessFunc = func(x, y Enum) bool { return x.Number() < y.Number() }
		case protoreflect.MessageKind, protoreflect.GroupKind:
			lessFunc = func(x, y Message) bool { return x.String() < y.String() }
		default:
			panic(fmt.Sprintf("invalid kind: %v", fd.Kind()))
		}
		opts = append(opts, FilterDescriptor(fd, cmpopts.SortSlices(lessFunc)))
	}
	return opts
}

func lessF32(x, y float32) bool {
	// Bit-wise implementation of IEEE-754, section 5.10.
	xi := int32(math.Float32bits(x))
	yi := int32(math.Float32bits(y))
	xi ^= int32(uint32(xi>>31) >> 1)
	yi ^= int32(uint32(yi>>31) >> 1)
	return xi < yi
}
func lessF64(x, y float64) bool {
	// Bit-wise implementation of IEEE-754, section 5.10.
	xi := int64(math.Float64bits(x))
	yi := int64(math.Float64bits(y))
	xi ^= int64(uint64(xi>>63) >> 1)
	yi ^= int64(uint64(yi>>63) >> 1)
	return xi < yi
}