aboutsummaryrefslogtreecommitdiff
path: root/src/client/linux/microdump_writer/microdump_writer.cc
blob: 1f19d3bb6f9d82f326eded417dc4b4f292138bd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
// Copyright 2014 Google LLC
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google LLC nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// This translation unit generates microdumps into the console (logcat on
// Android). See crbug.com/410294 for more info and design docs.

#include "client/linux/microdump_writer/microdump_writer.h"

#include <limits>

#include <sys/utsname.h>

#include "client/linux/dump_writer_common/thread_info.h"
#include "client/linux/dump_writer_common/ucontext_reader.h"
#include "client/linux/handler/exception_handler.h"
#include "client/linux/handler/microdump_extra_info.h"
#include "client/linux/log/log.h"
#include "client/linux/minidump_writer/linux_ptrace_dumper.h"
#include "common/linux/file_id.h"
#include "common/linux/linux_libc_support.h"
#include "common/memory_allocator.h"

namespace {

using google_breakpad::auto_wasteful_vector;
using google_breakpad::elf::kDefaultBuildIdSize;
using google_breakpad::ExceptionHandler;
using google_breakpad::LinuxDumper;
using google_breakpad::LinuxPtraceDumper;
using google_breakpad::MappingInfo;
using google_breakpad::MappingList;
using google_breakpad::MicrodumpExtraInfo;
using google_breakpad::RawContextCPU;
using google_breakpad::ThreadInfo;
using google_breakpad::UContextReader;

const size_t kLineBufferSize = 2048;

#if !defined(__LP64__)
// The following are only used by DumpFreeSpace, so need to be compiled
// in conditionally in the same way.

template <typename Dst, typename Src>
Dst saturated_cast(Src src) {
  if (src >= std::numeric_limits<Dst>::max())
    return std::numeric_limits<Dst>::max();
  if (src <= std::numeric_limits<Dst>::min())
    return std::numeric_limits<Dst>::min();
  return static_cast<Dst>(src);
}

int Log2Floor(uint64_t n) {
  // Copied from chromium src/base/bits.h
  if (n == 0)
    return -1;
  int log = 0;
  uint64_t value = n;
  for (int i = 5; i >= 0; --i) {
    int shift = (1 << i);
    uint64_t x = value >> shift;
    if (x != 0) {
      value = x;
      log += shift;
    }
  }
  assert(value == 1u);
  return log;
}

bool MappingsAreAdjacent(const MappingInfo& a, const MappingInfo& b) {
  // Because of load biasing, we can end up with a situation where two
  // mappings actually overlap. So we will define adjacency to also include a
  // b start address that lies within a's address range (including starting
  // immediately after a).
  // Because load biasing only ever moves the start address backwards, the end
  // address should still increase.
  return a.start_addr <= b.start_addr && a.start_addr + a.size >= b.start_addr;
}

bool MappingLessThan(const MappingInfo* a, const MappingInfo* b) {
  // Return true if mapping a is before mapping b.
  // For the same reason (load biasing) we compare end addresses, which - unlike
  // start addresses - will not have been modified.
  return a->start_addr + a->size < b->start_addr + b->size;
}

size_t NextOrderedMapping(
    const google_breakpad::wasteful_vector<MappingInfo*>& mappings,
    size_t curr) {
  // Find the mapping that directly follows mappings[curr].
  // If no such mapping exists, return |invalid| to indicate this.
  const size_t invalid = std::numeric_limits<size_t>::max();
  size_t best = invalid;
  for (size_t next = 0; next < mappings.size(); ++next) {
    if (MappingLessThan(mappings[curr], mappings[next]) &&
        (best == invalid || MappingLessThan(mappings[next], mappings[best]))) {
      best = next;
    }
  }
  return best;
}

#endif  // !__LP64__

class MicrodumpWriter {
 public:
  MicrodumpWriter(const ExceptionHandler::CrashContext* context,
                  const MappingList& mappings,
                  bool skip_dump_if_principal_mapping_not_referenced,
                  uintptr_t address_within_principal_mapping,
                  bool sanitize_stack,
                  const MicrodumpExtraInfo& microdump_extra_info,
                  LinuxDumper* dumper)
      : ucontext_(context ? &context->context : NULL),
#if GOOGLE_BREAKPAD_CRASH_CONTEXT_HAS_FLOAT_STATE
        float_state_(context ? &context->float_state : NULL),
#endif
        dumper_(dumper),
        mapping_list_(mappings),
        skip_dump_if_principal_mapping_not_referenced_(
            skip_dump_if_principal_mapping_not_referenced),
        address_within_principal_mapping_(address_within_principal_mapping),
        sanitize_stack_(sanitize_stack),
        microdump_extra_info_(microdump_extra_info),
        log_line_(NULL),
        stack_copy_(NULL),
        stack_len_(0),
        stack_lower_bound_(0),
        stack_pointer_(0) {
    log_line_ = reinterpret_cast<char*>(Alloc(kLineBufferSize));
    if (log_line_)
      log_line_[0] = '\0';  // Clear out the log line buffer.
  }

  ~MicrodumpWriter() { dumper_->ThreadsResume(); }

  bool Init() {
    // In the exceptional case where the system was out of memory and there
    // wasn't even room to allocate the line buffer, bail out. There is nothing
    // useful we can possibly achieve without the ability to Log. At least let's
    // try to not crash.
    if (!dumper_->Init() || !log_line_)
      return false;
    return dumper_->ThreadsSuspend() && dumper_->LateInit();
  }

  void Dump() {
    CaptureResult stack_capture_result = CaptureCrashingThreadStack(-1);
    if (stack_capture_result == CAPTURE_UNINTERESTING) {
      LogLine("Microdump skipped (uninteresting)");
      return;
    }

    LogLine("-----BEGIN BREAKPAD MICRODUMP-----");
    DumpProductInformation();
    DumpOSInformation();
    DumpProcessType();
    DumpCrashReason();
    DumpGPUInformation();
#if !defined(__LP64__)
    DumpFreeSpace();
#endif
    if (stack_capture_result == CAPTURE_OK)
      DumpThreadStack();
    DumpCPUState();
    DumpMappings();
    LogLine("-----END BREAKPAD MICRODUMP-----");
  }

 private:
  enum CaptureResult { CAPTURE_OK, CAPTURE_FAILED, CAPTURE_UNINTERESTING };

  // Writes one line to the system log.
  void LogLine(const char* msg) {
#if defined(__ANDROID__)
    logger::writeToCrashLog(msg);
#else
    logger::write(msg, my_strlen(msg));
    logger::write("\n", 1);
#endif
  }

  // Stages the given string in the current line buffer.
  void LogAppend(const char* str) {
    my_strlcat(log_line_, str, kLineBufferSize);
  }

  // As above (required to take precedence over template specialization below).
  void LogAppend(char* str) {
    LogAppend(const_cast<const char*>(str));
  }

  // Stages the hex repr. of the given int type in the current line buffer.
  template<typename T>
  void LogAppend(T value) {
    // Make enough room to hex encode the largest int type + NUL.
    static const char HEX[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
                               'A', 'B', 'C', 'D', 'E', 'F'};
    char hexstr[sizeof(T) * 2 + 1];
    for (int i = sizeof(T) * 2 - 1; i >= 0; --i, value >>= 4)
      hexstr[i] = HEX[static_cast<uint8_t>(value) & 0x0F];
    hexstr[sizeof(T) * 2] = '\0';
    LogAppend(hexstr);
  }

  // Stages the buffer content hex-encoded in the current line buffer.
  void LogAppend(const void* buf, size_t length) {
    const uint8_t* ptr = reinterpret_cast<const uint8_t*>(buf);
    for (size_t i = 0; i < length; ++i, ++ptr)
      LogAppend(*ptr);
  }

  // Writes out the current line buffer on the system log.
  void LogCommitLine() {
    LogLine(log_line_);
    log_line_[0] = 0;
  }

  CaptureResult CaptureCrashingThreadStack(int max_stack_len) {
    stack_pointer_ = UContextReader::GetStackPointer(ucontext_);

    if (!dumper_->GetStackInfo(reinterpret_cast<const void**>(&stack_lower_bound_),
                               &stack_len_, stack_pointer_)) {
      return CAPTURE_FAILED;
    }

    if (max_stack_len >= 0 &&
        stack_len_ > static_cast<size_t>(max_stack_len)) {
      stack_len_ = max_stack_len;
    }

    stack_copy_ = reinterpret_cast<uint8_t*>(Alloc(stack_len_));
    dumper_->CopyFromProcess(stack_copy_, dumper_->crash_thread(),
                             reinterpret_cast<const void*>(stack_lower_bound_),
                             stack_len_);

    if (!skip_dump_if_principal_mapping_not_referenced_) return CAPTURE_OK;

    const MappingInfo* principal_mapping =
        dumper_->FindMappingNoBias(address_within_principal_mapping_);
    if (!principal_mapping) return CAPTURE_UNINTERESTING;

    uintptr_t low_addr = principal_mapping->system_mapping_info.start_addr;
    uintptr_t high_addr = principal_mapping->system_mapping_info.end_addr;
    uintptr_t pc = UContextReader::GetInstructionPointer(ucontext_);
    if (low_addr <= pc && pc <= high_addr) return CAPTURE_OK;

    if (dumper_->StackHasPointerToMapping(stack_copy_, stack_len_,
                                          stack_pointer_ - stack_lower_bound_,
                                          *principal_mapping)) {
      return CAPTURE_OK;
    }
    return CAPTURE_UNINTERESTING;
  }

  void DumpProductInformation() {
    LogAppend("V ");
    if (microdump_extra_info_.product_info) {
      LogAppend(microdump_extra_info_.product_info);
    } else {
      LogAppend("UNKNOWN:0.0.0.0");
    }
    LogCommitLine();
  }

  void DumpProcessType() {
    LogAppend("P ");
    if (microdump_extra_info_.process_type) {
      LogAppend(microdump_extra_info_.process_type);
    } else {
      LogAppend("UNKNOWN");
    }
    LogCommitLine();
  }

  void DumpCrashReason() {
    LogAppend("R ");
    LogAppend(dumper_->crash_signal());
    LogAppend(" ");
    LogAppend(dumper_->GetCrashSignalString());
    LogAppend(" ");
    LogAppend(dumper_->crash_address());
    LogCommitLine();
  }

  void DumpOSInformation() {
    const uint8_t n_cpus = static_cast<uint8_t>(sysconf(_SC_NPROCESSORS_CONF));

#if defined(__ANDROID__)
    const char kOSId[] = "A";
#else
    const char kOSId[] = "L";
#endif

// Dump the runtime architecture. On multiarch devices it might not match the
// hw architecture (the one returned by uname()), for instance in the case of
// a 32-bit app running on a aarch64 device.
#if defined(__aarch64__)
    const char kArch[] = "arm64";
#elif defined(__ARMEL__)
    const char kArch[] = "arm";
#elif defined(__x86_64__)
    const char kArch[] = "x86_64";
#elif defined(__i386__)
    const char kArch[] = "x86";
#elif defined(__mips__)
# if _MIPS_SIM == _ABIO32
    const char kArch[] = "mips";
# elif _MIPS_SIM == _ABI64
    const char kArch[] = "mips64";
# else
#  error "This mips ABI is currently not supported (n32)"
# endif
#elif defined(__riscv)
# if __riscv_xlen == 32
    const char kArch[] = "riscv32";
# elif __riscv_xlen == 64
    const char kArch[] = "riscv64";
# else
#  error "Unexpected __riscv_xlen"
# endif
#else
# error "This code has not been ported to your platform yet"
#endif

    LogAppend("O ");
    LogAppend(kOSId);
    LogAppend(" ");
    LogAppend(kArch);
    LogAppend(" ");
    LogAppend(n_cpus);
    LogAppend(" ");

    // Dump the HW architecture (e.g., armv7l, aarch64).
    struct utsname uts;
    const bool has_uts_info = (uname(&uts) == 0);
    const char* hwArch = has_uts_info ? uts.machine : "unknown_hw_arch";
    LogAppend(hwArch);
    LogAppend(" ");

    // If the client has attached a build fingerprint to the MinidumpDescriptor
    // use that one. Otherwise try to get some basic info from uname().
    if (microdump_extra_info_.build_fingerprint) {
      LogAppend(microdump_extra_info_.build_fingerprint);
    } else if (has_uts_info) {
      LogAppend(uts.release);
      LogAppend(" ");
      LogAppend(uts.version);
    } else {
      LogAppend("no build fingerprint available");
    }
    LogCommitLine();
  }

  void DumpGPUInformation() {
    LogAppend("G ");
    if (microdump_extra_info_.gpu_fingerprint) {
      LogAppend(microdump_extra_info_.gpu_fingerprint);
    } else {
      LogAppend("UNKNOWN");
    }
    LogCommitLine();
  }

  void DumpThreadStack() {
    if (sanitize_stack_) {
      dumper_->SanitizeStackCopy(stack_copy_, stack_len_, stack_pointer_,
                                 stack_pointer_ - stack_lower_bound_);
    }

    LogAppend("S 0 ");
    LogAppend(stack_pointer_);
    LogAppend(" ");
    LogAppend(stack_lower_bound_);
    LogAppend(" ");
    LogAppend(stack_len_);
    LogCommitLine();

    const size_t STACK_DUMP_CHUNK_SIZE = 384;
    for (size_t stack_off = 0; stack_off < stack_len_;
         stack_off += STACK_DUMP_CHUNK_SIZE) {
      LogAppend("S ");
      LogAppend(stack_lower_bound_ + stack_off);
      LogAppend(" ");
      LogAppend(stack_copy_ + stack_off,
                std::min(STACK_DUMP_CHUNK_SIZE, stack_len_ - stack_off));
      LogCommitLine();
    }
  }

  void DumpCPUState() {
    RawContextCPU cpu;
    my_memset(&cpu, 0, sizeof(RawContextCPU));
#if GOOGLE_BREAKPAD_CRASH_CONTEXT_HAS_FLOAT_STATE
    UContextReader::FillCPUContext(&cpu, ucontext_, float_state_);
#else
    UContextReader::FillCPUContext(&cpu, ucontext_);
#endif
    LogAppend("C ");
    LogAppend(&cpu, sizeof(cpu));
    LogCommitLine();
  }

  // If there is caller-provided information about this mapping
  // in the mapping_list_ list, return true. Otherwise, return false.
  bool HaveMappingInfo(const MappingInfo& mapping) {
    for (MappingList::const_iterator iter = mapping_list_.begin();
         iter != mapping_list_.end();
         ++iter) {
      // Ignore any mappings that are wholly contained within
      // mappings in the mapping_info_ list.
      if (mapping.start_addr >= iter->first.start_addr &&
          (mapping.start_addr + mapping.size) <=
              (iter->first.start_addr + iter->first.size)) {
        return true;
      }
    }
    return false;
  }

  // Dump information about the provided |mapping|. If |identifier| is non-NULL,
  // use it instead of calculating a file ID from the mapping.
  void DumpModule(const MappingInfo& mapping,
                  bool member,
                  unsigned int mapping_id,
                  const uint8_t* identifier) {

    auto_wasteful_vector<uint8_t, kDefaultBuildIdSize> identifier_bytes(
        dumper_->allocator());

    if (identifier) {
      // GUID was provided by caller.
      identifier_bytes.insert(identifier_bytes.end(),
                              identifier,
                              identifier + sizeof(MDGUID));
    } else {
      dumper_->ElfFileIdentifierForMapping(
          mapping,
          member,
          mapping_id,
          identifier_bytes);
    }

    // Copy as many bytes of |identifier| as will fit into a MDGUID
    MDGUID module_identifier = {0};
    memcpy(&module_identifier, &identifier_bytes[0],
           std::min(sizeof(MDGUID), identifier_bytes.size()));

    char file_name[NAME_MAX];
    char file_path[NAME_MAX];
    dumper_->GetMappingEffectiveNameAndPath(
        mapping, file_path, sizeof(file_path), file_name, sizeof(file_name));

    LogAppend("M ");
    LogAppend(static_cast<uintptr_t>(mapping.start_addr));
    LogAppend(" ");
    LogAppend(mapping.offset);
    LogAppend(" ");
    LogAppend(mapping.size);
    LogAppend(" ");
    LogAppend(module_identifier.data1);
    LogAppend(module_identifier.data2);
    LogAppend(module_identifier.data3);
    LogAppend(module_identifier.data4[0]);
    LogAppend(module_identifier.data4[1]);
    LogAppend(module_identifier.data4[2]);
    LogAppend(module_identifier.data4[3]);
    LogAppend(module_identifier.data4[4]);
    LogAppend(module_identifier.data4[5]);
    LogAppend(module_identifier.data4[6]);
    LogAppend(module_identifier.data4[7]);
    LogAppend("0 ");  // Age is always 0 on Linux.
    LogAppend(file_name);
    LogCommitLine();
  }

#if !defined(__LP64__)
  void DumpFreeSpace() {
    const MappingInfo* stack_mapping = nullptr;
    ThreadInfo info;
    if (dumper_->GetThreadInfoByIndex(dumper_->GetMainThreadIndex(), &info)) {
      stack_mapping = dumper_->FindMappingNoBias(info.stack_pointer);
    }

    const google_breakpad::wasteful_vector<MappingInfo*>& mappings =
        dumper_->mappings();
    if (mappings.size() == 0) return;

    // This is complicated by the fact that mappings is not in order. It should
    // be mostly in order, however the mapping that contains the entry point for
    // the process is always at the front of the vector.

    static const int HBITS = sizeof(size_t) * 8;
    size_t hole_histogram[HBITS];
    my_memset(hole_histogram, 0, sizeof(hole_histogram));

    // Find the lowest address mapping.
    size_t curr = 0;
    for (size_t i = 1; i < mappings.size(); ++i) {
      if (mappings[i]->start_addr < mappings[curr]->start_addr) curr = i;
    }

    uintptr_t lo_addr = mappings[curr]->start_addr;

    size_t hole_cnt = 0;
    size_t hole_max = 0;
    size_t hole_sum = 0;

    while (true) {
      // Skip to the end of an adjacent run of mappings. This is an optimization
      // for the fact that mappings is mostly sorted.
      while (curr != mappings.size() - 1 &&
             MappingsAreAdjacent(*mappings[curr], *mappings[curr + 1])) {
        ++curr;
      }

      if (mappings[curr] == stack_mapping) {
        // Because we can't determine the top of userspace mappable
        // memory we treat the start of the process stack as the top
        // of the allocatable address space. Once we reach
        // |stack_mapping| we are done scanning for free space regions.
        break;
      }

      size_t next = NextOrderedMapping(mappings, curr);
      if (next == std::numeric_limits<size_t>::max())
        break;

      uintptr_t hole_lo = mappings[curr]->start_addr + mappings[curr]->size;
      uintptr_t hole_hi = mappings[next]->start_addr;

      if (hole_hi > hole_lo) {
        size_t hole_sz = hole_hi - hole_lo;
        hole_sum += hole_sz;
        hole_max = std::max(hole_sz, hole_max);
        ++hole_cnt;
        ++hole_histogram[Log2Floor(hole_sz)];
      }
      curr = next;
    }

    uintptr_t hi_addr = mappings[curr]->start_addr + mappings[curr]->size;

    LogAppend("H ");
    LogAppend(lo_addr);
    LogAppend(" ");
    LogAppend(hi_addr);
    LogAppend(" ");
    LogAppend(saturated_cast<uint16_t>(hole_cnt));
    LogAppend(" ");
    LogAppend(hole_max);
    LogAppend(" ");
    LogAppend(hole_sum);
    for (unsigned int i = 0; i < HBITS; ++i) {
      if (!hole_histogram[i]) continue;
      LogAppend(" ");
      LogAppend(saturated_cast<uint8_t>(i));
      LogAppend(":");
      LogAppend(saturated_cast<uint8_t>(hole_histogram[i]));
    }
    LogCommitLine();
  }
#endif

  // Write information about the mappings in effect.
  void DumpMappings() {
    // First write all the mappings from the dumper
    for (unsigned i = 0; i < dumper_->mappings().size(); ++i) {
      const MappingInfo& mapping = *dumper_->mappings()[i];
      if (mapping.name[0] == 0 ||  // only want modules with filenames.
          !mapping.exec ||  // only want executable mappings.
          mapping.size < 4096 || // too small to get a signature for.
          HaveMappingInfo(mapping)) {
        continue;
      }

      DumpModule(mapping, true, i, NULL);
    }
    // Next write all the mappings provided by the caller
    for (MappingList::const_iterator iter = mapping_list_.begin();
         iter != mapping_list_.end();
         ++iter) {
      DumpModule(iter->first, false, 0, iter->second);
    }
  }

  void* Alloc(unsigned bytes) { return dumper_->allocator()->Alloc(bytes); }

  const ucontext_t* const ucontext_;
#if GOOGLE_BREAKPAD_CRASH_CONTEXT_HAS_FLOAT_STATE
  const google_breakpad::fpstate_t* const float_state_;
#endif
  LinuxDumper* dumper_;
  const MappingList& mapping_list_;
  bool skip_dump_if_principal_mapping_not_referenced_;
  uintptr_t address_within_principal_mapping_;
  bool sanitize_stack_;
  const MicrodumpExtraInfo microdump_extra_info_;
  char* log_line_;

  // The local copy of crashed process stack memory, beginning at
  // |stack_lower_bound_|.
  uint8_t* stack_copy_;

  // The length of crashed process stack copy.
  size_t stack_len_;

  // The address of the page containing the stack pointer in the
  // crashed process. |stack_lower_bound_| <= |stack_pointer_|
  uintptr_t stack_lower_bound_;

  // The stack pointer of the crashed thread.
  uintptr_t stack_pointer_;
};
}  // namespace

namespace google_breakpad {

bool WriteMicrodump(pid_t crashing_process,
                    const void* blob,
                    size_t blob_size,
                    const MappingList& mappings,
                    bool skip_dump_if_principal_mapping_not_referenced,
                    uintptr_t address_within_principal_mapping,
                    bool sanitize_stack,
                    const MicrodumpExtraInfo& microdump_extra_info) {
  LinuxPtraceDumper dumper(crashing_process);
  const ExceptionHandler::CrashContext* context = NULL;
  if (blob) {
    if (blob_size != sizeof(ExceptionHandler::CrashContext))
      return false;
    context = reinterpret_cast<const ExceptionHandler::CrashContext*>(blob);
    dumper.SetCrashInfoFromSigInfo(context->siginfo);
    dumper.set_crash_thread(context->tid);
  }
  MicrodumpWriter writer(context, mappings,
                         skip_dump_if_principal_mapping_not_referenced,
                         address_within_principal_mapping, sanitize_stack,
                         microdump_extra_info, &dumper);
  if (!writer.Init())
    return false;
  writer.Dump();
  return true;
}

}  // namespace google_breakpad