aboutsummaryrefslogtreecommitdiff
path: root/android/guava/src/com/google/common/collect/MapMakerInternalMap.java
blob: d1dbf4a8772baed7f1e96f08a42e577f76ae9b26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
/*
 * Copyright (C) 2009 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.collect.CollectPreconditions.checkRemove;

import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Equivalence;
import com.google.common.collect.MapMaker.Dummy;
import com.google.common.primitives.Ints;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.errorprone.annotations.concurrent.GuardedBy;
import com.google.j2objc.annotations.Weak;
import com.google.j2objc.annotations.WeakOuter;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;
import java.util.AbstractCollection;
import java.util.AbstractMap;
import java.util.AbstractSet;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.concurrent.CancellationException;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReferenceArray;
import java.util.concurrent.locks.ReentrantLock;
import org.checkerframework.checker.nullness.compatqual.MonotonicNonNullDecl;
import org.checkerframework.checker.nullness.compatqual.NullableDecl;

/**
 * The concurrent hash map implementation built by {@link MapMaker}.
 *
 * <p>This implementation is heavily derived from revision 1.96 of <a
 * href="http://tinyurl.com/ConcurrentHashMap">ConcurrentHashMap.java</a>.
 *
 * @param <K> the type of the keys in the map
 * @param <V> the type of the values in the map
 * @param <E> the type of the {@link InternalEntry} entry implementation used internally
 * @param <S> the type of the {@link Segment} entry implementation used internally
 * @author Bob Lee
 * @author Charles Fry
 * @author Doug Lea ({@code ConcurrentHashMap})
 */
// TODO(kak/cpovirk): Consider removing @CanIgnoreReturnValue from this class.
@GwtIncompatible
@SuppressWarnings("GuardedBy") // TODO(b/35466881): Fix or suppress.
class MapMakerInternalMap<
        K,
        V,
        E extends MapMakerInternalMap.InternalEntry<K, V, E>,
        S extends MapMakerInternalMap.Segment<K, V, E, S>>
    extends AbstractMap<K, V> implements ConcurrentMap<K, V>, Serializable {

  /*
   * The basic strategy is to subdivide the table among Segments, each of which itself is a
   * concurrently readable hash table. The map supports non-blocking reads and concurrent writes
   * across different segments.
   *
   * The page replacement algorithm's data structures are kept casually consistent with the map. The
   * ordering of writes to a segment is sequentially consistent. An update to the map and recording
   * of reads may not be immediately reflected on the algorithm's data structures. These structures
   * are guarded by a lock and operations are applied in batches to avoid lock contention. The
   * penalty of applying the batches is spread across threads so that the amortized cost is slightly
   * higher than performing just the operation without enforcing the capacity constraint.
   *
   * This implementation uses a per-segment queue to record a memento of the additions, removals,
   * and accesses that were performed on the map. The queue is drained on writes and when it exceeds
   * its capacity threshold.
   *
   * The Least Recently Used page replacement algorithm was chosen due to its simplicity, high hit
   * rate, and ability to be implemented with O(1) time complexity. The initial LRU implementation
   * operates per-segment rather than globally for increased implementation simplicity. We expect
   * the cache hit rate to be similar to that of a global LRU algorithm.
   */

  // Constants

  /**
   * The maximum capacity, used if a higher value is implicitly specified by either of the
   * constructors with arguments. MUST be a power of two no greater than {@code 1<<30} to ensure
   * that entries are indexable using ints.
   */
  static final int MAXIMUM_CAPACITY = Ints.MAX_POWER_OF_TWO;

  /** The maximum number of segments to allow; used to bound constructor arguments. */
  static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

  /** Number of (unsynchronized) retries in the containsValue method. */
  static final int CONTAINS_VALUE_RETRIES = 3;

  /**
   * Number of cache access operations that can be buffered per segment before the cache's recency
   * ordering information is updated. This is used to avoid lock contention by recording a memento
   * of reads and delaying a lock acquisition until the threshold is crossed or a mutation occurs.
   *
   * <p>This must be a (2^n)-1 as it is used as a mask.
   */
  static final int DRAIN_THRESHOLD = 0x3F;

  /**
   * Maximum number of entries to be drained in a single cleanup run. This applies independently to
   * the cleanup queue and both reference queues.
   */
  // TODO(fry): empirically optimize this
  static final int DRAIN_MAX = 16;

  static final long CLEANUP_EXECUTOR_DELAY_SECS = 60;

  // Fields

  /**
   * Mask value for indexing into segments. The upper bits of a key's hash code are used to choose
   * the segment.
   */
  final transient int segmentMask;

  /**
   * Shift value for indexing within segments. Helps prevent entries that end up in the same segment
   * from also ending up in the same bucket.
   */
  final transient int segmentShift;

  /** The segments, each of which is a specialized hash table. */
  final transient Segment<K, V, E, S>[] segments;

  /** The concurrency level. */
  final int concurrencyLevel;

  /** Strategy for comparing keys. */
  final Equivalence<Object> keyEquivalence;

  /** Strategy for handling entries and segments in a type-safe and efficient manner. */
  final transient InternalEntryHelper<K, V, E, S> entryHelper;

  /**
   * Creates a new, empty map with the specified strategy, initial capacity and concurrency level.
   */
  private MapMakerInternalMap(MapMaker builder, InternalEntryHelper<K, V, E, S> entryHelper) {
    concurrencyLevel = Math.min(builder.getConcurrencyLevel(), MAX_SEGMENTS);

    keyEquivalence = builder.getKeyEquivalence();
    this.entryHelper = entryHelper;

    int initialCapacity = Math.min(builder.getInitialCapacity(), MAXIMUM_CAPACITY);

    // Find power-of-two sizes best matching arguments. Constraints:
    // (segmentCount > concurrencyLevel)
    int segmentShift = 0;
    int segmentCount = 1;
    while (segmentCount < concurrencyLevel) {
      ++segmentShift;
      segmentCount <<= 1;
    }
    this.segmentShift = 32 - segmentShift;
    segmentMask = segmentCount - 1;

    this.segments = newSegmentArray(segmentCount);

    int segmentCapacity = initialCapacity / segmentCount;
    if (segmentCapacity * segmentCount < initialCapacity) {
      ++segmentCapacity;
    }

    int segmentSize = 1;
    while (segmentSize < segmentCapacity) {
      segmentSize <<= 1;
    }

    for (int i = 0; i < this.segments.length; ++i) {
      this.segments[i] = createSegment(segmentSize, MapMaker.UNSET_INT);
    }
  }

  /** Returns a fresh {@link MapMakerInternalMap} as specified by the given {@code builder}. */
  static <K, V> MapMakerInternalMap<K, V, ? extends InternalEntry<K, V, ?>, ?> create(
      MapMaker builder) {
    if (builder.getKeyStrength() == Strength.STRONG
        && builder.getValueStrength() == Strength.STRONG) {
      return new MapMakerInternalMap<>(builder, StrongKeyStrongValueEntry.Helper.<K, V>instance());
    }
    if (builder.getKeyStrength() == Strength.STRONG
        && builder.getValueStrength() == Strength.WEAK) {
      return new MapMakerInternalMap<>(builder, StrongKeyWeakValueEntry.Helper.<K, V>instance());
    }
    if (builder.getKeyStrength() == Strength.WEAK
        && builder.getValueStrength() == Strength.STRONG) {
      return new MapMakerInternalMap<>(builder, WeakKeyStrongValueEntry.Helper.<K, V>instance());
    }
    if (builder.getKeyStrength() == Strength.WEAK && builder.getValueStrength() == Strength.WEAK) {
      return new MapMakerInternalMap<>(builder, WeakKeyWeakValueEntry.Helper.<K, V>instance());
    }
    throw new AssertionError();
  }

  /**
   * Returns a fresh {@link MapMakerInternalMap} with {@link MapMaker.Dummy} values but otherwise as
   * specified by the given {@code builder}. The returned {@link MapMakerInternalMap} will be
   * optimized to saved memory. Since {@link MapMaker.Dummy} is a singleton, we don't need to store
   * any values at all. Because of this optimization, {@code build.getValueStrength()} must be
   * {@link Strength#STRONG}.
   *
   * <p>This method is intended to only be used by the internal implementation of {@link Interners},
   * since a map of dummy values is the exact use case there.
   */
  static <K>
      MapMakerInternalMap<K, Dummy, ? extends InternalEntry<K, Dummy, ?>, ?> createWithDummyValues(
          MapMaker builder) {
    if (builder.getKeyStrength() == Strength.STRONG
        && builder.getValueStrength() == Strength.STRONG) {
      return new MapMakerInternalMap<>(builder, StrongKeyDummyValueEntry.Helper.<K>instance());
    }
    if (builder.getKeyStrength() == Strength.WEAK
        && builder.getValueStrength() == Strength.STRONG) {
      return new MapMakerInternalMap<>(builder, WeakKeyDummyValueEntry.Helper.<K>instance());
    }
    if (builder.getValueStrength() == Strength.WEAK) {
      throw new IllegalArgumentException("Map cannot have both weak and dummy values");
    }
    throw new AssertionError();
  }

  enum Strength {
    STRONG {
      @Override
      Equivalence<Object> defaultEquivalence() {
        return Equivalence.equals();
      }
    },

    WEAK {
      @Override
      Equivalence<Object> defaultEquivalence() {
        return Equivalence.identity();
      }
    };

    /**
     * Returns the default equivalence strategy used to compare and hash keys or values referenced
     * at this strength. This strategy will be used unless the user explicitly specifies an
     * alternate strategy.
     */
    abstract Equivalence<Object> defaultEquivalence();
  }

  /**
   * A helper object for operating on {@link InternalEntry} instances in a type-safe and efficient
   * manner.
   *
   * <p>For each of the four combinations of strong/weak key and strong/weak value, there are
   * corresponding {@link InternalEntry}, {@link Segment}, and {@link InternalEntryHelper}
   * implementations.
   *
   * @param <K> the type of the key in each entry
   * @param <V> the type of the value in each entry
   * @param <E> the type of the {@link InternalEntry} entry implementation
   * @param <S> the type of the {@link Segment} entry implementation
   */
  interface InternalEntryHelper<
      K, V, E extends InternalEntry<K, V, E>, S extends Segment<K, V, E, S>> {
    /** The strength of the key type in each entry. */
    Strength keyStrength();

    /** The strength of the value type in each entry. */
    Strength valueStrength();

    /** Returns a freshly created segment, typed at the {@code S} type. */
    S newSegment(MapMakerInternalMap<K, V, E, S> map, int initialCapacity, int maxSegmentSize);

    /**
     * Returns a freshly created entry, typed at the {@code E} type, for the given {@code segment}.
     */
    E newEntry(S segment, K key, int hash, @NullableDecl E next);

    /**
     * Returns a freshly created entry, typed at the {@code E} type, for the given {@code segment},
     * that is a copy of the given {@code entry}.
     */
    E copy(S segment, E entry, @NullableDecl E newNext);

    /**
     * Sets the value of the given {@code entry} in the given {@code segment} to be the given {@code
     * value}
     */
    void setValue(S segment, E entry, V value);
  }

  /**
   * An entry in a hash table of a {@link Segment}.
   *
   * <p>Entries in the map can be in the following states:
   *
   * <p>Valid: - Live: valid key/value are set
   *
   * <p>Invalid: - Collected: key/value was partially collected, but not yet cleaned up
   */
  interface InternalEntry<K, V, E extends InternalEntry<K, V, E>> {
    /** Gets the next entry in the chain. */
    E getNext();

    /** Gets the entry's hash. */
    int getHash();

    /** Gets the key for this entry. */
    K getKey();

    /** Gets the value for the entry. */
    V getValue();
  }

  /*
   * Note: the following classes have a lot of duplicate code. It sucks, but it saves a lot of
   * memory. If only Java had mixins!
   */

  /** Base class for {@link InternalEntry} implementations for strong keys. */
  abstract static class AbstractStrongKeyEntry<K, V, E extends InternalEntry<K, V, E>>
      implements InternalEntry<K, V, E> {
    final K key;
    final int hash;
    @NullableDecl final E next;

    AbstractStrongKeyEntry(K key, int hash, @NullableDecl E next) {
      this.key = key;
      this.hash = hash;
      this.next = next;
    }

    @Override
    public K getKey() {
      return this.key;
    }

    @Override
    public int getHash() {
      return hash;
    }

    @Override
    public E getNext() {
      return next;
    }
  }

  /** Marker interface for {@link InternalEntry} implementations for strong values. */
  interface StrongValueEntry<K, V, E extends InternalEntry<K, V, E>>
      extends InternalEntry<K, V, E> {}

  /** Marker interface for {@link InternalEntry} implementations for weak values. */
  interface WeakValueEntry<K, V, E extends InternalEntry<K, V, E>> extends InternalEntry<K, V, E> {
    /** Gets the weak value reference held by entry. */
    WeakValueReference<K, V, E> getValueReference();

    /**
     * Clears the weak value reference held by the entry. Should be used when the entry's value is
     * overwritten.
     */
    void clearValue();
  }

  @SuppressWarnings("unchecked") // impl never uses a parameter or returns any non-null value
  static <K, V, E extends InternalEntry<K, V, E>>
      WeakValueReference<K, V, E> unsetWeakValueReference() {
    return (WeakValueReference<K, V, E>) UNSET_WEAK_VALUE_REFERENCE;
  }

  /** Concrete implementation of {@link InternalEntry} for strong keys and strong values. */
  static final class StrongKeyStrongValueEntry<K, V>
      extends AbstractStrongKeyEntry<K, V, StrongKeyStrongValueEntry<K, V>>
      implements StrongValueEntry<K, V, StrongKeyStrongValueEntry<K, V>> {
    @NullableDecl private volatile V value = null;

    StrongKeyStrongValueEntry(K key, int hash, @NullableDecl StrongKeyStrongValueEntry<K, V> next) {
      super(key, hash, next);
    }

    @Override
    @NullableDecl
    public V getValue() {
      return value;
    }

    void setValue(V value) {
      this.value = value;
    }

    StrongKeyStrongValueEntry<K, V> copy(StrongKeyStrongValueEntry<K, V> newNext) {
      StrongKeyStrongValueEntry<K, V> newEntry =
          new StrongKeyStrongValueEntry<>(this.key, this.hash, newNext);
      newEntry.value = this.value;
      return newEntry;
    }

    /** Concrete implementation of {@link InternalEntryHelper} for strong keys and strong values. */
    static final class Helper<K, V>
        implements InternalEntryHelper<
            K, V, StrongKeyStrongValueEntry<K, V>, StrongKeyStrongValueSegment<K, V>> {
      private static final Helper<?, ?> INSTANCE = new Helper<>();

      @SuppressWarnings("unchecked")
      static <K, V> Helper<K, V> instance() {
        return (Helper<K, V>) INSTANCE;
      }

      @Override
      public Strength keyStrength() {
        return Strength.STRONG;
      }

      @Override
      public Strength valueStrength() {
        return Strength.STRONG;
      }

      @Override
      public StrongKeyStrongValueSegment<K, V> newSegment(
          MapMakerInternalMap<
                  K, V, StrongKeyStrongValueEntry<K, V>, StrongKeyStrongValueSegment<K, V>>
              map,
          int initialCapacity,
          int maxSegmentSize) {
        return new StrongKeyStrongValueSegment<>(map, initialCapacity, maxSegmentSize);
      }

      @Override
      public StrongKeyStrongValueEntry<K, V> copy(
          StrongKeyStrongValueSegment<K, V> segment,
          StrongKeyStrongValueEntry<K, V> entry,
          @NullableDecl StrongKeyStrongValueEntry<K, V> newNext) {
        return entry.copy(newNext);
      }

      @Override
      public void setValue(
          StrongKeyStrongValueSegment<K, V> segment,
          StrongKeyStrongValueEntry<K, V> entry,
          V value) {
        entry.setValue(value);
      }

      @Override
      public StrongKeyStrongValueEntry<K, V> newEntry(
          StrongKeyStrongValueSegment<K, V> segment,
          K key,
          int hash,
          @NullableDecl StrongKeyStrongValueEntry<K, V> next) {
        return new StrongKeyStrongValueEntry<>(key, hash, next);
      }
    }
  }

  /** Concrete implementation of {@link InternalEntry} for strong keys and weak values. */
  static final class StrongKeyWeakValueEntry<K, V>
      extends AbstractStrongKeyEntry<K, V, StrongKeyWeakValueEntry<K, V>>
      implements WeakValueEntry<K, V, StrongKeyWeakValueEntry<K, V>> {
    private volatile WeakValueReference<K, V, StrongKeyWeakValueEntry<K, V>> valueReference =
        unsetWeakValueReference();

    StrongKeyWeakValueEntry(K key, int hash, @NullableDecl StrongKeyWeakValueEntry<K, V> next) {
      super(key, hash, next);
    }

    @Override
    public V getValue() {
      return valueReference.get();
    }

    @Override
    public void clearValue() {
      valueReference.clear();
    }

    void setValue(V value, ReferenceQueue<V> queueForValues) {
      WeakValueReference<K, V, StrongKeyWeakValueEntry<K, V>> previous = this.valueReference;
      this.valueReference = new WeakValueReferenceImpl<>(queueForValues, value, this);
      previous.clear();
    }

    StrongKeyWeakValueEntry<K, V> copy(
        ReferenceQueue<V> queueForValues, StrongKeyWeakValueEntry<K, V> newNext) {
      StrongKeyWeakValueEntry<K, V> newEntry = new StrongKeyWeakValueEntry<>(key, hash, newNext);
      newEntry.valueReference = valueReference.copyFor(queueForValues, newEntry);
      return newEntry;
    }

    @Override
    public WeakValueReference<K, V, StrongKeyWeakValueEntry<K, V>> getValueReference() {
      return valueReference;
    }

    /** Concrete implementation of {@link InternalEntryHelper} for strong keys and weak values. */
    static final class Helper<K, V>
        implements InternalEntryHelper<
            K, V, StrongKeyWeakValueEntry<K, V>, StrongKeyWeakValueSegment<K, V>> {
      private static final Helper<?, ?> INSTANCE = new Helper<>();

      @SuppressWarnings("unchecked")
      static <K, V> Helper<K, V> instance() {
        return (Helper<K, V>) INSTANCE;
      }

      @Override
      public Strength keyStrength() {
        return Strength.STRONG;
      }

      @Override
      public Strength valueStrength() {
        return Strength.WEAK;
      }

      @Override
      public StrongKeyWeakValueSegment<K, V> newSegment(
          MapMakerInternalMap<K, V, StrongKeyWeakValueEntry<K, V>, StrongKeyWeakValueSegment<K, V>>
              map,
          int initialCapacity,
          int maxSegmentSize) {
        return new StrongKeyWeakValueSegment<>(map, initialCapacity, maxSegmentSize);
      }

      @Override
      public StrongKeyWeakValueEntry<K, V> copy(
          StrongKeyWeakValueSegment<K, V> segment,
          StrongKeyWeakValueEntry<K, V> entry,
          @NullableDecl StrongKeyWeakValueEntry<K, V> newNext) {
        if (Segment.isCollected(entry)) {
          return null;
        }
        return entry.copy(segment.queueForValues, newNext);
      }

      @Override
      public void setValue(
          StrongKeyWeakValueSegment<K, V> segment, StrongKeyWeakValueEntry<K, V> entry, V value) {
        entry.setValue(value, segment.queueForValues);
      }

      @Override
      public StrongKeyWeakValueEntry<K, V> newEntry(
          StrongKeyWeakValueSegment<K, V> segment,
          K key,
          int hash,
          @NullableDecl StrongKeyWeakValueEntry<K, V> next) {
        return new StrongKeyWeakValueEntry<>(key, hash, next);
      }
    }
  }

  /** Concrete implementation of {@link InternalEntry} for strong keys and {@link Dummy} values. */
  static final class StrongKeyDummyValueEntry<K>
      extends AbstractStrongKeyEntry<K, Dummy, StrongKeyDummyValueEntry<K>>
      implements StrongValueEntry<K, Dummy, StrongKeyDummyValueEntry<K>> {
    StrongKeyDummyValueEntry(K key, int hash, @NullableDecl StrongKeyDummyValueEntry<K> next) {
      super(key, hash, next);
    }

    @Override
    public Dummy getValue() {
      return Dummy.VALUE;
    }

    void setValue(Dummy value) {}

    StrongKeyDummyValueEntry<K> copy(StrongKeyDummyValueEntry<K> newNext) {
      return new StrongKeyDummyValueEntry<K>(this.key, this.hash, newNext);
    }

    /**
     * Concrete implementation of {@link InternalEntryHelper} for strong keys and {@link Dummy}
     * values.
     */
    static final class Helper<K>
        implements InternalEntryHelper<
            K, Dummy, StrongKeyDummyValueEntry<K>, StrongKeyDummyValueSegment<K>> {
      private static final Helper<?> INSTANCE = new Helper<>();

      @SuppressWarnings("unchecked")
      static <K> Helper<K> instance() {
        return (Helper<K>) INSTANCE;
      }

      @Override
      public Strength keyStrength() {
        return Strength.STRONG;
      }

      @Override
      public Strength valueStrength() {
        return Strength.STRONG;
      }

      @Override
      public StrongKeyDummyValueSegment<K> newSegment(
          MapMakerInternalMap<K, Dummy, StrongKeyDummyValueEntry<K>, StrongKeyDummyValueSegment<K>>
              map,
          int initialCapacity,
          int maxSegmentSize) {
        return new StrongKeyDummyValueSegment<K>(map, initialCapacity, maxSegmentSize);
      }

      @Override
      public StrongKeyDummyValueEntry<K> copy(
          StrongKeyDummyValueSegment<K> segment,
          StrongKeyDummyValueEntry<K> entry,
          @NullableDecl StrongKeyDummyValueEntry<K> newNext) {
        return entry.copy(newNext);
      }

      @Override
      public void setValue(
          StrongKeyDummyValueSegment<K> segment, StrongKeyDummyValueEntry<K> entry, Dummy value) {}

      @Override
      public StrongKeyDummyValueEntry<K> newEntry(
          StrongKeyDummyValueSegment<K> segment,
          K key,
          int hash,
          @NullableDecl StrongKeyDummyValueEntry<K> next) {
        return new StrongKeyDummyValueEntry<K>(key, hash, next);
      }
    }
  }

  /** Base class for {@link InternalEntry} implementations for weak keys. */
  abstract static class AbstractWeakKeyEntry<K, V, E extends InternalEntry<K, V, E>>
      extends WeakReference<K> implements InternalEntry<K, V, E> {
    final int hash;
    @NullableDecl final E next;

    AbstractWeakKeyEntry(ReferenceQueue<K> queue, K key, int hash, @NullableDecl E next) {
      super(key, queue);
      this.hash = hash;
      this.next = next;
    }

    @Override
    public K getKey() {
      return get();
    }

    @Override
    public int getHash() {
      return hash;
    }

    @Override
    public E getNext() {
      return next;
    }
  }

  /** Concrete implementation of {@link InternalEntry} for weak keys and {@link Dummy} values. */
  static final class WeakKeyDummyValueEntry<K>
      extends AbstractWeakKeyEntry<K, Dummy, WeakKeyDummyValueEntry<K>>
      implements StrongValueEntry<K, Dummy, WeakKeyDummyValueEntry<K>> {
    WeakKeyDummyValueEntry(
        ReferenceQueue<K> queue, K key, int hash, @NullableDecl WeakKeyDummyValueEntry<K> next) {
      super(queue, key, hash, next);
    }

    @Override
    public Dummy getValue() {
      return Dummy.VALUE;
    }

    void setValue(Dummy value) {}

    WeakKeyDummyValueEntry<K> copy(
        ReferenceQueue<K> queueForKeys, WeakKeyDummyValueEntry<K> newNext) {
      return new WeakKeyDummyValueEntry<K>(queueForKeys, getKey(), this.hash, newNext);
    }

    /**
     * Concrete implementation of {@link InternalEntryHelper} for weak keys and {@link Dummy}
     * values.
     */
    static final class Helper<K>
        implements InternalEntryHelper<
            K, Dummy, WeakKeyDummyValueEntry<K>, WeakKeyDummyValueSegment<K>> {
      private static final Helper<?> INSTANCE = new Helper<>();

      @SuppressWarnings("unchecked")
      static <K> Helper<K> instance() {
        return (Helper<K>) INSTANCE;
      }

      @Override
      public Strength keyStrength() {
        return Strength.WEAK;
      }

      @Override
      public Strength valueStrength() {
        return Strength.STRONG;
      }

      @Override
      public WeakKeyDummyValueSegment<K> newSegment(
          MapMakerInternalMap<K, Dummy, WeakKeyDummyValueEntry<K>, WeakKeyDummyValueSegment<K>> map,
          int initialCapacity,
          int maxSegmentSize) {
        return new WeakKeyDummyValueSegment<K>(map, initialCapacity, maxSegmentSize);
      }

      @Override
      public WeakKeyDummyValueEntry<K> copy(
          WeakKeyDummyValueSegment<K> segment,
          WeakKeyDummyValueEntry<K> entry,
          @NullableDecl WeakKeyDummyValueEntry<K> newNext) {
        if (entry.getKey() == null) {
          // key collected
          return null;
        }
        return entry.copy(segment.queueForKeys, newNext);
      }

      @Override
      public void setValue(
          WeakKeyDummyValueSegment<K> segment, WeakKeyDummyValueEntry<K> entry, Dummy value) {}

      @Override
      public WeakKeyDummyValueEntry<K> newEntry(
          WeakKeyDummyValueSegment<K> segment,
          K key,
          int hash,
          @NullableDecl WeakKeyDummyValueEntry<K> next) {
        return new WeakKeyDummyValueEntry<K>(segment.queueForKeys, key, hash, next);
      }
    }
  }

  /** Concrete implementation of {@link InternalEntry} for weak keys and strong values. */
  static final class WeakKeyStrongValueEntry<K, V>
      extends AbstractWeakKeyEntry<K, V, WeakKeyStrongValueEntry<K, V>>
      implements StrongValueEntry<K, V, WeakKeyStrongValueEntry<K, V>> {
    @NullableDecl private volatile V value = null;

    WeakKeyStrongValueEntry(
        ReferenceQueue<K> queue,
        K key,
        int hash,
        @NullableDecl WeakKeyStrongValueEntry<K, V> next) {
      super(queue, key, hash, next);
    }

    @Override
    @NullableDecl
    public V getValue() {
      return value;
    }

    void setValue(V value) {
      this.value = value;
    }

    WeakKeyStrongValueEntry<K, V> copy(
        ReferenceQueue<K> queueForKeys, WeakKeyStrongValueEntry<K, V> newNext) {
      WeakKeyStrongValueEntry<K, V> newEntry =
          new WeakKeyStrongValueEntry<>(queueForKeys, getKey(), this.hash, newNext);
      newEntry.setValue(value);
      return newEntry;
    }

    /** Concrete implementation of {@link InternalEntryHelper} for weak keys and strong values. */
    static final class Helper<K, V>
        implements InternalEntryHelper<
            K, V, WeakKeyStrongValueEntry<K, V>, WeakKeyStrongValueSegment<K, V>> {
      private static final Helper<?, ?> INSTANCE = new Helper<>();

      @SuppressWarnings("unchecked")
      static <K, V> Helper<K, V> instance() {
        return (Helper<K, V>) INSTANCE;
      }

      @Override
      public Strength keyStrength() {
        return Strength.WEAK;
      }

      @Override
      public Strength valueStrength() {
        return Strength.STRONG;
      }

      @Override
      public WeakKeyStrongValueSegment<K, V> newSegment(
          MapMakerInternalMap<K, V, WeakKeyStrongValueEntry<K, V>, WeakKeyStrongValueSegment<K, V>>
              map,
          int initialCapacity,
          int maxSegmentSize) {
        return new WeakKeyStrongValueSegment<>(map, initialCapacity, maxSegmentSize);
      }

      @Override
      public WeakKeyStrongValueEntry<K, V> copy(
          WeakKeyStrongValueSegment<K, V> segment,
          WeakKeyStrongValueEntry<K, V> entry,
          @NullableDecl WeakKeyStrongValueEntry<K, V> newNext) {
        if (entry.getKey() == null) {
          // key collected
          return null;
        }
        return entry.copy(segment.queueForKeys, newNext);
      }

      @Override
      public void setValue(
          WeakKeyStrongValueSegment<K, V> segment, WeakKeyStrongValueEntry<K, V> entry, V value) {
        entry.setValue(value);
      }

      @Override
      public WeakKeyStrongValueEntry<K, V> newEntry(
          WeakKeyStrongValueSegment<K, V> segment,
          K key,
          int hash,
          @NullableDecl WeakKeyStrongValueEntry<K, V> next) {
        return new WeakKeyStrongValueEntry<>(segment.queueForKeys, key, hash, next);
      }
    }
  }

  /** Concrete implementation of {@link InternalEntry} for weak keys and weak values. */
  static final class WeakKeyWeakValueEntry<K, V>
      extends AbstractWeakKeyEntry<K, V, WeakKeyWeakValueEntry<K, V>>
      implements WeakValueEntry<K, V, WeakKeyWeakValueEntry<K, V>> {
    private volatile WeakValueReference<K, V, WeakKeyWeakValueEntry<K, V>> valueReference =
        unsetWeakValueReference();

    WeakKeyWeakValueEntry(
        ReferenceQueue<K> queue, K key, int hash, @NullableDecl WeakKeyWeakValueEntry<K, V> next) {
      super(queue, key, hash, next);
    }

    @Override
    public V getValue() {
      return valueReference.get();
    }

    WeakKeyWeakValueEntry<K, V> copy(
        ReferenceQueue<K> queueForKeys,
        ReferenceQueue<V> queueForValues,
        WeakKeyWeakValueEntry<K, V> newNext) {
      WeakKeyWeakValueEntry<K, V> newEntry =
          new WeakKeyWeakValueEntry<>(queueForKeys, getKey(), this.hash, newNext);
      newEntry.valueReference = valueReference.copyFor(queueForValues, newEntry);
      return newEntry;
    }

    @Override
    public void clearValue() {
      valueReference.clear();
    }

    void setValue(V value, ReferenceQueue<V> queueForValues) {
      WeakValueReference<K, V, WeakKeyWeakValueEntry<K, V>> previous = this.valueReference;
      this.valueReference = new WeakValueReferenceImpl<>(queueForValues, value, this);
      previous.clear();
    }

    @Override
    public WeakValueReference<K, V, WeakKeyWeakValueEntry<K, V>> getValueReference() {
      return valueReference;
    }

    /** Concrete implementation of {@link InternalEntryHelper} for weak keys and weak values. */
    static final class Helper<K, V>
        implements InternalEntryHelper<
            K, V, WeakKeyWeakValueEntry<K, V>, WeakKeyWeakValueSegment<K, V>> {
      private static final Helper<?, ?> INSTANCE = new Helper<>();

      @SuppressWarnings("unchecked")
      static <K, V> Helper<K, V> instance() {
        return (Helper<K, V>) INSTANCE;
      }

      @Override
      public Strength keyStrength() {
        return Strength.WEAK;
      }

      @Override
      public Strength valueStrength() {
        return Strength.WEAK;
      }

      @Override
      public WeakKeyWeakValueSegment<K, V> newSegment(
          MapMakerInternalMap<K, V, WeakKeyWeakValueEntry<K, V>, WeakKeyWeakValueSegment<K, V>> map,
          int initialCapacity,
          int maxSegmentSize) {
        return new WeakKeyWeakValueSegment<>(map, initialCapacity, maxSegmentSize);
      }

      @Override
      public WeakKeyWeakValueEntry<K, V> copy(
          WeakKeyWeakValueSegment<K, V> segment,
          WeakKeyWeakValueEntry<K, V> entry,
          @NullableDecl WeakKeyWeakValueEntry<K, V> newNext) {
        if (entry.getKey() == null) {
          // key collected
          return null;
        }
        if (Segment.isCollected(entry)) {
          return null;
        }
        return entry.copy(segment.queueForKeys, segment.queueForValues, newNext);
      }

      @Override
      public void setValue(
          WeakKeyWeakValueSegment<K, V> segment, WeakKeyWeakValueEntry<K, V> entry, V value) {
        entry.setValue(value, segment.queueForValues);
      }

      @Override
      public WeakKeyWeakValueEntry<K, V> newEntry(
          WeakKeyWeakValueSegment<K, V> segment,
          K key,
          int hash,
          @NullableDecl WeakKeyWeakValueEntry<K, V> next) {
        return new WeakKeyWeakValueEntry<>(segment.queueForKeys, key, hash, next);
      }
    }
  }

  /** A weakly referenced value that also has a reference to its containing entry. */
  interface WeakValueReference<K, V, E extends InternalEntry<K, V, E>> {
    /**
     * Returns the current value being referenced, or {@code null} if there is none (e.g. because
     * either it got collected, or {@link #clear} was called, or it wasn't set in the first place).
     */
    @NullableDecl
    V get();

    /** Returns the entry which contains this {@link WeakValueReference}. */
    E getEntry();

    /** Unsets the referenced value. Subsequent calls to {@link #get} will return {@code null}. */
    void clear();

    /**
     * Returns a freshly created {@link WeakValueReference} for the given {@code entry} (and on the
     * given {@code queue} with the same value as this {@link WeakValueReference}.
     */
    WeakValueReference<K, V, E> copyFor(ReferenceQueue<V> queue, E entry);
  }

  /**
   * A dummy implementation of {@link InternalEntry}, solely for use in the type signature of {@link
   * #UNSET_WEAK_VALUE_REFERENCE} below.
   */
  static final class DummyInternalEntry
      implements InternalEntry<Object, Object, DummyInternalEntry> {
    private DummyInternalEntry() {
      throw new AssertionError();
    }

    @Override
    public DummyInternalEntry getNext() {
      throw new AssertionError();
    }

    @Override
    public int getHash() {
      throw new AssertionError();
    }

    @Override
    public Object getKey() {
      throw new AssertionError();
    }

    @Override
    public Object getValue() {
      throw new AssertionError();
    }
  }

  /**
   * A singleton {@link WeakValueReference} used to denote an unset value in a entry with weak
   * values.
   */
  static final WeakValueReference<Object, Object, DummyInternalEntry> UNSET_WEAK_VALUE_REFERENCE =
      new WeakValueReference<Object, Object, DummyInternalEntry>() {
        @Override
        public DummyInternalEntry getEntry() {
          return null;
        }

        @Override
        public void clear() {}

        @Override
        public Object get() {
          return null;
        }

        @Override
        public WeakValueReference<Object, Object, DummyInternalEntry> copyFor(
            ReferenceQueue<Object> queue, DummyInternalEntry entry) {
          return this;
        }
      };

  /** Concrete implementation of {@link WeakValueReference}. */
  static final class WeakValueReferenceImpl<K, V, E extends InternalEntry<K, V, E>>
      extends WeakReference<V> implements WeakValueReference<K, V, E> {
    @Weak final E entry;

    WeakValueReferenceImpl(ReferenceQueue<V> queue, V referent, E entry) {
      super(referent, queue);
      this.entry = entry;
    }

    @Override
    public E getEntry() {
      return entry;
    }

    @Override
    public WeakValueReference<K, V, E> copyFor(ReferenceQueue<V> queue, E entry) {
      return new WeakValueReferenceImpl<>(queue, get(), entry);
    }
  }

  /**
   * Applies a supplemental hash function to a given hash code, which defends against poor quality
   * hash functions. This is critical when the concurrent hash map uses power-of-two length hash
   * tables, that otherwise encounter collisions for hash codes that do not differ in lower or upper
   * bits.
   *
   * @param h hash code
   */
  static int rehash(int h) {
    // Spread bits to regularize both segment and index locations,
    // using variant of single-word Wang/Jenkins hash.
    // TODO(kevinb): use Hashing/move this to Hashing?
    h += (h << 15) ^ 0xffffcd7d;
    h ^= (h >>> 10);
    h += (h << 3);
    h ^= (h >>> 6);
    h += (h << 2) + (h << 14);
    return h ^ (h >>> 16);
  }

  /**
   * This method is a convenience for testing. Code should call {@link Segment#copyEntry} directly.
   */
  // Guarded By Segment.this
  @VisibleForTesting
  E copyEntry(E original, E newNext) {
    int hash = original.getHash();
    return segmentFor(hash).copyEntry(original, newNext);
  }

  int hash(Object key) {
    int h = keyEquivalence.hash(key);
    return rehash(h);
  }

  void reclaimValue(WeakValueReference<K, V, E> valueReference) {
    E entry = valueReference.getEntry();
    int hash = entry.getHash();
    segmentFor(hash).reclaimValue(entry.getKey(), hash, valueReference);
  }

  void reclaimKey(E entry) {
    int hash = entry.getHash();
    segmentFor(hash).reclaimKey(entry, hash);
  }

  /**
   * This method is a convenience for testing. Code should call {@link Segment#getLiveValue}
   * instead.
   */
  @VisibleForTesting
  boolean isLiveForTesting(InternalEntry<K, V, ?> entry) {
    return segmentFor(entry.getHash()).getLiveValueForTesting(entry) != null;
  }

  /**
   * Returns the segment that should be used for a key with the given hash.
   *
   * @param hash the hash code for the key
   * @return the segment
   */
  Segment<K, V, E, S> segmentFor(int hash) {
    // TODO(fry): Lazily create segments?
    return segments[(hash >>> segmentShift) & segmentMask];
  }

  Segment<K, V, E, S> createSegment(int initialCapacity, int maxSegmentSize) {
    return entryHelper.newSegment(this, initialCapacity, maxSegmentSize);
  }

  /**
   * Gets the value from an entry. Returns {@code null} if the entry is invalid, partially-collected
   * or computing.
   */
  V getLiveValue(E entry) {
    if (entry.getKey() == null) {
      return null;
    }
    V value = entry.getValue();
    if (value == null) {
      return null;
    }
    return value;
  }

  @SuppressWarnings("unchecked")
  final Segment<K, V, E, S>[] newSegmentArray(int ssize) {
    return new Segment[ssize];
  }

  // Inner Classes

  /**
   * Segments are specialized versions of hash tables. This subclass inherits from ReentrantLock
   * opportunistically, just to simplify some locking and avoid separate construction.
   */
  @SuppressWarnings("serial") // This class is never serialized.
  abstract static class Segment<
          K, V, E extends InternalEntry<K, V, E>, S extends Segment<K, V, E, S>>
      extends ReentrantLock {

    /*
     * Segments maintain a table of entry lists that are ALWAYS kept in a consistent state, so can
     * be read without locking. Next fields of nodes are immutable (final). All list additions are
     * performed at the front of each bin. This makes it easy to check changes, and also fast to
     * traverse. When nodes would otherwise be changed, new nodes are created to replace them. This
     * works well for hash tables since the bin lists tend to be short. (The average length is less
     * than two.)
     *
     * Read operations can thus proceed without locking, but rely on selected uses of volatiles to
     * ensure that completed write operations performed by other threads are noticed. For most
     * purposes, the "count" field, tracking the number of elements, serves as that volatile
     * variable ensuring visibility. This is convenient because this field needs to be read in many
     * read operations anyway:
     *
     * - All (unsynchronized) read operations must first read the "count" field, and should not
     * look at table entries if it is 0.
     *
     * - All (synchronized) write operations should write to the "count" field after structurally
     * changing any bin. The operations must not take any action that could even momentarily
     * cause a concurrent read operation to see inconsistent data. This is made easier by the
     * nature of the read operations in Map. For example, no operation can reveal that the table
     * has grown but the threshold has not yet been updated, so there are no atomicity requirements
     * for this with respect to reads.
     *
     * As a guide, all critical volatile reads and writes to the count field are marked in code
     * comments.
     */

    @Weak final MapMakerInternalMap<K, V, E, S> map;

    /**
     * The number of live elements in this segment's region. This does not include unset elements
     * which are awaiting cleanup.
     */
    volatile int count;

    /**
     * Number of updates that alter the size of the table. This is used during bulk-read methods to
     * make sure they see a consistent snapshot: If modCounts change during a traversal of segments
     * computing size or checking containsValue, then we might have an inconsistent view of state so
     * (usually) must retry.
     */
    int modCount;

    /**
     * The table is expanded when its size exceeds this threshold. (The value of this field is
     * always {@code (int) (capacity * 0.75)}.)
     */
    int threshold;

    /** The per-segment table. */
    @MonotonicNonNullDecl volatile AtomicReferenceArray<E> table;

    /** The maximum size of this map. MapMaker.UNSET_INT if there is no maximum. */
    final int maxSegmentSize;

    /**
     * A counter of the number of reads since the last write, used to drain queues on a small
     * fraction of read operations.
     */
    final AtomicInteger readCount = new AtomicInteger();

    Segment(MapMakerInternalMap<K, V, E, S> map, int initialCapacity, int maxSegmentSize) {
      this.map = map;
      this.maxSegmentSize = maxSegmentSize;
      initTable(newEntryArray(initialCapacity));
    }

    /**
     * Returns {@code this} up-casted to the specific {@link Segment} implementation type {@code S}.
     *
     * <p>This method exists so that the {@link Segment} code can be generic in terms of {@code S},
     * the type of the concrete implementation.
     */
    abstract S self();

    /** Drains the reference queues used by this segment, if any. */
    @GuardedBy("this")
    void maybeDrainReferenceQueues() {}

    /** Clears the reference queues used by this segment, if any. */
    void maybeClearReferenceQueues() {}

    /** Sets the value of the given {@code entry}. */
    void setValue(E entry, V value) {
      this.map.entryHelper.setValue(self(), entry, value);
    }

    /** Returns a copy of the given {@code entry}. */
    E copyEntry(E original, E newNext) {
      return this.map.entryHelper.copy(self(), original, newNext);
    }

    AtomicReferenceArray<E> newEntryArray(int size) {
      return new AtomicReferenceArray<E>(size);
    }

    void initTable(AtomicReferenceArray<E> newTable) {
      this.threshold = newTable.length() * 3 / 4; // 0.75
      if (this.threshold == maxSegmentSize) {
        // prevent spurious expansion before eviction
        this.threshold++;
      }
      this.table = newTable;
    }

    // Convenience methods for testing

    /**
     * Unsafe cast of the given entry to {@code E}, the type of the specific {@link InternalEntry}
     * implementation type.
     *
     * <p>This method is provided as a convenience for tests. Otherwise they'd need to be
     * knowledgable about all the implementation details of our type system trickery.
     */
    abstract E castForTesting(InternalEntry<K, V, ?> entry);

    /** Unsafely extracts the key reference queue used by this segment. */
    ReferenceQueue<K> getKeyReferenceQueueForTesting() {
      throw new AssertionError();
    }

    /** Unsafely extracts the value reference queue used by this segment. */
    ReferenceQueue<V> getValueReferenceQueueForTesting() {
      throw new AssertionError();
    }

    /** Unsafely extracts the weak value reference inside of the given {@code entry}. */
    WeakValueReference<K, V, E> getWeakValueReferenceForTesting(InternalEntry<K, V, ?> entry) {
      throw new AssertionError();
    }

    /**
     * Unsafely creates of a fresh {@link WeakValueReference}, referencing the given {@code value},
     * for the given {@code entry}
     */
    WeakValueReference<K, V, E> newWeakValueReferenceForTesting(
        InternalEntry<K, V, ?> entry, V value) {
      throw new AssertionError();
    }

    /**
     * Unsafely sets the weak value reference inside the given {@code entry} to be the given {@code
     * valueReference}
     */
    void setWeakValueReferenceForTesting(
        InternalEntry<K, V, ?> entry,
        WeakValueReference<K, V, ? extends InternalEntry<K, V, ?>> valueReference) {
      throw new AssertionError();
    }

    /**
     * Unsafely sets the given index of this segment's internal hash table to be the given entry.
     */
    void setTableEntryForTesting(int i, InternalEntry<K, V, ?> entry) {
      table.set(i, castForTesting(entry));
    }

    /** Unsafely returns a copy of the given entry. */
    E copyForTesting(InternalEntry<K, V, ?> entry, @NullableDecl InternalEntry<K, V, ?> newNext) {
      return this.map.entryHelper.copy(self(), castForTesting(entry), castForTesting(newNext));
    }

    /** Unsafely sets the value of the given entry. */
    void setValueForTesting(InternalEntry<K, V, ?> entry, V value) {
      this.map.entryHelper.setValue(self(), castForTesting(entry), value);
    }

    /** Unsafely returns a fresh entry. */
    E newEntryForTesting(K key, int hash, @NullableDecl InternalEntry<K, V, ?> next) {
      return this.map.entryHelper.newEntry(self(), key, hash, castForTesting(next));
    }

    /** Unsafely removes the given entry from this segment's hash table. */
    @CanIgnoreReturnValue
    boolean removeTableEntryForTesting(InternalEntry<K, V, ?> entry) {
      return removeEntryForTesting(castForTesting(entry));
    }

    /** Unsafely removes the given entry from the given chain in this segment's hash table. */
    E removeFromChainForTesting(InternalEntry<K, V, ?> first, InternalEntry<K, V, ?> entry) {
      return removeFromChain(castForTesting(first), castForTesting(entry));
    }

    /**
     * Unsafely returns the value of the given entry if it's still live, or {@code null} otherwise.
     */
    @NullableDecl
    V getLiveValueForTesting(InternalEntry<K, V, ?> entry) {
      return getLiveValue(castForTesting(entry));
    }

    // reference queues, for garbage collection cleanup

    /** Cleanup collected entries when the lock is available. */
    void tryDrainReferenceQueues() {
      if (tryLock()) {
        try {
          maybeDrainReferenceQueues();
        } finally {
          unlock();
        }
      }
    }

    @GuardedBy("this")
    void drainKeyReferenceQueue(ReferenceQueue<K> keyReferenceQueue) {
      Reference<? extends K> ref;
      int i = 0;
      while ((ref = keyReferenceQueue.poll()) != null) {
        @SuppressWarnings("unchecked")
        E entry = (E) ref;
        map.reclaimKey(entry);
        if (++i == DRAIN_MAX) {
          break;
        }
      }
    }

    @GuardedBy("this")
    void drainValueReferenceQueue(ReferenceQueue<V> valueReferenceQueue) {
      Reference<? extends V> ref;
      int i = 0;
      while ((ref = valueReferenceQueue.poll()) != null) {
        @SuppressWarnings("unchecked")
        WeakValueReference<K, V, E> valueReference = (WeakValueReference<K, V, E>) ref;
        map.reclaimValue(valueReference);
        if (++i == DRAIN_MAX) {
          break;
        }
      }
    }

    <T> void clearReferenceQueue(ReferenceQueue<T> referenceQueue) {
      while (referenceQueue.poll() != null) {}
    }

    /** Returns first entry of bin for given hash. */
    E getFirst(int hash) {
      // read this volatile field only once
      AtomicReferenceArray<E> table = this.table;
      return table.get(hash & (table.length() - 1));
    }

    // Specialized implementations of map methods

    E getEntry(Object key, int hash) {
      if (count != 0) { // read-volatile
        for (E e = getFirst(hash); e != null; e = e.getNext()) {
          if (e.getHash() != hash) {
            continue;
          }

          K entryKey = e.getKey();
          if (entryKey == null) {
            tryDrainReferenceQueues();
            continue;
          }

          if (map.keyEquivalence.equivalent(key, entryKey)) {
            return e;
          }
        }
      }

      return null;
    }

    E getLiveEntry(Object key, int hash) {
      return getEntry(key, hash);
    }

    V get(Object key, int hash) {
      try {
        E e = getLiveEntry(key, hash);
        if (e == null) {
          return null;
        }

        V value = e.getValue();
        if (value == null) {
          tryDrainReferenceQueues();
        }
        return value;
      } finally {
        postReadCleanup();
      }
    }

    boolean containsKey(Object key, int hash) {
      try {
        if (count != 0) { // read-volatile
          E e = getLiveEntry(key, hash);
          return e != null && e.getValue() != null;
        }

        return false;
      } finally {
        postReadCleanup();
      }
    }

    /**
     * This method is a convenience for testing. Code should call {@link
     * MapMakerInternalMap#containsValue} directly.
     */
    @VisibleForTesting
    boolean containsValue(Object value) {
      try {
        if (count != 0) { // read-volatile
          AtomicReferenceArray<E> table = this.table;
          int length = table.length();
          for (int i = 0; i < length; ++i) {
            for (E e = table.get(i); e != null; e = e.getNext()) {
              V entryValue = getLiveValue(e);
              if (entryValue == null) {
                continue;
              }
              if (map.valueEquivalence().equivalent(value, entryValue)) {
                return true;
              }
            }
          }
        }

        return false;
      } finally {
        postReadCleanup();
      }
    }

    V put(K key, int hash, V value, boolean onlyIfAbsent) {
      lock();
      try {
        preWriteCleanup();

        int newCount = this.count + 1;
        if (newCount > this.threshold) { // ensure capacity
          expand();
          newCount = this.count + 1;
        }

        AtomicReferenceArray<E> table = this.table;
        int index = hash & (table.length() - 1);
        E first = table.get(index);

        // Look for an existing entry.
        for (E e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash
              && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            // We found an existing entry.

            V entryValue = e.getValue();

            if (entryValue == null) {
              ++modCount;
              setValue(e, value);
              newCount = this.count; // count remains unchanged
              this.count = newCount; // write-volatile
              return null;
            } else if (onlyIfAbsent) {
              // Mimic
              // "if (!map.containsKey(key)) ...
              // else return map.get(key);
              return entryValue;
            } else {
              // clobber existing entry, count remains unchanged
              ++modCount;
              setValue(e, value);
              return entryValue;
            }
          }
        }

        // Create a new entry.
        ++modCount;
        E newEntry = map.entryHelper.newEntry(self(), key, hash, first);
        setValue(newEntry, value);
        table.set(index, newEntry);
        this.count = newCount; // write-volatile
        return null;
      } finally {
        unlock();
      }
    }

    /** Expands the table if possible. */
    @GuardedBy("this")
    void expand() {
      AtomicReferenceArray<E> oldTable = table;
      int oldCapacity = oldTable.length();
      if (oldCapacity >= MAXIMUM_CAPACITY) {
        return;
      }

      /*
       * Reclassify nodes in each list to new Map. Because we are using power-of-two expansion, the
       * elements from each bin must either stay at same index, or move with a power of two offset.
       * We eliminate unnecessary node creation by catching cases where old nodes can be reused
       * because their next fields won't change. Statistically, at the default threshold, only
       * about one-sixth of them need cloning when a table doubles. The nodes they replace will be
       * garbage collectable as soon as they are no longer referenced by any reader thread that may
       * be in the midst of traversing table right now.
       */

      int newCount = count;
      AtomicReferenceArray<E> newTable = newEntryArray(oldCapacity << 1);
      threshold = newTable.length() * 3 / 4;
      int newMask = newTable.length() - 1;
      for (int oldIndex = 0; oldIndex < oldCapacity; ++oldIndex) {
        // We need to guarantee that any existing reads of old Map can
        // proceed. So we cannot yet null out each bin.
        E head = oldTable.get(oldIndex);

        if (head != null) {
          E next = head.getNext();
          int headIndex = head.getHash() & newMask;

          // Single node on list
          if (next == null) {
            newTable.set(headIndex, head);
          } else {
            // Reuse the consecutive sequence of nodes with the same target
            // index from the end of the list. tail points to the first
            // entry in the reusable list.
            E tail = head;
            int tailIndex = headIndex;
            for (E e = next; e != null; e = e.getNext()) {
              int newIndex = e.getHash() & newMask;
              if (newIndex != tailIndex) {
                // The index changed. We'll need to copy the previous entry.
                tailIndex = newIndex;
                tail = e;
              }
            }
            newTable.set(tailIndex, tail);

            // Clone nodes leading up to the tail.
            for (E e = head; e != tail; e = e.getNext()) {
              int newIndex = e.getHash() & newMask;
              E newNext = newTable.get(newIndex);
              E newFirst = copyEntry(e, newNext);
              if (newFirst != null) {
                newTable.set(newIndex, newFirst);
              } else {
                newCount--;
              }
            }
          }
        }
      }
      table = newTable;
      this.count = newCount;
    }

    boolean replace(K key, int hash, V oldValue, V newValue) {
      lock();
      try {
        preWriteCleanup();

        AtomicReferenceArray<E> table = this.table;
        int index = hash & (table.length() - 1);
        E first = table.get(index);

        for (E e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash
              && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            // If the value disappeared, this entry is partially collected,
            // and we should pretend like it doesn't exist.
            V entryValue = e.getValue();
            if (entryValue == null) {
              if (isCollected(e)) {
                int newCount = this.count - 1;
                ++modCount;
                E newFirst = removeFromChain(first, e);
                newCount = this.count - 1;
                table.set(index, newFirst);
                this.count = newCount; // write-volatile
              }
              return false;
            }

            if (map.valueEquivalence().equivalent(oldValue, entryValue)) {
              ++modCount;
              setValue(e, newValue);
              return true;
            } else {
              // Mimic
              // "if (map.containsKey(key) && map.get(key).equals(oldValue))..."
              return false;
            }
          }
        }

        return false;
      } finally {
        unlock();
      }
    }

    V replace(K key, int hash, V newValue) {
      lock();
      try {
        preWriteCleanup();

        AtomicReferenceArray<E> table = this.table;
        int index = hash & (table.length() - 1);
        E first = table.get(index);

        for (E e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash
              && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            // If the value disappeared, this entry is partially collected,
            // and we should pretend like it doesn't exist.
            V entryValue = e.getValue();
            if (entryValue == null) {
              if (isCollected(e)) {
                int newCount = this.count - 1;
                ++modCount;
                E newFirst = removeFromChain(first, e);
                newCount = this.count - 1;
                table.set(index, newFirst);
                this.count = newCount; // write-volatile
              }
              return null;
            }

            ++modCount;
            setValue(e, newValue);
            return entryValue;
          }
        }

        return null;
      } finally {
        unlock();
      }
    }

    @CanIgnoreReturnValue
    V remove(Object key, int hash) {
      lock();
      try {
        preWriteCleanup();

        int newCount = this.count - 1;
        AtomicReferenceArray<E> table = this.table;
        int index = hash & (table.length() - 1);
        E first = table.get(index);

        for (E e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash
              && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            V entryValue = e.getValue();

            if (entryValue != null) {
              // TODO(kak): Remove this branch
            } else if (isCollected(e)) {
              // TODO(kak): Remove this branch
            } else {
              return null;
            }

            ++modCount;
            E newFirst = removeFromChain(first, e);
            newCount = this.count - 1;
            table.set(index, newFirst);
            this.count = newCount; // write-volatile
            return entryValue;
          }
        }

        return null;
      } finally {
        unlock();
      }
    }

    boolean remove(Object key, int hash, Object value) {
      lock();
      try {
        preWriteCleanup();

        int newCount = this.count - 1;
        AtomicReferenceArray<E> table = this.table;
        int index = hash & (table.length() - 1);
        E first = table.get(index);

        for (E e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash
              && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            V entryValue = e.getValue();

            boolean explicitRemoval = false;
            if (map.valueEquivalence().equivalent(value, entryValue)) {
              explicitRemoval = true;
            } else if (isCollected(e)) {
              // TODO(kak): Remove this branch
            } else {
              return false;
            }

            ++modCount;
            E newFirst = removeFromChain(first, e);
            newCount = this.count - 1;
            table.set(index, newFirst);
            this.count = newCount; // write-volatile
            return explicitRemoval;
          }
        }

        return false;
      } finally {
        unlock();
      }
    }

    void clear() {
      if (count != 0) {
        lock();
        try {
          AtomicReferenceArray<E> table = this.table;
          for (int i = 0; i < table.length(); ++i) {
            table.set(i, null);
          }
          maybeClearReferenceQueues();
          readCount.set(0);

          ++modCount;
          count = 0; // write-volatile
        } finally {
          unlock();
        }
      }
    }

    /**
     * Removes an entry from within a table. All entries following the removed node can stay, but
     * all preceding ones need to be cloned.
     *
     * <p>This method does not decrement count for the removed entry, but does decrement count for
     * all partially collected entries which are skipped. As such callers which are modifying count
     * must re-read it after calling removeFromChain.
     *
     * @param first the first entry of the table
     * @param entry the entry being removed from the table
     * @return the new first entry for the table
     */
    @GuardedBy("this")
    E removeFromChain(E first, E entry) {
      int newCount = count;
      E newFirst = entry.getNext();
      for (E e = first; e != entry; e = e.getNext()) {
        E next = copyEntry(e, newFirst);
        if (next != null) {
          newFirst = next;
        } else {
          newCount--;
        }
      }
      this.count = newCount;
      return newFirst;
    }

    /** Removes an entry whose key has been garbage collected. */
    @CanIgnoreReturnValue
    boolean reclaimKey(E entry, int hash) {
      lock();
      try {
        int newCount = count - 1;
        AtomicReferenceArray<E> table = this.table;
        int index = hash & (table.length() - 1);
        E first = table.get(index);

        for (E e = first; e != null; e = e.getNext()) {
          if (e == entry) {
            ++modCount;
            E newFirst = removeFromChain(first, e);
            newCount = this.count - 1;
            table.set(index, newFirst);
            this.count = newCount; // write-volatile
            return true;
          }
        }

        return false;
      } finally {
        unlock();
      }
    }

    /** Removes an entry whose value has been garbage collected. */
    @CanIgnoreReturnValue
    boolean reclaimValue(K key, int hash, WeakValueReference<K, V, E> valueReference) {
      lock();
      try {
        int newCount = this.count - 1;
        AtomicReferenceArray<E> table = this.table;
        int index = hash & (table.length() - 1);
        E first = table.get(index);

        for (E e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash
              && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            WeakValueReference<K, V, E> v = ((WeakValueEntry<K, V, E>) e).getValueReference();
            if (v == valueReference) {
              ++modCount;
              E newFirst = removeFromChain(first, e);
              newCount = this.count - 1;
              table.set(index, newFirst);
              this.count = newCount; // write-volatile
              return true;
            }
            return false;
          }
        }

        return false;
      } finally {
        unlock();
      }
    }

    /** Clears a value that has not yet been set, and thus does not require count to be modified. */
    @CanIgnoreReturnValue
    boolean clearValueForTesting(
        K key,
        int hash,
        WeakValueReference<K, V, ? extends InternalEntry<K, V, ?>> valueReference) {
      lock();
      try {
        AtomicReferenceArray<E> table = this.table;
        int index = hash & (table.length() - 1);
        E first = table.get(index);

        for (E e = first; e != null; e = e.getNext()) {
          K entryKey = e.getKey();
          if (e.getHash() == hash
              && entryKey != null
              && map.keyEquivalence.equivalent(key, entryKey)) {
            WeakValueReference<K, V, E> v = ((WeakValueEntry<K, V, E>) e).getValueReference();
            if (v == valueReference) {
              E newFirst = removeFromChain(first, e);
              table.set(index, newFirst);
              return true;
            }
            return false;
          }
        }

        return false;
      } finally {
        unlock();
      }
    }

    @GuardedBy("this")
    boolean removeEntryForTesting(E entry) {
      int hash = entry.getHash();
      int newCount = this.count - 1;
      AtomicReferenceArray<E> table = this.table;
      int index = hash & (table.length() - 1);
      E first = table.get(index);

      for (E e = first; e != null; e = e.getNext()) {
        if (e == entry) {
          ++modCount;
          E newFirst = removeFromChain(first, e);
          newCount = this.count - 1;
          table.set(index, newFirst);
          this.count = newCount; // write-volatile
          return true;
        }
      }

      return false;
    }

    /**
     * Returns {@code true} if the value has been partially collected, meaning that the value is
     * null.
     */
    static <K, V, E extends InternalEntry<K, V, E>> boolean isCollected(E entry) {
      return entry.getValue() == null;
    }

    /**
     * Gets the value from an entry. Returns {@code null} if the entry is invalid or
     * partially-collected.
     */
    @NullableDecl
    V getLiveValue(E entry) {
      if (entry.getKey() == null) {
        tryDrainReferenceQueues();
        return null;
      }
      V value = entry.getValue();
      if (value == null) {
        tryDrainReferenceQueues();
        return null;
      }

      return value;
    }

    /**
     * Performs routine cleanup following a read. Normally cleanup happens during writes, or from
     * the cleanupExecutor. If cleanup is not observed after a sufficient number of reads, try
     * cleaning up from the read thread.
     */
    void postReadCleanup() {
      if ((readCount.incrementAndGet() & DRAIN_THRESHOLD) == 0) {
        runCleanup();
      }
    }

    /**
     * Performs routine cleanup prior to executing a write. This should be called every time a write
     * thread acquires the segment lock, immediately after acquiring the lock.
     */
    @GuardedBy("this")
    void preWriteCleanup() {
      runLockedCleanup();
    }

    void runCleanup() {
      runLockedCleanup();
    }

    void runLockedCleanup() {
      if (tryLock()) {
        try {
          maybeDrainReferenceQueues();
          readCount.set(0);
        } finally {
          unlock();
        }
      }
    }
  }

  /** Concrete implementation of {@link Segment} for strong keys and strong values. */
  static final class StrongKeyStrongValueSegment<K, V>
      extends Segment<K, V, StrongKeyStrongValueEntry<K, V>, StrongKeyStrongValueSegment<K, V>> {
    StrongKeyStrongValueSegment(
        MapMakerInternalMap<
                K, V, StrongKeyStrongValueEntry<K, V>, StrongKeyStrongValueSegment<K, V>>
            map,
        int initialCapacity,
        int maxSegmentSize) {
      super(map, initialCapacity, maxSegmentSize);
    }

    @Override
    StrongKeyStrongValueSegment<K, V> self() {
      return this;
    }

    @SuppressWarnings("unchecked")
    @Override
    public StrongKeyStrongValueEntry<K, V> castForTesting(InternalEntry<K, V, ?> entry) {
      return (StrongKeyStrongValueEntry<K, V>) entry;
    }
  }

  /** Concrete implementation of {@link Segment} for strong keys and weak values. */
  static final class StrongKeyWeakValueSegment<K, V>
      extends Segment<K, V, StrongKeyWeakValueEntry<K, V>, StrongKeyWeakValueSegment<K, V>> {
    private final ReferenceQueue<V> queueForValues = new ReferenceQueue<V>();

    StrongKeyWeakValueSegment(
        MapMakerInternalMap<K, V, StrongKeyWeakValueEntry<K, V>, StrongKeyWeakValueSegment<K, V>>
            map,
        int initialCapacity,
        int maxSegmentSize) {
      super(map, initialCapacity, maxSegmentSize);
    }

    @Override
    StrongKeyWeakValueSegment<K, V> self() {
      return this;
    }

    @Override
    ReferenceQueue<V> getValueReferenceQueueForTesting() {
      return queueForValues;
    }

    @SuppressWarnings("unchecked")
    @Override
    public StrongKeyWeakValueEntry<K, V> castForTesting(InternalEntry<K, V, ?> entry) {
      return (StrongKeyWeakValueEntry<K, V>) entry;
    }

    @Override
    public WeakValueReference<K, V, StrongKeyWeakValueEntry<K, V>> getWeakValueReferenceForTesting(
        InternalEntry<K, V, ?> e) {
      return castForTesting(e).getValueReference();
    }

    @Override
    public WeakValueReference<K, V, StrongKeyWeakValueEntry<K, V>> newWeakValueReferenceForTesting(
        InternalEntry<K, V, ?> e, V value) {
      return new WeakValueReferenceImpl<>(queueForValues, value, castForTesting(e));
    }

    @Override
    public void setWeakValueReferenceForTesting(
        InternalEntry<K, V, ?> e,
        WeakValueReference<K, V, ? extends InternalEntry<K, V, ?>> valueReference) {
      StrongKeyWeakValueEntry<K, V> entry = castForTesting(e);
      @SuppressWarnings("unchecked")
      WeakValueReference<K, V, StrongKeyWeakValueEntry<K, V>> newValueReference =
          (WeakValueReference<K, V, StrongKeyWeakValueEntry<K, V>>) valueReference;
      WeakValueReference<K, V, StrongKeyWeakValueEntry<K, V>> previous = entry.valueReference;
      entry.valueReference = newValueReference;
      previous.clear();
    }

    @Override
    void maybeDrainReferenceQueues() {
      drainValueReferenceQueue(queueForValues);
    }

    @Override
    void maybeClearReferenceQueues() {
      clearReferenceQueue(queueForValues);
    }
  }

  /** Concrete implementation of {@link Segment} for strong keys and {@link Dummy} values. */
  static final class StrongKeyDummyValueSegment<K>
      extends Segment<K, Dummy, StrongKeyDummyValueEntry<K>, StrongKeyDummyValueSegment<K>> {
    StrongKeyDummyValueSegment(
        MapMakerInternalMap<K, Dummy, StrongKeyDummyValueEntry<K>, StrongKeyDummyValueSegment<K>>
            map,
        int initialCapacity,
        int maxSegmentSize) {
      super(map, initialCapacity, maxSegmentSize);
    }

    @Override
    StrongKeyDummyValueSegment<K> self() {
      return this;
    }

    @SuppressWarnings("unchecked")
    @Override
    public StrongKeyDummyValueEntry<K> castForTesting(InternalEntry<K, Dummy, ?> entry) {
      return (StrongKeyDummyValueEntry<K>) entry;
    }
  }

  /** Concrete implementation of {@link Segment} for weak keys and strong values. */
  static final class WeakKeyStrongValueSegment<K, V>
      extends Segment<K, V, WeakKeyStrongValueEntry<K, V>, WeakKeyStrongValueSegment<K, V>> {
    private final ReferenceQueue<K> queueForKeys = new ReferenceQueue<K>();

    WeakKeyStrongValueSegment(
        MapMakerInternalMap<K, V, WeakKeyStrongValueEntry<K, V>, WeakKeyStrongValueSegment<K, V>>
            map,
        int initialCapacity,
        int maxSegmentSize) {
      super(map, initialCapacity, maxSegmentSize);
    }

    @Override
    WeakKeyStrongValueSegment<K, V> self() {
      return this;
    }

    @Override
    ReferenceQueue<K> getKeyReferenceQueueForTesting() {
      return queueForKeys;
    }

    @SuppressWarnings("unchecked")
    @Override
    public WeakKeyStrongValueEntry<K, V> castForTesting(InternalEntry<K, V, ?> entry) {
      return (WeakKeyStrongValueEntry<K, V>) entry;
    }

    @Override
    void maybeDrainReferenceQueues() {
      drainKeyReferenceQueue(queueForKeys);
    }

    @Override
    void maybeClearReferenceQueues() {
      clearReferenceQueue(queueForKeys);
    }
  }

  /** Concrete implementation of {@link Segment} for weak keys and weak values. */
  static final class WeakKeyWeakValueSegment<K, V>
      extends Segment<K, V, WeakKeyWeakValueEntry<K, V>, WeakKeyWeakValueSegment<K, V>> {
    private final ReferenceQueue<K> queueForKeys = new ReferenceQueue<K>();
    private final ReferenceQueue<V> queueForValues = new ReferenceQueue<V>();

    WeakKeyWeakValueSegment(
        MapMakerInternalMap<K, V, WeakKeyWeakValueEntry<K, V>, WeakKeyWeakValueSegment<K, V>> map,
        int initialCapacity,
        int maxSegmentSize) {
      super(map, initialCapacity, maxSegmentSize);
    }

    @Override
    WeakKeyWeakValueSegment<K, V> self() {
      return this;
    }

    @Override
    ReferenceQueue<K> getKeyReferenceQueueForTesting() {
      return queueForKeys;
    }

    @Override
    ReferenceQueue<V> getValueReferenceQueueForTesting() {
      return queueForValues;
    }

    @SuppressWarnings("unchecked")
    @Override
    public WeakKeyWeakValueEntry<K, V> castForTesting(InternalEntry<K, V, ?> entry) {
      return (WeakKeyWeakValueEntry<K, V>) entry;
    }

    @Override
    public WeakValueReference<K, V, WeakKeyWeakValueEntry<K, V>> getWeakValueReferenceForTesting(
        InternalEntry<K, V, ?> e) {
      return castForTesting(e).getValueReference();
    }

    @Override
    public WeakValueReference<K, V, WeakKeyWeakValueEntry<K, V>> newWeakValueReferenceForTesting(
        InternalEntry<K, V, ?> e, V value) {
      return new WeakValueReferenceImpl<>(queueForValues, value, castForTesting(e));
    }

    @Override
    public void setWeakValueReferenceForTesting(
        InternalEntry<K, V, ?> e,
        WeakValueReference<K, V, ? extends InternalEntry<K, V, ?>> valueReference) {
      WeakKeyWeakValueEntry<K, V> entry = castForTesting(e);
      @SuppressWarnings("unchecked")
      WeakValueReference<K, V, WeakKeyWeakValueEntry<K, V>> newValueReference =
          (WeakValueReference<K, V, WeakKeyWeakValueEntry<K, V>>) valueReference;
      WeakValueReference<K, V, WeakKeyWeakValueEntry<K, V>> previous = entry.valueReference;
      entry.valueReference = newValueReference;
      previous.clear();
    }

    @Override
    void maybeDrainReferenceQueues() {
      drainKeyReferenceQueue(queueForKeys);
      drainValueReferenceQueue(queueForValues);
    }

    @Override
    void maybeClearReferenceQueues() {
      clearReferenceQueue(queueForKeys);
    }
  }

  /** Concrete implementation of {@link Segment} for weak keys and {@link Dummy} values. */
  static final class WeakKeyDummyValueSegment<K>
      extends Segment<K, Dummy, WeakKeyDummyValueEntry<K>, WeakKeyDummyValueSegment<K>> {
    private final ReferenceQueue<K> queueForKeys = new ReferenceQueue<K>();

    WeakKeyDummyValueSegment(
        MapMakerInternalMap<K, Dummy, WeakKeyDummyValueEntry<K>, WeakKeyDummyValueSegment<K>> map,
        int initialCapacity,
        int maxSegmentSize) {
      super(map, initialCapacity, maxSegmentSize);
    }

    @Override
    WeakKeyDummyValueSegment<K> self() {
      return this;
    }

    @Override
    ReferenceQueue<K> getKeyReferenceQueueForTesting() {
      return queueForKeys;
    }

    @SuppressWarnings("unchecked")
    @Override
    public WeakKeyDummyValueEntry<K> castForTesting(InternalEntry<K, Dummy, ?> entry) {
      return (WeakKeyDummyValueEntry<K>) entry;
    }

    @Override
    void maybeDrainReferenceQueues() {
      drainKeyReferenceQueue(queueForKeys);
    }

    @Override
    void maybeClearReferenceQueues() {
      clearReferenceQueue(queueForKeys);
    }
  }

  static final class CleanupMapTask implements Runnable {
    final WeakReference<MapMakerInternalMap<?, ?, ?, ?>> mapReference;

    public CleanupMapTask(MapMakerInternalMap<?, ?, ?, ?> map) {
      this.mapReference = new WeakReference<MapMakerInternalMap<?, ?, ?, ?>>(map);
    }

    @Override
    public void run() {
      MapMakerInternalMap<?, ?, ?, ?> map = mapReference.get();
      if (map == null) {
        throw new CancellationException();
      }

      for (Segment<?, ?, ?, ?> segment : map.segments) {
        segment.runCleanup();
      }
    }
  }

  @VisibleForTesting
  Strength keyStrength() {
    return entryHelper.keyStrength();
  }

  @VisibleForTesting
  Strength valueStrength() {
    return entryHelper.valueStrength();
  }

  @VisibleForTesting
  Equivalence<Object> valueEquivalence() {
    return entryHelper.valueStrength().defaultEquivalence();
  }

  // ConcurrentMap methods

  @Override
  public boolean isEmpty() {
    /*
     * Sum per-segment modCounts to avoid mis-reporting when elements are concurrently added and
     * removed in one segment while checking another, in which case the table was never actually
     * empty at any point. (The sum ensures accuracy up through at least 1<<31 per-segment
     * modifications before recheck.)  Method containsValue() uses similar constructions for
     * stability checks.
     */
    long sum = 0L;
    Segment<K, V, E, S>[] segments = this.segments;
    for (int i = 0; i < segments.length; ++i) {
      if (segments[i].count != 0) {
        return false;
      }
      sum += segments[i].modCount;
    }

    if (sum != 0L) { // recheck unless no modifications
      for (int i = 0; i < segments.length; ++i) {
        if (segments[i].count != 0) {
          return false;
        }
        sum -= segments[i].modCount;
      }
      if (sum != 0L) {
        return false;
      }
    }
    return true;
  }

  @Override
  public int size() {
    Segment<K, V, E, S>[] segments = this.segments;
    long sum = 0;
    for (int i = 0; i < segments.length; ++i) {
      sum += segments[i].count;
    }
    return Ints.saturatedCast(sum);
  }

  @Override
  public V get(@NullableDecl Object key) {
    if (key == null) {
      return null;
    }
    int hash = hash(key);
    return segmentFor(hash).get(key, hash);
  }

  /**
   * Returns the internal entry for the specified key. The entry may be computing or partially
   * collected. Does not impact recency ordering.
   */
  E getEntry(@NullableDecl Object key) {
    if (key == null) {
      return null;
    }
    int hash = hash(key);
    return segmentFor(hash).getEntry(key, hash);
  }

  @Override
  public boolean containsKey(@NullableDecl Object key) {
    if (key == null) {
      return false;
    }
    int hash = hash(key);
    return segmentFor(hash).containsKey(key, hash);
  }

  @Override
  public boolean containsValue(@NullableDecl Object value) {
    if (value == null) {
      return false;
    }

    // This implementation is patterned after ConcurrentHashMap, but without the locking. The only
    // way for it to return a false negative would be for the target value to jump around in the map
    // such that none of the subsequent iterations observed it, despite the fact that at every point
    // in time it was present somewhere int the map. This becomes increasingly unlikely as
    // CONTAINS_VALUE_RETRIES increases, though without locking it is theoretically possible.
    final Segment<K, V, E, S>[] segments = this.segments;
    long last = -1L;
    for (int i = 0; i < CONTAINS_VALUE_RETRIES; i++) {
      long sum = 0L;
      for (Segment<K, V, E, S> segment : segments) {
        // ensure visibility of most recent completed write
        int unused = segment.count; // read-volatile

        AtomicReferenceArray<E> table = segment.table;
        for (int j = 0; j < table.length(); j++) {
          for (E e = table.get(j); e != null; e = e.getNext()) {
            V v = segment.getLiveValue(e);
            if (v != null && valueEquivalence().equivalent(value, v)) {
              return true;
            }
          }
        }
        sum += segment.modCount;
      }
      if (sum == last) {
        break;
      }
      last = sum;
    }
    return false;
  }

  @CanIgnoreReturnValue
  @Override
  public V put(K key, V value) {
    checkNotNull(key);
    checkNotNull(value);
    int hash = hash(key);
    return segmentFor(hash).put(key, hash, value, false);
  }

  @CanIgnoreReturnValue
  @Override
  public V putIfAbsent(K key, V value) {
    checkNotNull(key);
    checkNotNull(value);
    int hash = hash(key);
    return segmentFor(hash).put(key, hash, value, true);
  }

  @Override
  public void putAll(Map<? extends K, ? extends V> m) {
    for (Entry<? extends K, ? extends V> e : m.entrySet()) {
      put(e.getKey(), e.getValue());
    }
  }

  @CanIgnoreReturnValue
  @Override
  public V remove(@NullableDecl Object key) {
    if (key == null) {
      return null;
    }
    int hash = hash(key);
    return segmentFor(hash).remove(key, hash);
  }

  @CanIgnoreReturnValue
  @Override
  public boolean remove(@NullableDecl Object key, @NullableDecl Object value) {
    if (key == null || value == null) {
      return false;
    }
    int hash = hash(key);
    return segmentFor(hash).remove(key, hash, value);
  }

  @CanIgnoreReturnValue
  @Override
  public boolean replace(K key, @NullableDecl V oldValue, V newValue) {
    checkNotNull(key);
    checkNotNull(newValue);
    if (oldValue == null) {
      return false;
    }
    int hash = hash(key);
    return segmentFor(hash).replace(key, hash, oldValue, newValue);
  }

  @CanIgnoreReturnValue
  @Override
  public V replace(K key, V value) {
    checkNotNull(key);
    checkNotNull(value);
    int hash = hash(key);
    return segmentFor(hash).replace(key, hash, value);
  }

  @Override
  public void clear() {
    for (Segment<K, V, E, S> segment : segments) {
      segment.clear();
    }
  }

  @MonotonicNonNullDecl transient Set<K> keySet;

  @Override
  public Set<K> keySet() {
    Set<K> ks = keySet;
    return (ks != null) ? ks : (keySet = new KeySet());
  }

  @MonotonicNonNullDecl transient Collection<V> values;

  @Override
  public Collection<V> values() {
    Collection<V> vs = values;
    return (vs != null) ? vs : (values = new Values());
  }

  @MonotonicNonNullDecl transient Set<Entry<K, V>> entrySet;

  @Override
  public Set<Entry<K, V>> entrySet() {
    Set<Entry<K, V>> es = entrySet;
    return (es != null) ? es : (entrySet = new EntrySet());
  }

  // Iterator Support

  abstract class HashIterator<T> implements Iterator<T> {

    int nextSegmentIndex;
    int nextTableIndex;
    @MonotonicNonNullDecl Segment<K, V, E, S> currentSegment;
    @MonotonicNonNullDecl AtomicReferenceArray<E> currentTable;
    @NullableDecl E nextEntry;
    @NullableDecl WriteThroughEntry nextExternal;
    @NullableDecl WriteThroughEntry lastReturned;

    HashIterator() {
      nextSegmentIndex = segments.length - 1;
      nextTableIndex = -1;
      advance();
    }

    @Override
    public abstract T next();

    final void advance() {
      nextExternal = null;

      if (nextInChain()) {
        return;
      }

      if (nextInTable()) {
        return;
      }

      while (nextSegmentIndex >= 0) {
        currentSegment = segments[nextSegmentIndex--];
        if (currentSegment.count != 0) {
          currentTable = currentSegment.table;
          nextTableIndex = currentTable.length() - 1;
          if (nextInTable()) {
            return;
          }
        }
      }
    }

    /** Finds the next entry in the current chain. Returns {@code true} if an entry was found. */
    boolean nextInChain() {
      if (nextEntry != null) {
        for (nextEntry = nextEntry.getNext(); nextEntry != null; nextEntry = nextEntry.getNext()) {
          if (advanceTo(nextEntry)) {
            return true;
          }
        }
      }
      return false;
    }

    /** Finds the next entry in the current table. Returns {@code true} if an entry was found. */
    boolean nextInTable() {
      while (nextTableIndex >= 0) {
        if ((nextEntry = currentTable.get(nextTableIndex--)) != null) {
          if (advanceTo(nextEntry) || nextInChain()) {
            return true;
          }
        }
      }
      return false;
    }

    /**
     * Advances to the given entry. Returns {@code true} if the entry was valid, {@code false} if it
     * should be skipped.
     */
    boolean advanceTo(E entry) {
      try {
        K key = entry.getKey();
        V value = getLiveValue(entry);
        if (value != null) {
          nextExternal = new WriteThroughEntry(key, value);
          return true;
        } else {
          // Skip stale entry.
          return false;
        }
      } finally {
        currentSegment.postReadCleanup();
      }
    }

    @Override
    public boolean hasNext() {
      return nextExternal != null;
    }

    WriteThroughEntry nextEntry() {
      if (nextExternal == null) {
        throw new NoSuchElementException();
      }
      lastReturned = nextExternal;
      advance();
      return lastReturned;
    }

    @Override
    public void remove() {
      checkRemove(lastReturned != null);
      MapMakerInternalMap.this.remove(lastReturned.getKey());
      lastReturned = null;
    }
  }

  final class KeyIterator extends HashIterator<K> {

    @Override
    public K next() {
      return nextEntry().getKey();
    }
  }

  final class ValueIterator extends HashIterator<V> {

    @Override
    public V next() {
      return nextEntry().getValue();
    }
  }

  /**
   * Custom Entry class used by EntryIterator.next(), that relays setValue changes to the underlying
   * map.
   */
  final class WriteThroughEntry extends AbstractMapEntry<K, V> {
    final K key; // non-null
    V value; // non-null

    WriteThroughEntry(K key, V value) {
      this.key = key;
      this.value = value;
    }

    @Override
    public K getKey() {
      return key;
    }

    @Override
    public V getValue() {
      return value;
    }

    @Override
    public boolean equals(@NullableDecl Object object) {
      // Cannot use key and value equivalence
      if (object instanceof Entry) {
        Entry<?, ?> that = (Entry<?, ?>) object;
        return key.equals(that.getKey()) && value.equals(that.getValue());
      }
      return false;
    }

    @Override
    public int hashCode() {
      // Cannot use key and value equivalence
      return key.hashCode() ^ value.hashCode();
    }

    @Override
    public V setValue(V newValue) {
      V oldValue = put(key, newValue);
      value = newValue; // only if put succeeds
      return oldValue;
    }
  }

  final class EntryIterator extends HashIterator<Entry<K, V>> {

    @Override
    public Entry<K, V> next() {
      return nextEntry();
    }
  }

  @WeakOuter
  final class KeySet extends SafeToArraySet<K> {

    @Override
    public Iterator<K> iterator() {
      return new KeyIterator();
    }

    @Override
    public int size() {
      return MapMakerInternalMap.this.size();
    }

    @Override
    public boolean isEmpty() {
      return MapMakerInternalMap.this.isEmpty();
    }

    @Override
    public boolean contains(Object o) {
      return MapMakerInternalMap.this.containsKey(o);
    }

    @Override
    public boolean remove(Object o) {
      return MapMakerInternalMap.this.remove(o) != null;
    }

    @Override
    public void clear() {
      MapMakerInternalMap.this.clear();
    }
  }

  @WeakOuter
  final class Values extends AbstractCollection<V> {

    @Override
    public Iterator<V> iterator() {
      return new ValueIterator();
    }

    @Override
    public int size() {
      return MapMakerInternalMap.this.size();
    }

    @Override
    public boolean isEmpty() {
      return MapMakerInternalMap.this.isEmpty();
    }

    @Override
    public boolean contains(Object o) {
      return MapMakerInternalMap.this.containsValue(o);
    }

    @Override
    public void clear() {
      MapMakerInternalMap.this.clear();
    }

    // super.toArray() may misbehave if size() is inaccurate, at least on old versions of Android.
    // https://code.google.com/p/android/issues/detail?id=36519 / http://r.android.com/47508

    @Override
    public Object[] toArray() {
      return toArrayList(this).toArray();
    }

    @Override
    public <T> T[] toArray(T[] a) {
      return toArrayList(this).toArray(a);
    }
  }

  @WeakOuter
  final class EntrySet extends SafeToArraySet<Entry<K, V>> {

    @Override
    public Iterator<Entry<K, V>> iterator() {
      return new EntryIterator();
    }

    @Override
    public boolean contains(Object o) {
      if (!(o instanceof Entry)) {
        return false;
      }
      Entry<?, ?> e = (Entry<?, ?>) o;
      Object key = e.getKey();
      if (key == null) {
        return false;
      }
      V v = MapMakerInternalMap.this.get(key);

      return v != null && valueEquivalence().equivalent(e.getValue(), v);
    }

    @Override
    public boolean remove(Object o) {
      if (!(o instanceof Entry)) {
        return false;
      }
      Entry<?, ?> e = (Entry<?, ?>) o;
      Object key = e.getKey();
      return key != null && MapMakerInternalMap.this.remove(key, e.getValue());
    }

    @Override
    public int size() {
      return MapMakerInternalMap.this.size();
    }

    @Override
    public boolean isEmpty() {
      return MapMakerInternalMap.this.isEmpty();
    }

    @Override
    public void clear() {
      MapMakerInternalMap.this.clear();
    }
  }

  private abstract static class SafeToArraySet<E> extends AbstractSet<E> {
    // super.toArray() may misbehave if size() is inaccurate, at least on old versions of Android.
    // https://code.google.com/p/android/issues/detail?id=36519 / http://r.android.com/47508

    @Override
    public Object[] toArray() {
      return toArrayList(this).toArray();
    }

    @Override
    public <T> T[] toArray(T[] a) {
      return toArrayList(this).toArray(a);
    }
  }

  private static <E> ArrayList<E> toArrayList(Collection<E> c) {
    // Avoid calling ArrayList(Collection), which may call back into toArray.
    ArrayList<E> result = new ArrayList<>(c.size());
    Iterators.addAll(result, c.iterator());
    return result;
  }

  // Serialization Support

  private static final long serialVersionUID = 5;

  Object writeReplace() {
    return new SerializationProxy<>(
        entryHelper.keyStrength(),
        entryHelper.valueStrength(),
        keyEquivalence,
        entryHelper.valueStrength().defaultEquivalence(),
        concurrencyLevel,
        this);
  }

  /**
   * The actual object that gets serialized. Unfortunately, readResolve() doesn't get called when a
   * circular dependency is present, so the proxy must be able to behave as the map itself.
   */
  abstract static class AbstractSerializationProxy<K, V> extends ForwardingConcurrentMap<K, V>
      implements Serializable {
    private static final long serialVersionUID = 3;

    final Strength keyStrength;
    final Strength valueStrength;
    final Equivalence<Object> keyEquivalence;
    final Equivalence<Object> valueEquivalence;
    final int concurrencyLevel;

    transient ConcurrentMap<K, V> delegate;

    AbstractSerializationProxy(
        Strength keyStrength,
        Strength valueStrength,
        Equivalence<Object> keyEquivalence,
        Equivalence<Object> valueEquivalence,
        int concurrencyLevel,
        ConcurrentMap<K, V> delegate) {
      this.keyStrength = keyStrength;
      this.valueStrength = valueStrength;
      this.keyEquivalence = keyEquivalence;
      this.valueEquivalence = valueEquivalence;
      this.concurrencyLevel = concurrencyLevel;
      this.delegate = delegate;
    }

    @Override
    protected ConcurrentMap<K, V> delegate() {
      return delegate;
    }

    void writeMapTo(ObjectOutputStream out) throws IOException {
      out.writeInt(delegate.size());
      for (Entry<K, V> entry : delegate.entrySet()) {
        out.writeObject(entry.getKey());
        out.writeObject(entry.getValue());
      }
      out.writeObject(null); // terminate entries
    }

    @SuppressWarnings("deprecation") // serialization of deprecated feature
    MapMaker readMapMaker(ObjectInputStream in) throws IOException {
      int size = in.readInt();
      return new MapMaker()
          .initialCapacity(size)
          .setKeyStrength(keyStrength)
          .setValueStrength(valueStrength)
          .keyEquivalence(keyEquivalence)
          .concurrencyLevel(concurrencyLevel);
    }

    @SuppressWarnings("unchecked")
    void readEntries(ObjectInputStream in) throws IOException, ClassNotFoundException {
      while (true) {
        K key = (K) in.readObject();
        if (key == null) {
          break; // terminator
        }
        V value = (V) in.readObject();
        delegate.put(key, value);
      }
    }
  }

  /**
   * The actual object that gets serialized. Unfortunately, readResolve() doesn't get called when a
   * circular dependency is present, so the proxy must be able to behave as the map itself.
   */
  private static final class SerializationProxy<K, V> extends AbstractSerializationProxy<K, V> {
    private static final long serialVersionUID = 3;

    SerializationProxy(
        Strength keyStrength,
        Strength valueStrength,
        Equivalence<Object> keyEquivalence,
        Equivalence<Object> valueEquivalence,
        int concurrencyLevel,
        ConcurrentMap<K, V> delegate) {
      super(
          keyStrength, valueStrength, keyEquivalence, valueEquivalence, concurrencyLevel, delegate);
    }

    private void writeObject(ObjectOutputStream out) throws IOException {
      out.defaultWriteObject();
      writeMapTo(out);
    }

    private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException {
      in.defaultReadObject();
      MapMaker mapMaker = readMapMaker(in);
      delegate = mapMaker.makeMap();
      readEntries(in);
    }

    private Object readResolve() {
      return delegate;
    }
  }
}