aboutsummaryrefslogtreecommitdiff
path: root/android/guava/src/com/google/common/util/concurrent/Striped.java
blob: 2ea61cb3248a8e74fb8c331789c6100074c966f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.util.concurrent;

import static com.google.common.collect.Lists.newArrayList;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.MoreObjects;
import com.google.common.base.Preconditions;
import com.google.common.base.Supplier;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.MapMaker;
import com.google.common.math.IntMath;
import com.google.common.primitives.Ints;
import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;
import java.math.RoundingMode;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.Semaphore;
import java.util.concurrent.atomic.AtomicReferenceArray;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import org.checkerframework.checker.nullness.qual.Nullable;

/**
 * A striped {@code Lock/Semaphore/ReadWriteLock}. This offers the underlying lock striping similar
 * to that of {@code ConcurrentHashMap} in a reusable form, and extends it for semaphores and
 * read-write locks. Conceptually, lock striping is the technique of dividing a lock into many
 * <i>stripes</i>, increasing the granularity of a single lock and allowing independent operations
 * to lock different stripes and proceed concurrently, instead of creating contention for a single
 * lock.
 *
 * <p>The guarantee provided by this class is that equal keys lead to the same lock (or semaphore),
 * i.e. {@code if (key1.equals(key2))} then {@code striped.get(key1) == striped.get(key2)} (assuming
 * {@link Object#hashCode()} is correctly implemented for the keys). Note that if {@code key1} is
 * <strong>not</strong> equal to {@code key2}, it is <strong>not</strong> guaranteed that {@code
 * striped.get(key1) != striped.get(key2)}; the elements might nevertheless be mapped to the same
 * lock. The lower the number of stripes, the higher the probability of this happening.
 *
 * <p>There are three flavors of this class: {@code Striped<Lock>}, {@code Striped<Semaphore>}, and
 * {@code Striped<ReadWriteLock>}. For each type, two implementations are offered: {@linkplain
 * #lock(int) strong} and {@linkplain #lazyWeakLock(int) weak} {@code Striped<Lock>}, {@linkplain
 * #semaphore(int, int) strong} and {@linkplain #lazyWeakSemaphore(int, int) weak} {@code
 * Striped<Semaphore>}, and {@linkplain #readWriteLock(int) strong} and {@linkplain
 * #lazyWeakReadWriteLock(int) weak} {@code Striped<ReadWriteLock>}. <i>Strong</i> means that all
 * stripes (locks/semaphores) are initialized eagerly, and are not reclaimed unless {@code Striped}
 * itself is reclaimable. <i>Weak</i> means that locks/semaphores are created lazily, and they are
 * allowed to be reclaimed if nobody is holding on to them. This is useful, for example, if one
 * wants to create a {@code Striped<Lock>} of many locks, but worries that in most cases only a
 * small portion of these would be in use.
 *
 * <p>Prior to this class, one might be tempted to use {@code Map<K, Lock>}, where {@code K}
 * represents the task. This maximizes concurrency by having each unique key mapped to a unique
 * lock, but also maximizes memory footprint. On the other extreme, one could use a single lock for
 * all tasks, which minimizes memory footprint but also minimizes concurrency. Instead of choosing
 * either of these extremes, {@code Striped} allows the user to trade between required concurrency
 * and memory footprint. For example, if a set of tasks are CPU-bound, one could easily create a
 * very compact {@code Striped<Lock>} of {@code availableProcessors() * 4} stripes, instead of
 * possibly thousands of locks which could be created in a {@code Map<K, Lock>} structure.
 *
 * @author Dimitris Andreou
 * @since 13.0
 */
@Beta
@GwtIncompatible
@ElementTypesAreNonnullByDefault
public abstract class Striped<L> {
  /**
   * If there are at least this many stripes, we assume the memory usage of a ConcurrentMap will be
   * smaller than a large array. (This assumes that in the lazy case, most stripes are unused. As
   * always, if many stripes are in use, a non-lazy striped makes more sense.)
   */
  private static final int LARGE_LAZY_CUTOFF = 1024;

  private Striped() {}

  /**
   * Returns the stripe that corresponds to the passed key. It is always guaranteed that if {@code
   * key1.equals(key2)}, then {@code get(key1) == get(key2)}.
   *
   * @param key an arbitrary, non-null key
   * @return the stripe that the passed key corresponds to
   */
  public abstract L get(Object key);

  /**
   * Returns the stripe at the specified index. Valid indexes are 0, inclusively, to {@code size()},
   * exclusively.
   *
   * @param index the index of the stripe to return; must be in {@code [0...size())}
   * @return the stripe at the specified index
   */
  public abstract L getAt(int index);

  /**
   * Returns the index to which the given key is mapped, so that getAt(indexFor(key)) == get(key).
   */
  abstract int indexFor(Object key);

  /** Returns the total number of stripes in this instance. */
  public abstract int size();

  /**
   * Returns the stripes that correspond to the passed objects, in ascending (as per {@link
   * #getAt(int)}) order. Thus, threads that use the stripes in the order returned by this method
   * are guaranteed to not deadlock each other.
   *
   * <p>It should be noted that using a {@code Striped<L>} with relatively few stripes, and {@code
   * bulkGet(keys)} with a relative large number of keys can cause an excessive number of shared
   * stripes (much like the birthday paradox, where much fewer than anticipated birthdays are needed
   * for a pair of them to match). Please consider carefully the implications of the number of
   * stripes, the intended concurrency level, and the typical number of keys used in a {@code
   * bulkGet(keys)} operation. See <a href="http://www.mathpages.com/home/kmath199.htm">Balls in
   * Bins model</a> for mathematical formulas that can be used to estimate the probability of
   * collisions.
   *
   * @param keys arbitrary non-null keys
   * @return the stripes corresponding to the objects (one per each object, derived by delegating to
   *     {@link #get(Object)}; may contain duplicates), in an increasing index order.
   */
  public Iterable<L> bulkGet(Iterable<? extends Object> keys) {
    // Initially using the list to store the keys, then reusing it to store the respective L's
    List<Object> result = newArrayList(keys);
    if (result.isEmpty()) {
      return ImmutableList.of();
    }
    int[] stripes = new int[result.size()];
    for (int i = 0; i < result.size(); i++) {
      stripes[i] = indexFor(result.get(i));
    }
    Arrays.sort(stripes);
    // optimize for runs of identical stripes
    int previousStripe = stripes[0];
    result.set(0, getAt(previousStripe));
    for (int i = 1; i < result.size(); i++) {
      int currentStripe = stripes[i];
      if (currentStripe == previousStripe) {
        result.set(i, result.get(i - 1));
      } else {
        result.set(i, getAt(currentStripe));
        previousStripe = currentStripe;
      }
    }
    /*
     * Note that the returned Iterable holds references to the returned stripes, to avoid
     * error-prone code like:
     *
     * Striped<Lock> stripedLock = Striped.lazyWeakXXX(...)'
     * Iterable<Lock> locks = stripedLock.bulkGet(keys);
     * for (Lock lock : locks) {
     *   lock.lock();
     * }
     * operation();
     * for (Lock lock : locks) {
     *   lock.unlock();
     * }
     *
     * If we only held the int[] stripes, translating it on the fly to L's, the original locks might
     * be garbage collected after locking them, ending up in a huge mess.
     */
    @SuppressWarnings("unchecked") // we carefully replaced all keys with their respective L's
    List<L> asStripes = (List<L>) result;
    return Collections.unmodifiableList(asStripes);
  }

  // Static factories

  /**
   * Creates a {@code Striped<L>} with eagerly initialized, strongly referenced locks. Every lock is
   * obtained from the passed supplier.
   *
   * @param stripes the minimum number of stripes (locks) required
   * @param supplier a {@code Supplier<L>} object to obtain locks from
   * @return a new {@code Striped<L>}
   */
  static <L> Striped<L> custom(int stripes, Supplier<L> supplier) {
    return new CompactStriped<>(stripes, supplier);
  }

  /**
   * Creates a {@code Striped<Lock>} with eagerly initialized, strongly referenced locks. Every lock
   * is reentrant.
   *
   * @param stripes the minimum number of stripes (locks) required
   * @return a new {@code Striped<Lock>}
   */
  public static Striped<Lock> lock(int stripes) {
    return custom(stripes, PaddedLock::new);
  }

  /**
   * Creates a {@code Striped<Lock>} with lazily initialized, weakly referenced locks. Every lock is
   * reentrant.
   *
   * @param stripes the minimum number of stripes (locks) required
   * @return a new {@code Striped<Lock>}
   */
  public static Striped<Lock> lazyWeakLock(int stripes) {
    return lazy(stripes, () -> new ReentrantLock(false));
  }

  private static <L> Striped<L> lazy(int stripes, Supplier<L> supplier) {
    return stripes < LARGE_LAZY_CUTOFF
        ? new SmallLazyStriped<L>(stripes, supplier)
        : new LargeLazyStriped<L>(stripes, supplier);
  }

  /**
   * Creates a {@code Striped<Semaphore>} with eagerly initialized, strongly referenced semaphores,
   * with the specified number of permits.
   *
   * @param stripes the minimum number of stripes (semaphores) required
   * @param permits the number of permits in each semaphore
   * @return a new {@code Striped<Semaphore>}
   */
  public static Striped<Semaphore> semaphore(int stripes, int permits) {
    return custom(stripes, () -> new PaddedSemaphore(permits));
  }

  /**
   * Creates a {@code Striped<Semaphore>} with lazily initialized, weakly referenced semaphores,
   * with the specified number of permits.
   *
   * @param stripes the minimum number of stripes (semaphores) required
   * @param permits the number of permits in each semaphore
   * @return a new {@code Striped<Semaphore>}
   */
  public static Striped<Semaphore> lazyWeakSemaphore(int stripes, int permits) {
    return lazy(stripes, () -> new Semaphore(permits, false));
  }

  /**
   * Creates a {@code Striped<ReadWriteLock>} with eagerly initialized, strongly referenced
   * read-write locks. Every lock is reentrant.
   *
   * @param stripes the minimum number of stripes (locks) required
   * @return a new {@code Striped<ReadWriteLock>}
   */
  public static Striped<ReadWriteLock> readWriteLock(int stripes) {
    return custom(stripes, ReentrantReadWriteLock::new);
  }

  /**
   * Creates a {@code Striped<ReadWriteLock>} with lazily initialized, weakly referenced read-write
   * locks. Every lock is reentrant.
   *
   * @param stripes the minimum number of stripes (locks) required
   * @return a new {@code Striped<ReadWriteLock>}
   */
  public static Striped<ReadWriteLock> lazyWeakReadWriteLock(int stripes) {
    return lazy(stripes, WeakSafeReadWriteLock::new);
  }
  /**
   * ReadWriteLock implementation whose read and write locks retain a reference back to this lock.
   * Otherwise, a reference to just the read lock or just the write lock would not suffice to ensure
   * the {@code ReadWriteLock} is retained.
   */
  private static final class WeakSafeReadWriteLock implements ReadWriteLock {
    private final ReadWriteLock delegate;

    WeakSafeReadWriteLock() {
      this.delegate = new ReentrantReadWriteLock();
    }

    @Override
    public Lock readLock() {
      return new WeakSafeLock(delegate.readLock(), this);
    }

    @Override
    public Lock writeLock() {
      return new WeakSafeLock(delegate.writeLock(), this);
    }
  }

  /** Lock object that ensures a strong reference is retained to a specified object. */
  private static final class WeakSafeLock extends ForwardingLock {
    private final Lock delegate;

    @SuppressWarnings("unused")
    private final WeakSafeReadWriteLock strongReference;

    WeakSafeLock(Lock delegate, WeakSafeReadWriteLock strongReference) {
      this.delegate = delegate;
      this.strongReference = strongReference;
    }

    @Override
    Lock delegate() {
      return delegate;
    }

    @Override
    public Condition newCondition() {
      return new WeakSafeCondition(delegate.newCondition(), strongReference);
    }
  }

  /** Condition object that ensures a strong reference is retained to a specified object. */
  private static final class WeakSafeCondition extends ForwardingCondition {
    private final Condition delegate;

    @SuppressWarnings("unused")
    private final WeakSafeReadWriteLock strongReference;

    WeakSafeCondition(Condition delegate, WeakSafeReadWriteLock strongReference) {
      this.delegate = delegate;
      this.strongReference = strongReference;
    }

    @Override
    Condition delegate() {
      return delegate;
    }
  }

  private abstract static class PowerOfTwoStriped<L> extends Striped<L> {
    /** Capacity (power of two) minus one, for fast mod evaluation */
    final int mask;

    PowerOfTwoStriped(int stripes) {
      Preconditions.checkArgument(stripes > 0, "Stripes must be positive");
      this.mask = stripes > Ints.MAX_POWER_OF_TWO ? ALL_SET : ceilToPowerOfTwo(stripes) - 1;
    }

    @Override
    final int indexFor(Object key) {
      int hash = smear(key.hashCode());
      return hash & mask;
    }

    @Override
    public final L get(Object key) {
      return getAt(indexFor(key));
    }
  }

  /**
   * Implementation of Striped where 2^k stripes are represented as an array of the same length,
   * eagerly initialized.
   */
  private static class CompactStriped<L> extends PowerOfTwoStriped<L> {
    /** Size is a power of two. */
    private final Object[] array;

    private CompactStriped(int stripes, Supplier<L> supplier) {
      super(stripes);
      Preconditions.checkArgument(stripes <= Ints.MAX_POWER_OF_TWO, "Stripes must be <= 2^30)");

      this.array = new Object[mask + 1];
      for (int i = 0; i < array.length; i++) {
        array[i] = supplier.get();
      }
    }

    @SuppressWarnings("unchecked") // we only put L's in the array
    @Override
    public L getAt(int index) {
      return (L) array[index];
    }

    @Override
    public int size() {
      return array.length;
    }
  }

  /**
   * Implementation of Striped where up to 2^k stripes can be represented, using an
   * AtomicReferenceArray of size 2^k. To map a user key into a stripe, we take a k-bit slice of the
   * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced.
   */
  @VisibleForTesting
  static class SmallLazyStriped<L> extends PowerOfTwoStriped<L> {
    final AtomicReferenceArray<@Nullable ArrayReference<? extends L>> locks;
    final Supplier<L> supplier;
    final int size;
    final ReferenceQueue<L> queue = new ReferenceQueue<>();

    SmallLazyStriped(int stripes, Supplier<L> supplier) {
      super(stripes);
      this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1;
      this.locks = new AtomicReferenceArray<>(size);
      this.supplier = supplier;
    }

    @Override
    public L getAt(int index) {
      if (size != Integer.MAX_VALUE) {
        Preconditions.checkElementIndex(index, size());
      } // else no check necessary, all index values are valid
      ArrayReference<? extends L> existingRef = locks.get(index);
      L existing = existingRef == null ? null : existingRef.get();
      if (existing != null) {
        return existing;
      }
      L created = supplier.get();
      ArrayReference<L> newRef = new ArrayReference<>(created, index, queue);
      while (!locks.compareAndSet(index, existingRef, newRef)) {
        // we raced, we need to re-read and try again
        existingRef = locks.get(index);
        existing = existingRef == null ? null : existingRef.get();
        if (existing != null) {
          return existing;
        }
      }
      drainQueue();
      return created;
    }

    // N.B. Draining the queue is only necessary to ensure that we don't accumulate empty references
    // in the array. We could skip this if we decide we don't care about holding on to Reference
    // objects indefinitely.
    private void drainQueue() {
      Reference<? extends L> ref;
      while ((ref = queue.poll()) != null) {
        // We only ever register ArrayReferences with the queue so this is always safe.
        ArrayReference<? extends L> arrayRef = (ArrayReference<? extends L>) ref;
        // Try to clear out the array slot, n.b. if we fail that is fine, in either case the
        // arrayRef will be out of the array after this step.
        locks.compareAndSet(arrayRef.index, arrayRef, null);
      }
    }

    @Override
    public int size() {
      return size;
    }

    private static final class ArrayReference<L> extends WeakReference<L> {
      final int index;

      ArrayReference(L referent, int index, ReferenceQueue<L> queue) {
        super(referent, queue);
        this.index = index;
      }
    }
  }

  /**
   * Implementation of Striped where up to 2^k stripes can be represented, using a ConcurrentMap
   * where the key domain is [0..2^k). To map a user key into a stripe, we take a k-bit slice of the
   * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced.
   */
  @VisibleForTesting
  static class LargeLazyStriped<L> extends PowerOfTwoStriped<L> {
    final ConcurrentMap<Integer, L> locks;
    final Supplier<L> supplier;
    final int size;

    LargeLazyStriped(int stripes, Supplier<L> supplier) {
      super(stripes);
      this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1;
      this.supplier = supplier;
      this.locks = new MapMaker().weakValues().makeMap();
    }

    @Override
    public L getAt(int index) {
      if (size != Integer.MAX_VALUE) {
        Preconditions.checkElementIndex(index, size());
      } // else no check necessary, all index values are valid
      L existing = locks.get(index);
      if (existing != null) {
        return existing;
      }
      L created = supplier.get();
      existing = locks.putIfAbsent(index, created);
      return MoreObjects.firstNonNull(existing, created);
    }

    @Override
    public int size() {
      return size;
    }
  }

  /** A bit mask were all bits are set. */
  private static final int ALL_SET = ~0;

  private static int ceilToPowerOfTwo(int x) {
    return 1 << IntMath.log2(x, RoundingMode.CEILING);
  }

  /*
   * This method was written by Doug Lea with assistance from members of JCP JSR-166 Expert Group
   * and released to the public domain, as explained at
   * http://creativecommons.org/licenses/publicdomain
   *
   * As of 2010/06/11, this method is identical to the (package private) hash method in OpenJDK 7's
   * java.util.HashMap class.
   */
  // Copied from java/com/google/common/collect/Hashing.java
  private static int smear(int hashCode) {
    hashCode ^= (hashCode >>> 20) ^ (hashCode >>> 12);
    return hashCode ^ (hashCode >>> 7) ^ (hashCode >>> 4);
  }

  private static class PaddedLock extends ReentrantLock {
    /*
     * Padding from 40 into 64 bytes, same size as cache line. Might be beneficial to add a fourth
     * long here, to minimize chance of interference between consecutive locks, but I couldn't
     * observe any benefit from that.
     */
    long unused1;
    long unused2;
    long unused3;

    PaddedLock() {
      super(false);
    }
  }

  private static class PaddedSemaphore extends Semaphore {
    // See PaddedReentrantLock comment
    long unused1;
    long unused2;
    long unused3;

    PaddedSemaphore(int permits) {
      super(permits, false);
    }
  }
}